
GI-Edition
Lecture Notes
in Informatics

Armin Heinzl, Peter Dadam, Stefan Kirn,
Peter Lockemann (Eds.)

PRIMIUM
Process Innovation for
Enterprise Software

A
. H

ei
n

zl
, P

. D
ad

am
, S

. K
ir

n
, P

. L
o

ck
em

an
n

 (
Ed

s.
):

P
R

IM
IU

M

Proceedings

Gesellschaft für Informatik (GI)

publishes this series in order to make available to a broad public
recent findings in informatics (i.e. computer science and informa-
tion systems), to document conferences that are organized in co-
operation with GI and to publish the annual GI Award dissertation.

Broken down into the fields of
• Seminar
• Proceedings
• Dissertations
• Thematics
current topics are dealt with from the fields of research and
development, teaching and further training in theory and practice.
The Editorial Committee uses an intensive review process in order
to ensure the high level of the contributions.

The volumes are published in German or English.

Information: http://www.gi-ev.de/service/publikationen/lni/

Enterprise software is one of the main research and innovation areas in the German
State of Baden-Württemberg. The importance of enterprise software is expected to
further grow in the future, since interrelations and interdependencies within and in
between enterprises will increase. In order to design efficient business processes,
the goal of the research initiative PRIMIUM was to systematically analyze the design
and the usage of enterprise software solutions and make it usable for practice.
This book presents some of the results of the research initiative PRIMIUM.

151

ISSN 1617-5468
ISBN 978-3-88579-245-1

Armin Heinzl, Peter Dadam, Stefan Kirn, Peter Lockemann (Eds.)

PRIMIUM
Process Innovation for Enterprise Software

15.04.2009
in Mannheim, Germany

Gesellschaft für Informatik e.V. (GI)

Lecture Notes in Informatics (LNI) - Proceedings
Series of the Gesellschaft für Informatik (GI)

Volume P-151

ISBN 978-3-88579-245-1
ISSN 1617-5468

Volume Editors
Prof. Dr. Armin Heinzl

Lehrstuhl für ABWL und Wirtschaftsinformatik
Universität Mannheim
68131 Mannheim, Germany
Email: heinzl@uni-mannheim.de

Prof. Dr. Peter Dadam
Institut für Datenbanken und Informationssysteme
Universität Ulm
89069 Ulm, Germany
Email: peter.dadam@uni-ulm.de

Prof. Dr. rer. nat. Stefan Kirn
Lehrstuhl Wirtschaftsinformatik II
Universität Hohenheim
70599 Stuttgart, Germany
Email: wi2office@uni-hohenheim.de

Prof. Dr.-Ing. Dr.h.c. Peter C. Lockemann
Institut für Programmstrukturen und Datenorganisation (IPD)
Universität Karlsruhe
76128 Karlsruhe, Germany
Email: lockeman@ira.uka.de

Series Editorial Board
Heinrich C. Mayr, Universität Klagenfurt, Austria (Chairman, mayr@ifit.uni-klu.ac.at)
Jörg Becker, Universität Münster, Germany
Hinrich Bonin, Leuphana-Universität Lüneburg, Germany
Dieter Fellner, Technische Universität Darmstadt, Germany
Ulrich Flegel, SAP Research, Germany
Johann-Christoph Freytag, Humboldt-Universität Berlin, Germany
Ulrich Furbach, Universität Koblenz, Germany
Michael Koch, Universität der Bundeswehr, München, Germany
Axel Lehmann, Universität der Bundeswehr, München, Germany
Peter Liggesmeyer, TU Kaiserslautern und Fraunhofer IESE, Germany
Ernst W. Mayr, Technische Universität München, Germany
Heinrich Müller, Universität Dortmund, Germany
Sigrid Schubert, Universität Siegen, Germany
Martin Warnke, Leuphana-Universität Lüneburg, Germany

Dissertations
Dorothea Wagner, Universität Karlsruhe, Germany
Seminars
Reinhard Wilhelm, Universität des Saarlandes, Germany
Thematics
Andreas Oberweis, Universität Karlsruhe, Germany

© Gesellschaft für Informatik, Bonn 2009
printed by Köllen Druck+Verlag GmbH, Bonn

