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Abstract: Despite many years of research on how to properly align sequences in the
presence of sequencing errors, alternative splicing and micro-exons, the correct align-
ment of mRNA sequences to genomic DNA is still a challenging task. We present a
novel approach based on large margin learning that combines kernel based splice site
predictions with common sequence alignment techniques. By solving a convex opti-
mization problem, our algorithm — called PALMA - tunes the parameters of the model
such that the true alignment scores higher than all other alignments. In an experimen-
tal study on the alignments of mRNAs containing artificially generated micro-exons,
we show that our algorithm drastically outperforms all other methods: It perfectly
aligns all 4358 sequences on an hold-out set, while the best other method misaligns
at least 90 of them. Moreover, our algorithm is very robust against noise in the query
sequence: when deleting, inserting, or mutating up to 50% of the query sequence,
it still aligns 95% of all sequences correctly, while other methods achieve less than
36% accuracy. For datasets, additional results and a stand-alone alignment tool see
http://www.fml.mpg.de/raetsch/projects/palma.

1 Introduction

Many genomes have been sequenced recently. This is only a first step to understand
what the genome actually encodes. Fortunately, most of them also come with rather large
amounts of expressed sequence tags (ESTs; sequenced parts of mRNA), which help to ac-
curately recognize genes and to identify the exon/intron boundaries as well as alternative
splice forms (see [ZG06] and references therein).

Many methods for aligning ESTs to genomic DNA have been proposed, including ap-
proaches based on blast [AGM™190], spliced alignments [GMP96], sim4 [FHZ*98], Gene-
Seqger [UZB00], Spidey [WSO01], blat [Ken02], an approach to find additional microexons
[VHSO03] and most recently exalin [ZG06]. The identification of exon/intron boundaries is
important for finding the correct alignment. Therefore most approaches try to find an align-
ment that prefers splice site consensus signals in the identified introns (usually GT/AG,
considerably less often GC/AG and in some organisms also AT/AC) that help to accu-
rately identify these boundaries. This is done by employing either dynamic programming
or sophisticated heuristics.

[Z2G06] used an information theoretic approach to combine the two types of information
available during alignment: the sequence similarity and splice site predictions. Given this
model, dynamic programming is used to compute the maximum-log likelihood alignment.
Our algorithm, called PALMA, is based on similar ideas as exalin. The main difference is
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the modeling of splice sites using support vector machines, the modeling of intron lengths
and the large margin based combination of the different types of information. Our ap-
proach does not include any probabilistic models and hence does not return probabilities
for a particular alignment. It is, however, able to very accurately and robustly align se-
quences as will be seen in the experimental section where we consider the problem of
aligning modified EST sequences to genomic DNA (here of the model organism C. ele-
gans) using the most difficult setup: We consider artificially generated short internal exons
(2-50nt) combined with small to large amounts of noise in the query sequence. We show
that our method perfectly aligns all sequences while other methods fail as soon as the
exons become too short or the amount of noise too large.

2 Method

The idea of our algorithm is to compute an alignment by dynamic programming that uses
a scoring function. We tune the parameters of the scoring functions such that the true
alignment does not only achieve a large score (to be “most likely”), but also that all other
alignments score considerably lower than the true alignment (to obtain a “large margin
between the alignments™). Similar ideas are used in other large margin algorithms such
as Support Vector Machines [Vap95] and Boosting [FS97]. Also, a similar approach for
aligning protein sequences (without intron related gaps) has been proposed independently
by [JGEOS]. The resulting scoring function can then be maximized using dynamic pro-
gramming in order to obtain the optimal alignment. Our method consists of three indepen-
dent parts: the splice site prediction model, the dynamic programming algorithm and the
optimization of the scoring function which we describe in the following sections.

Training the splice site model and also the large margin combination requires separate
sequence data sets. For the splice site model, we used genes that were EST confirmed
but without full length cDNA support (set 1). We consider a random subset of 40% of
all cDNA confirmed genes without evidence for alternative splicing for training the large
margin combination (set 2). The remaining 20% and 40% were used for hyper-parameter
tuning (set 3) and final evaluation (set 4) respectively.

