
Transformations in Secure
and Fault-Tolerant Distributed Computation

Felix C. Freilinga Neeraj Mittalb∗ Lucia Draque Pensoa†

aLaboratory for Dependable Distributed Systems, RWTH Aachen, Germany
bThe University of Texas at Dallas, USA

Abstract: We present a survey of different techniques used by the authors to transform
a security or fault-tolerance problem into another with a known solution. We consider
the following two cases: (1) reducing a security problem into a fault-tolerance pro-
blem; (2) reducing a fault-tolerant problem into its fault-intolerant version. In these
cases it is possible to reuse known solutions to construct new efficient algorithms.

1 Introduction

We investigate two distinct ways of reducing a security or fault-tolerance problem, so
that it is possible to take advantage of an already existing solution. In the following, a
correct process is one that never fails, a non-faulty process at a particular time (sometimes
implicit) is one that has not failed yet, a faulty process is one that has already failed, and a
live process is one that has not crashed yet.

2 From Fair Exchange to Consensus

The fair exchange problem is key to trading eletronic items in systems of mutually un-
trusted parties [AGGV05]. An algorithm that solves fair exchange must ensure that every
honest party eventually either obtains its desired item or aborts the exchange (Termina-
tion). The abort option however is excluded if no parties misbehave and all items match
their descriptions (Effectiveness). The algorithm should also guarantee that, if the desired
item of any party does not match its description, then no party can obtain any (useful)
information about any other item (Fairness).

Avoine, Gärtner, Guerraoui and Vukolic [AGGV05] investigate the fair exchange problem
in a distributed system where parties are coupled with tamper-proof security modules (like

∗Neeraj Mittal was supported through a travel scholarship by Deutsche Forschungsgemeinschaft (DFG) as
part of the Graduiertenkolleg “Software for mobile communication systems” at RWTH Aachen.

†Lucia Draque Penso was supported by Deutsche Forschungsgemeinschaft (DFG) as part of the Graduierten-
kolleg “Software for mobile communication systems” at RWTH Aachen.

410



smart cards) and no third party is available. They show that fair exchange can be solved at
the party level if agreement (i.e., consensus) is solved at the security modules level.

The intuition is that the security modules can exchange the items and either release them
to their respective parties after agreeing that everyone received the desired item, or abort
after agreeing that some party misbehaved. With such an idea, it is possible to substantially
simplify existing solutions for fair exchange. Moreover, the reduction opens the possibility
to reuse efficient agreement protocols when implementing a solution.

3 Termination Detection: From Crash-Prone to Failure-Free

Informally, the termination detection problem [MFVP05] involves determining when a
distributed computation has ceased all its activity. The distributed computation satisfies
the following four properties or rules. First, a process is either active or passive. Second,
a process can send a message only if it is active. Third, an active process may become
passive at any time. Fourth, a passive process may become active only on receiving a
message. Intuitively, an active process is involved in some local activity, whereas a passive
process is idle.

In case both processes and channels are reliable, a distributed computation terminates once
all processes become passive and stay passive thereafter, that is, once all processes become
passive and all channels become empty. However, in a crash-prone system, once a process
crashes, it ceases all its activities. Hence, any message in-transit towards a crashed process
can be ignored because the message cannot initiate any new activity. Moreover, messages
in-transit from the crashed process towards a live process can be either deleted or ignored
as soon as the crash is detected. Therefore, a distributed computation in a crash-prone
system terminates once all live processes are passive and either no channel contains a
message in-transit towards a live process or no not-ignored channel contains a message
in-transit towards a live process.

Mittal, Freiling, Venkatesan and Penso [MFVP05] efficiently reduce the crash-tolerant
termination detection problem to the fault-intolerant case, making it possible to have a
competitive crash-tolerant termination detection algorithm B out of a competitive fault-
intolerant termination detection algorithm A. More precisely, for both fully and arbitrary
connected topologies, they show how to efficiently transform any fault-intolerant termina-
tion detection algorithm A, that has been designed for a failure-free environment, into a
crash-tolerant termination detection algorithm B, that tolerates up to any number of pro-
cess crashes without having to restart the underlying distributed application.

The main idea behind their approach is to restart the fault-intolerant termination detection
algorithm A, whenever a new failure is detected , on the set of currently operational pro-
cesses . Note that before restarting A, they ensure that all operational processes agree on
the set of processes that have failed, so that they can guarantee that once the underlying
distributed computation has terminated with respect to the set of operational processes,
then it has terminated with respect to the whole set of processes. This procedure also avo-
ids false termination announcement. Interestingly, it works whether messages in-transit

411



from crashed processes towards a live one are deleted or ignored as soon as the crash is
detected.

However, the only drawback to the restarting approach is that when A is restarted, a me-
chanism is needed to deal with any unprocessed application messages, that is, application
messages that were sent before A is restarted but are received after A has been restarted.
Such application messages are referred to as stale or old application messages. Clearly, the
current instance of A may not be able to handle an old application message correctly. One
simple tentative solution would be to hide an old application message from the current
instance of A and deliver it directly to the underlying distributed computation. However,
on receiving an old application message, if the destination process changes its state from
passive to active, then, to the current instance of A, it would appear as if the process beca-
me active spontaneously. This violates one of the four rules of the underlying distributed
computation. Thus, the current instance of A may not work correctly in the presence of
old application messages and therefore cannot be directly used to detect termination of the
underlying distributed computation.

The situation is handled, though, by using the strategy of superimposing another compu-
tation on top of the underlying distributed computation. The superimposed computation
is refered to as the secondary computation and the underlying distributed computation is
refered to as the primary computation. As far as live processes are concerned, the secon-
dary computation is almost identical to the primary computation except possibly in the
beginning, when a process stays active with respect to the secondary computation at least
until it knows that there are no more old application message to be received in the future.

In this way, whenever a process crashes and all live processes agree on the set of failed pro-
cesses, a new instance of the secondary computation is simulated in the subsystem induced
by the set of operational processes. Then, a new instance of the fault-intolerant termination
detection algorithm is used to detect termination of the secondary computation. The older
instances of the secondary computation and of the fault-intolerant termination detection
algorithm are simply aborted. If the secondary computation has terminated then the pri-
mary computation has terminated as well , and if the primary computation has terminated,
then the secondary computation terminates eventually.

Hence, with the help of this simple method of combining the restart of an efficient fault-
intolerant solution with the wait of unprocessed in-transit messages, the authors are able
to achieve an efficient fault-tolerant solution, as can be verified in [MFVP05].

Literatur

[AGGV05] Avoine, G., Gärtner, F.C., Guerraoui, R., und Vukolic, M.: Gracefully Degrading Fair
Exchange with Security Modules. In: Proceedings of the 5th European Dependable
Computing Conference(EDCC). S. 55–71. 2005.

[MFVP05] Mittal, N., Freiling, F.C., Venkatesan, S., und Penso, L.: Efficient Reductions for Wait-
Free Termination Detection in Crash-Prone Systems. Technical Report AIB-2005-12.
RWTH Aachen. June 2005.

412