Preface

The federal state of Baden-Württemberg, Germany’s high tech region, has developed a
highly site-specific knowledge regarding Enterprise Software products and services over
the past decades. Many people are familiar with SAP, the market leader for integrated
business suites. In fact, there are almost 5,000 small and medium sized software and IT
service enterprises in the state, indicating the vital role this business sector plays in the
national economy. On the national level, 3% of the workforce in the software and IT
service sector account for approximately 15% of the federal GDP. The total sales vol-
umes exceeded 12 billion € in 2007.
A roundtable between industry leaders, politicians, and academics initiated by the state
government of Baden-Württemberg and the industrial network “Baden-Württemberg
Connected e.V.” (bwcon) brought up the vital question how small and medium sized
enterprise software vendors would be able to cope with changing market forces such as
globalization and concentration. One venue of answers seemed to be quite simple: fur-
ther improve the software products but also improve the software development process.
Improving the software product is related to better supporting highly specific business
processes of the client organizations in order to create and to increase the added value
resulting from enterprise software investments. Improving the software development
process means to overcome the traditional, monolithic boundaries of software develop-
ment within a company through inter-organizational collaboration in order to improve
the quality and the time-to-market of the software product. Thus, the main idea was to
transform the development process into a layered software development ecosystem
which allows for the faster and better development and deployment of enterprise soft-
ware.
Since industry leaders regarded this approach as a key opportunity, the state foundation
of Baden-Württemberg which reinvests the privatization earnings for science and educa-
tion projects, asked for bids of research-industry-consortia to address this issue. 16 con-
sortia submitted a proposal of which three were selected by an independent industry and
science jury, whose members came from other regions. The three consortia, which inter-
acted with their industry partners as well as with the other consortia, formed the research
network PRIMIUM (Process Innovation for Enterprise Software)1.
This LNI edition compiles the key outcomes of the four years of work within this re-
search network. It is organized along three sections. The first section deals with the bet-
ter and faster specification of enterprise software. Only if the clients are better integrated
into the requirements engineering phase, more specific and better software is likely to
result. Thus, open proposal techniques, the alignment of software specifications with
business objectives as well as privacy definition elements will be included. The second
section focuses on the software development process itself. Contemporary architecture
principles, integrated ontologies, automated workflows, traceability in model-driven
architectures and current testing practices are the major elements of this part of the book.
The third and final section highlights interdisciplinary elements of the software devel-
opment process. Collaborative requirements engineering, end-to-end traceability and

1 The acronym stands for “PRozessInnovation MIt UnternehMenssoftware“, the German equivalent for
“Process Innovation for Enterprise Software”.

rationale management, and partnership networks in the software industry are topics pre-
sented in this volume.
The contributions presented in this monograph have been carefully selected and edited in
a two-step process. First, a call for papers was issued for a workshop at the German
Multi-Conference of Business Informatics 2008 in Munich. An independent jury re-
viewed and selected the best papers for presentations and guided the feedback process.
Second, the final editing of the chosen papers and the structuring of this monograph was
conducted by the editors of this book.
We would like to thank all the authors and members of the research network PRIMIUM
for their contributions and cooperation. It has been a pleasure to collaborate with all of
them! Our deepest gratitude belongs to the State Ministry of Science and Arts, Stuttgart,
and Baden-Württemberg Connected which sponsored and supported this 3.5 million €
project effort. Our thanks go to Dr. Heribert Knorr, Walter Kaag, Peter Castellaz, and
Patrizia Illisson from the Ministry who stimulated the project and supported us in an
exemplary way. Particular thanks also go to Klaus Haasis, Eike Bieber, and Tina Schan-
zenbach at bwcon who provided an excellent infrastructure for cooperation, communica-
tion and networking. A crucial role played the advisory board which selected the consor-
tia as well as steered the work progress during the project. Our gratitude belongs to our
colleagues Hans-Juergen Appelrath (Oldenburg), Joerg Becker (Muenster), Manfred
Broy (TU Munich), Bernd Scholz-Reiter (Bremen), Elmar Sinz (Bamberg) and Robert
Winter (St. Gallen) as well as Manfred Roux (formerly IBM), Harald Huber (USU),
Martin Hubschneider (CAS) and Christian Sauter (Excelsis) who critically examined our
research at each milestone and who provided thoughtful directions. Our special thanks
also go to Thomas Kude and Lars Klimpke (Mannheim) who supported us diligently in
editing this book. While we are very grateful to the authors of the chapters of the book,
we take responsibility for the content and any errors. We hope this edition is an instruc-
tive and valuable primer for an important topic in software development.