2.1 Splice Site Predictions

From the set of EST sequences (set 1) we extracted sequences of confirmed donor (intron
start) and acceptor (intron end) splice sites (see Appendix A for details). For acceptor
splice sites we used a window of 80bp upstream to 60bp downstream of the site (on the
DNA). For donor sites we used 60bp upstream and 80bp downstream. Also from these
training sequences we extracted non-splice sites that are within an exon or intron of the
sequence and have AG (acceptor) or GT/GC (donor) consensus. In order to recognize ac-
ceptor and donor splice sites, we trained two Support Vector Machine classifiers [Vap95]
with soft-margin using the so-called “weighted degree” kernel [SRIM02, RSS06]. The
kernel mainly takes positional information (relative to the splice site) about the appear-
ance of certain motifs into account. It computes the scalar product between two sequences

x and x’: ;

k(x, X/) = Z Uj I(l"[z',z‘+j] = x/[i,i+j])a (H

j=1 =1
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where N = 140 is the length of the sequence and x|, denotes the substring of x
from position a to (excluding) b. The function I is the indicator function, I(true) = 1,
I(false) = 0 and the weights v; := d — j + 1. We used a normalization of the kernel

l;(sl, S2) = —AbLe)  apnd d = 22 for the recognition of splice sites. Addition-
k‘(sl,sl)k(SQ,SQ)

ally, the regularization parameter of the Support Vector Machine was set to be C' = 2 and
C' = 3 for acceptor and donor sites, respectively. All parameters (including the window
size, regularization parameters etc) have been tuned on data set 2 (cf. [RSS05]).

Given a DNA sequence as target of an alignment we can now use the two SVMs to compute
scores for each position with corresponding consensus! for being a splice acceptor or
donor site, respectively. Since we consider C. elegans where U12 splicing is extremely
rare or not present, we exclude the AT /AC splice sites from our splice site model.

2.2 Needleman-Wunsch Alignments with Intron Model

The classical deterministic and exact alignment algorithm is the Needleman-Wunsch al-
gorithm and is based on dynamic programming. Its running time is O(m - n), where m is
the length of the EST sequence Sk, and n is the length of the DNA sequence Sp. It builds
up a m - n matrix and hence has the same space complexity.

The main idea of the algorithm is to compute an overall alignment by determining the
maximum over all alignments of all prefixes Sg(1 : ) := (Sg(1),...,Sg(#)) and Sp(1 :
j) == (Sp(1),...,Sp(j)) of the two sequences S and Sp, respectively. An alignment
is given by a sequence of pairs (a,,b.), r = 1,..., R, where R < m + n depends on
the alignment and a,,b, € ¥ := {4, C, G, T, N, —}. A pair consists either of the
two corresponding letters of the two sequences or a single letter in one sequence paired
with a gap in the other sequence. The alignment is scored using a substitution matrix M,
which we interpret as a function M : ¥ x ¥ — R. Then the score for the alignment
A= {(ar,by)}r is simply > M(a,,b,).

We define V' (4, j) to be the score of the best possible alignment of prefixes Sg(1 : ) and
Sp(1 : j). Then V(n,m) can be computed using the following recurrence formula (for
alli=1,...,mandj=1,...,n):

V(i—1,j 1)+ M(Sg(i),Sp(j))
V(i,j) = max V(i—1,5) + M(Se(i), ") 2
V(i,j—1)+M(~",5p(j))

The recurrence is initialized with V(0,0) := 0, V(4,0) := 0 and V (0, ) := 0 for all
t=1...mandj = 1...n. There are three possibilities:

~ =

e Sg(i) and Sp(j) are aligned to each other (possibly a mismatch).
e Sg(i) is aligned to a gap in the DNA sequence.
e Sp(j) is aligned to a gap in the EST sequence.
In the original setting there are only these three possibilities and one can straightforwardly

fill the matrix from left to right and top to bottom to finally compute V (n, m). The optimal
alignment can then be obtained by backtracking [DEKM9S].

AG for acceptor sites and GT or GC for donor sites.
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The Needleman-Wunsch algorithm only aligns the single bases of two sequences and does
not distinguish between exons and introns — it essentially treats everything as exons. We
therefore propose to extend the Needleman-Wunsch algorithm to better model introns: We
allow an additional “intron transition” that is separately scored based on its length and the
scores of splice sites at its ends. We denote by f7(i1,i2) the intron scoring function for an
intron starting at 4; and ending at i5. The intron scoring function f7(i1,42) is computed
based on the intron length iy — 41, the donor SVM output ¢g4,r,(41) for position i; and
the acceptor SVM output g,..(i2) for position 2. During learning we determine three
functions fo, fucc and fgon : R — R to combine these three values:

f[(ila 22) = f@(iQ - 'Ll) + fdon(gdon(il)) + facc(gacc(iQ))- (3)
When there is no donor consensus at position 41, then we define fion(gdaon(i1)) := —00
(similarly for fyce(gace(i2))). Given the intron scoring function f; we can now restate the
recurrence formula (forall: =1,...,mand j = 1,...,n):

V(i -1, =1)+ M(Sg(i), Sp (7))
V(i—1,7)+ M(Sg(i), ") )
V(i,j—1)+M('=",Sp(j))
maxy<k<j-1(V (i k) + f1(k, j))
where we consider the additional possibility of an intron starting at position k£ and ending
at 5. Please note that the above recurrence formula is considerably more computation-
ally expensive than the previous one: every step involves finding the optimal intron start
(O(n)). However, one only needs to consider those positions where the intron start and end
exhibit the corresponding splice consensus sites and also the splice site predictors output
large enough scores. Additional strategies for speeding up such algorithms are discussed
in [ZG06].
For completeness we need to extend our notation for alignments with introns. We use
again alignment pairs A = {(a,, b-) },, but extend the alphabet for a,- to ¥ U {+} (“intron
sequence missing”) and for b, to X U {*} (“intron sequence”). Note that b, should only
contain strings of length greater than one if a, = '+’. Then the score f(.A) for an align-
ment A with intron is computed as before, i.e. Y, M (a,,b,), except when a, = +: In
this case the intron score function is used to score the corresponding intron.

V(i,j) = max

2.3 Large Margin Combination

In the previous section we assumed that the functions f,.., f4on and f; as well as the
substitution matrix M were given. We now describe a algorithm to determine these pa-
rameters based on the training set of sequences and their true alignments.

Two methods based on a similar idea have been independently proposed in [JGEO5] and
[KKO6]. They both present a simpler algorithm for learning the substitution matrix re-
quired for aligning protein sequences. [KKO06] presents an algorithm—based on the method
from [GBN94]-that can learn hundreds of parameters simultaneously and is able to model
affine gap-costs. [JGEOS] propose an algorithm related to support vector machines. How-
ever, both approaches do not model introns or splice sites explicitly and are therefore
expected to fail in identifying microexons.

Note that our proposed algorithm is two-layered: First one learns the splice site model
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and then how to combine the different pieces of information. In principle these two steps
can be combined to one step. Then the piecewise linear functions can be replaced with
linear combinations of kernel elements as similarly done in [ATHO3]. However, this makes
training much slower and is not expected to improve the results in our case.

Since the three functions are one-dimensional, it suffices to use a simple piecewise linear
model: Let s be the number of supporting points z; (satisfying x; < x;41) and y; their
values, then the piecewise linear function is defined by

Y1 x S 1

_ Yi(Tit1—2)+yir1(z—x;) < <o s

f(l‘) o Tig1—Tq LTi =T > Tit1 - %)
Ys T > T

After having appropriately chosen supporting points on the z-axis we only need to opti-
mize the corresponding y-values. For f,.. and f4,, we use 30 supporting points uniformly
sampled between —5 and +5 (our SVM outputs are typically not larger). For f, we use 30
log-uniformly sampled supporting points between 30nt and 1000nt.> Given the three func-
tions and the substitution matrix, the alignment scoring function f(.A) is fully specified.
Moreover, for a given alignment A, it can be verified that f(.A) is linear in all parameters
that we denote by @, i.e. in the values of the substitution matrix and the y-values of the
three piecewise linear functions, 8 := (0 4cc, Odon, 0, Orr).

2.3.1 Optimization

For training we are given a set of N true alignments .Aj', i=1,...,N. The goal is to find
the parameters @ of the alignment scoring function f such that the difference of scores
fo(A) — fo(A7) is large for all wrong alignments A~ # A;. This can be done by

solving the following convex optimization problem:

N
Zin, % z_;g st fo(AD) = fo(AT) > 1-¢& Viand A~ £ AF. (6)
Here we introduced so-called slack-variables &; to implement a soft-margin [CV95]. The
above optimization problem has exponentially many constraints and cannot be easily solved
directly. Instead one adopts a column generation technique (cf. [HK93] and references
therein) and for every true alignment one maintains a set of wrong alignments A; ; # Aj ,
for all j. Initially this set is empty but it can easily be filled by running the dynamic
programming algorithm discussed in the previous section to generate wrong alignments
(based on some arbitrary initial parameters). Then one solves the following optimization
problem

N
o1 _ .
Jin ; & st foAD) —fo(AT) 2 1-& Vi @

Given a set of wrong alignments one can now determine the intermediate optimal parame-
ters 6, and further use the dynamic programming algorithm to find other wrong alignments
to be included in the set of wrong alignments. The procedure is iterated and provably con-
verges to the solution of (6) in a finite number of steps (in our application often not more
than 10 iterations).