Prof. Armin Heinzl Prof. Peter Dadam Prof. Stefan Kirn Prof. Peter Lockemann
Mannheim Ulm Hohenheim Karlsruhe

Contents

Specification of Enterprise Software: Better understanding the requirements
of the clients

Rashid A., Wiesenberger J., Meder D., Baumann J.
Bringing Developers and Users closer together: The OpenProposal story........................9
Herrmann A., Weiß D.
Alignment of Software Specifications with Quality- and Business Goals in the
SIKOSA Method…………………………………………………………….……….…27
Kähmer M., Gilliot M.
Extended Privacy Definition Tool…………………………………….………………...43

Development of Enterprise Software: Elements of an innovative process

Happel H.-J., Seedorf S., Schader M.
Ontology-enabled Documentation of Service-oriented Architectures with
Ontobrowse Semantic Wiki…………………………………….…………………….…61
Reichert M., Dadam P., Rinderle-Ma S., Jurisch M., Kreher U., Göser K.
Architectural Principles and Components of Adaptive Process Management
Technology……………………………………………….………………………….….81
Atkinson C., Stoll D.
An Environment for Modeling Workflow Components………….……………………..99
Aleksy M., Hildenbrand T., Obergfell C., Schader M., Schwind M.
A Pragmatic Approach to Traceability in Model-Driven Development………….…....113
Illes-Seifert T., Paech B.
On the Role of Communication, Documentation and Experience during Testing
– An Exploratory Study………………………………………………….………….…129

The Systems Life Cycle of Enterprise Software: Looking beyond the boun-
daries of phases and organizations

Geisser M., Happel H.-J., Hildenbrand T., Korthaus A., Seedorf S.
New Applications for Wikis in Software Engineering……………………….………..145
Hildenbrand T., Heinzl A., Geisser M., Klimpke L., Acker T.
A Visual Approach to Traceability and Rationale Management in Distributed
Collaborative Software Development………………………………………...………..161
Arndt J.-M., Kude T., Dibbern J., Heinzl A.
The Emergence of Partnership Networks in the Enterprise Application Software
Industry – An SME Perspective………………………………………...….………….179

Bringing Developers and Users closer together:
The OpenProposal story

Asarnusch Rashid, Jan Wiesenberger, David Meder, Jan Baumann

FZI Forschungszentrum Informatik
Research Center for Information Technologies at the University of Karlsruhe

Haid-und-Neu Str. 10-14
D-76131 Karlsruhe

rashid@fzi.de, wiesenberger@fzi.de, meder@fzi.de, baumann@fzi.de

Abstract: Even though end-user participation in requirements engineering (RE) is
highly important, it is at present not frequently used. Reasons can be found in the
large expenditure of time for organizing and carrying out surveys as well as in the
time it takes to understand the users’ requirements. This research is supposed to
address this problem by presenting the OpenProposal approach for distributed user
participation using visual requirement specifications. First experiences made in
several case studies show the potential and limits of this approach and outline the
possibilities of application.

1 Introduction

It is well known that Requirements Engineering (RE) is one of the biggest challenges,
and that all stages of RE dealing with elicitation, specification, prioritization and
management of requirements are vitally important for the success of a software project.
As RE is a complex process involving many people, a lot of different methods and tools
were developed to support this highly collaborative process. In the research project
CollaBaWü1 the researchers were confronted with the task to evaluate existing methods
and tools for practical usefulness in cooperation with software companies and financial
industry and if necessary to develop new methods and tools. In this context, the issue of
user involvement in RE has become apparent in many conversations and analyses with
the industrial partners.

The aim of user involvement in RE is to improve the design process, facilitate the
implementation and to address ethical principles [NJ97]. User involvement can be
performed when developing requirement specifications, validating requirement
specifications, supporting detailed design and development, reviewing specifications,
inspecting prototypes and accepting released products. A literature review [KKL05]
shows that user involvement is found to have a generally positive effect on system

1 www.collabawue.de: ‘CollaBaWü’ is a project (2004 – 2007) commissioned by Landesstiftung Baden-
Wuerttemberg foundation, which aims at increasing the overall productivity in the development lifecycle of
enterprise applications. In this respect, the main objective of the project is to promote industrialisation in
enterprise application development focussing on the particularities of the financial service provider domain.