2For other organisms one might want to choose a larger range.
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2.3.2 Regularization

In empirical inference it is common to regularize the parameters in order not to overfit. We
implement this by adding a regularization term C'P(8) to (6), where C'is the regularization
constant and P a regularization function. Recall that the parameter vector consists of four
parts, and we define the regularization term as follows:

n—1 n—1 n—1
P(O) = Z(Gacc,i+1_9acc,i)2+z(edon,'i—i-l_adon,i)2+z(9€,i+1_0€,i)2+z M(a7 b)2
i=1 i=1 i=1 ab

It implements the idea that the piecewise-linear functions should be smooth and the values
in the substitution matrix small.

3 Results and Discussion

Most alignment algorithms work very well for aligning mRNA sequences against genomic
DNA when query and target perfectly match and the matching blocks are long enough. In
our experimental study we are interested in the most difficult cases, where most algorithms
start to fail. If an algorithm works in such case we expect that it will also return correct
alignments for easier cases.

We evaluate our proposed method, PALMA, and other methods such as (exalin, sim4 &
blat). We consider the alignment of mRNA sequence fragments containing three exons
where we artificially shortened the middle exon (final length of 2-50nt, see Appendix B
for details). Artificially generating the data has the benefit of knowing exactly what
the correct alignment has to be. Additionally, we add considerable amounts of noise
(p = 0%, 1%, 10%, 20%, 50% of random mutations, deletions and insertions) to the query
sequence. We then measure how often the methods find the middle exons and the whole
alignment correctly. The evaluation is done on a separate test set which was not used
during training of our method (set 4, cf. Appendix B).

The model selection for the splice site predictors have been performed on separate val-
idation sets (set 2). Model selection of regularization parameter C' in our method (cf.
Section 2.3.2) was done by simple validation on a separate validation set (set 3). While
the method was trained on noise-free data, we applied it to the noisy versions during val-
idation since otherwise the validation error rate was always zero, almost independently of
the choice of C. We determined C' = 0.01 as optimal regularization constant. To analyze
the importance of the splice site predictions relative to the sequence similarity for correct
alignments, we additionally trained a second model that does not use splice site informa-
tion (but only intron lengths and the substitution matrix). We call it PALMA without splice
sites (SS).

Figure 1 shows the alignment error rate for different methods on the 4358 test sequences.
Here we counted an alignment as a mistake if the exon boundaries deviated by at least one
nucleotide. 3 We also looked at how often the middle exon has been correctly identified.

3For exalin we noticed that the alignment is very often off by 2nt. We assume that this is a fixable bug in the
exalin implementation. For fairness we therefore allowed deviations of +2nt for exalin only. The problem often
occurs for high noise levels. For instance at p = 20% we find 20% error rate for the strict evaluation, while only
6% error when using the relaxed criterion.
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We observed that in most cases an alignment error is induced by the inaccurate identifica-
tion of the middle exon.* From our results in Figure 1 we observe that there are drastic
differences between the methods. Almost all methods perform reasonably well when the
query perfectly matches the target — with the exception of sim4 which has problems align-
ing at least 18% of the sequences. For blat and sim4 the error rates drastically increase
when adding noise to the query sequence. Only exalin and PALMA (with and without
splice site information) have low error rates for noise levels of at most 20%. When delet-
ing, inserting or mutating up to 50% of the query sequence, PALMA (with splice sites)
still aligns 95% of all sequences correctly, while the other methods achieve less than 36%
accuracy. For high noise levels the splice site information helps to reduce the error rate
considerably. But also in the low noise cases the splice site predictions help to accurately
identify very short exons that can be found ambiguously in the intronic regions (0.4% of
the test sequences).

31,92% 82,61%
30% T

-PALMA WSS Figure 1: Comparison of differ-

[ PALMA wio SS ent methods for aligning mRNAs
25% || [ exalin to genomic DNA: We considered
I sim4 the particularly difficult task of
I biat aligning exon triples with short

20%¢ middle exons (2-50nt) in the

presence of noise.  Although
an alignment is already declared
as true if the intron boundaries
are correct, only PALMA (with
splice sites) achieves 0% error
rate for aligning queries with up
to 10% noise.