9

9

success and on user satisfaction, and some evidence can be found suggesting that taking
users as a primary information source is an effective method of requirements elicitation
[CM96, EQM96, KC95, Ku03]. In addition, involving users in RE could have an
important role, since users are nowadays recognized as being one of the essential groups
of stakeholders, while a lack of user involvement was shown to lead to serious problems
in RE [Po95]. These results coincide with the experiences of industrial partners (each
with more than 10.000 users) in the project CollaBaWü. Their software department aim
at a closer relationship with their users in order to improve their RE processes.

Methods already in practical use include User Experience, Usability Workshops, User
Support Units and Employee Suggestion Systems. But recognizing that these procedures
are too formal and heavy-weight, and the insight that systematic approaches to
understand users’ needs and continuous user involvement are still lacking, lead to the
suggestion that users have to be able to participate with small effort – the optimum being
during their daily work - and developers have to be able to obtain enough valuable
information without additional effort. By collaborating, users should exchange and
discuss their ideas in a shared environment. Further, transparency is desired, meaning
that users can track the development of the suggestions they submitted.

This research aims to contribute to the existing approaches by presenting the
OpenProposal system for distributed user participation. The fundamental idea behind
OpenProposal is based on the fact that in most modern software products the users’
requirements refer directly to the graphical user interface. Therefore the idea of
capturing these requirements in a graphical form, supplementing a textual description,
was taken into consideration. Since nowadays graphical annotations are unusual in
requirements management, and since most of the time sketches and screen shots are
merely used on paper, this research wants to discuss the use of graphical annotations in
Requirements Management (RM).

For this it is aimed

to understand the users’ and the developers’ needs in requirements
management,

to develop a new methodology and a new concept of IT support to enhance
existing practices,

to develop a certain formal notation language providing a language to enable
users and software developers to formulate and discuss users’ requirements, and
finally

to evaluate the methodology and IT support concept in order to identify
chances, risks and limits.

The paper is structured as follows. At first, the theoretical background and related
Information System Development (ISD) approaches are discussed. Secondly, the
process, concept and architecture of OpenProposal are presented. Then experiences
gained from case studies are outlined. Fourth, possible fields of application of

10

10

OpenProposal are described and finally, the lessons that could be learned from this
research are discussed.

2 Related Work

The OpenProposal concept was able to take its inspiration from several different fields
of research, including Participatory Design (PD), Requirements Engineering (RE) and
Digital Annotation (DA). The idea for user participation came from the field of PD, as
the methods for this particular type of end user integration primarily originate from it
[Su93]. PD is solely concerned with user participation in all phases of system
development. In general, existing methods for user participation during requirements
elicitation utilize direct face to face communication or prefer user interviews. Even
though we do not question that these methods allow a complete requirements
specification, the successful execution requires considerable effort, both from the side of
the developers as well as from the side of the users [DESG00]. Furthermore the
increasing degree of interconnectedness through the Internet provides new possibilities
of cooperation, but they also imply the need of addressing the challenges of globalization
in software development. During the recent years, the employment of CSCW software
(Computer Supported Cooperative Work) has therefore been discussed more intensely in
PD [KB03]. New approaches in user participation like the concept of Participation
Design in Use [SD06] or the new area of Distributed Participatory Design (DPD)
[DND06] are supposed to allow the usage of methods of PD in distributed (over time
and space) working environments.

In RE research there are a lot of methods and tools available, which support the process
of requirements acquisition [HL01]. Besides the traditional concepts of user integration
mentioned above, there are many approaches to alternative specification techniques in
order to achieve end-user participation. Reeves and Shipman [RS92] describe a
combination of visual and textual elements. Li et al. [LDP05] have developed a solution,
which uses Natural Language Processing. Video techniques are used in the scenario
“Software-Cinema” of Bruegge et al. [Br04], which addresses requirements acquisition
in mobile environments. There are also numerous commercial tools supporting visual
specification of requirements. The best known notation method is UML, which promotes
the use of Use-Case diagrams during the RE phase of software development. These
formal techniques support primarily software engineers and presume skills in modelling
languages.