15%¢

10%

alignment error rate

5%

0% 1% 10%
noise in query sequence

Figures 2-4 show the optimized parameters determined by our algorithm. For the piece-
wise linear functions in 2 we obtain smooth sigmoid-shaped functions (“differences be-
tween large score values do not matter”’). Comparing with Figure 4 we observe that the
difference between a weak and a strong splice site is worth about 3-4 matches, since the
substitution matrix contains values between —0.4 and +0.4. Figure 3 illustrates the piece-
wise linear function for scoring intron lengths. We observe that the maximum coincides
with the most frequent intron length of around 50nt. The optimized substitution matrix is
essentially diagonal, which is not surprising as there was no preference for substitutions in
our data.

4 Conclusion

We have proposed a new alignment algorithm that computes the optimal alignment of
mRNA sequences to genomic DNA while exploiting existing very accurate kernel-based
splice site predictions. In a simulation study on aligning sequences with very short exons
and considerable amounts of noise we have shown that our method achieves significantly

4Since it gives a very similar figure, we omitted it from the manuscript.

110



acceptor score
s 6 6 b o
[ [} S N o N

-5

0
acceptor SVM output

donor score
S &5 & b o
o o IS N o )

|
@

0
donor SVM output

Figure 2: PALMA'’s optimized functions fscc and fqon scoring acceptor and donor SVM outputs.

lower error rates than other methods. This indicates that the proposed method would be
more effective than current approaches for discovering microexons, i.e. exons between 2-
25nt in length. This is especially true in the presence of sequencing errors or mutations
which may render current approaches and heuristics inaccurate. In addition, by combining
it with other methods such as blast we can reduce the computational cost in order to apply
our method for alignments of ESTs to whole-genomes.
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A Processing of Sequence Databases

We collected all known C. elegans ESTs from Wormbase [HCCT04] (release WS120;
236,893 sequences) and dbEST [BT93] (as of February 22, 2004; 231,096 sequences).
Using blat [Ken02] we aligned them against the genomic DNA (release WS120). The
alignment was used to confirm exons and introns. We refined the alignment by correcting
typical sequencing errors, for instance by removing minor insertions and deletions. If an
intron did not exhibit the consensus GT/AG or GC/AG at the 5° and 3’ ends, then we tried
to achieve this by shifting the boundaries up to 2 base pairs (bp). If this still did not lead
to the consensus, we split the sequence into two parts and considered each subsequence
separately. In a next step we merged consistent alignments, if they shared at least one
complete exon or intron. This lead to a set of 124,442 unique EST-based sequences.

We repeated the above procedure with all known cDNAs from Wormbase (release WS120;
4,855 sequences). These sequences only contain the coding part of the mRNA. We used
their ends as annotation for start and stop codons.

We clustered the sequences in order to obtain independent training, validation and test
sets. In the beginning each of the above EST and cDNA sequences were in a separate
cluster. We iteratively joined clusters, if any two sequences from distinct clusters match to
the same genomic location (this includes many forms of alternative splicing). We obtained
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tron length in C. elegans. much.

21,086 clusters, while 4072 clusters contained at least one cDNA.

For set 1 we chose all clusters not containing a cDNA (17215), for set 2 we chose 40% of
the clusters containing at least one cDNA (1536). For set 3 we used 20% of clusters with
cDNA (775). The remaining 40% of clusters with at least one cDNA (1,560) were used as
set 4. Sets 2-4 were filtered to remove confirmed alternative splice forms. This left 1,177
cDNA sequences for festing in set 4 with an average of 4.8 exons per gene and 2,313bp
from the 5’ to the 3’ end.

B Artificial Microexon Dataset

Based on sets 2-4 described in the last section we created sets of consecutive exon triples
from the confirmed transcripts in these sets. This lead to 4604, 2257 and 4358 triples.
In a first processing step we shortened the middle exons to a random length between 2nt
and 50nt (uniformly distributed). To do so, we removed the correct number of nucleotides
from the center of the middle exon — from the query as well as the DNA. This leaves the
splice sites mostly functional. In a second step we added varying amounts of noise. For a
given noise level p and a query sequence of length L, we first replaced p - L/3 positions
with a random letter (X = {A, C, G, T, N}). Then we deleted the same number of non-
overlapping positions in the sequence and added the same number of random nucleotides
at random positions. We used p = 0%, 1%, 10%, 20%, 50%.
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