Other visual aids in RE include mock-ups [Ma96] and Rapid prototyping techniques
[BH98], which are commonly used in early phases of software projects. They do allow
software engineers to sketch screens with low functionality as well as to run first
usability tests. Tools supporting these techniques are applied by engineers and analysts
but not by the user himself. They are merely enabled to return feedback in the usual way
of face-to-face meetings. An approach centring more on the user is offered by Moore
[Mo03]. It is based on requirements acquisition using GUI elements without
functionality. End-users ‘will create mock user interface constructions augmented with
textual argumentation that will act as communication to software requirements

11

11

engineers’ [Mo03, p. 2]. This approach allows users to construct their own user
interfaces but still it has to deal with the problem that real software is very complex and
end-users will not have enough time to construct a whole software system.

The advent of graphical user interfaces has led to requirements concerning the
modification and improvement of such an interface. Tools supporting this process often
use DA. The tool Annotate Pro [An06], for example, provides several functions to draw
annotations directly on the users’ screen by using snapshots in combination with
ordinary picture editing functionality. This enables end-users to draw comments on their
active applications, without time-consuming trainings and preparations. The commented
snapshots serve as requirement specification and can easily be sent to the software
engineers by email. As this tool neither contains a method which follows a well-
structured plan nor provides a formal notation language there does not exist any common
language either which means that users are free to paint sketches and to send them to
anyone without assistance. It is assumed that developers may have difficulties in
understanding these paintings. Furthermore, there is no possibility for end-users to track
the submitted requirements. There are other tools of a similar nature, but addressing
different aspects. JING [Ji07], for example, focuses on fast sharing of annotated images
and videos. It uses a very basic set of tools, which are nonetheless sufficient for marking
and explaining what the central aspects of this picture are. While offering no annotation
possibilities for videos, providing a video capture possibility makes the tool flexible.
JING also features built in support for upload to Flickr, ScreenCast or any user definable
FTP server. However it shares the same shortcomings that Annotate Pro has. Similarly
the usability testing suite Morae [Mo07] does not support the structure of the test
conducted, nor does it directly support tracking of submitted requirements. It focuses on
recording and analyzing usability studies and features a large set of recording options,
logging and observation functions as well as tools for analyzing results and creating
reports.

The literature about DA states that annotations are not only useful because they allow
capturing the application concerned, but they do also support such crucial mental
functions such as remembering, clarifying and sharing, as Bottoni et al [BLR03] point
out. Their paper provides a formal analysis of digital annotation and identifies operations
and procedures that an annotation system should allow. Annotations are also important
for a two-way information exchange, as discussed by Fogli et al [FFM04], who also
define the tools required to support creation and the use of annotations.

In summary, the problem is that none of the present tools and approaches provides all
essential functionality to support end-users in an adequate way. All of them are lacking
either usability or efficiency or collaboration. This research is supposed to address this
problem by presenting the OpenProposal approach for distributed user participation
using visual requirement specifications.

12

12

3 OpenProposal: Process, Concept & Implementation

OpenProposal aims at aiding users to express their ideas about how an application might
be enhanced. At the same time it is also supposed to help developers by imposing a
structure on the annotation process which will make it easier for them to grasp the users’
intention. In order to achieve these requirements, the OpenProposal tool differs from
other annotation tools, e.g. Annotate Pro [An06] in so far as the users do not interact
with a set of free-form drawing tools, but with a toolset representing possible changes he
wants his target application to undergo.

OpenProposal is supposed to allow users to annotate their feature requests, error reports
or enhancement requests directly on their applications workspace and send these
requests to the requirements management. Lots of communication problems can thus be
avoided – e.g. misconceptions due to wrong choice of wording, incomplete data,
descriptions which are too elaborate – which often arise from text-only communication
like E-mail or the internal employee suggestion systems. The aim of OpenProposal is to
integrate users efficiently into the development process during their daily routine when
using the application, to reduce the usual effort associated with participative
requirements elicitation and to allow a high degree of implementation of the captured
requirements with the help of structured recording. Furthermore, OpenProposal is
supposed to increase the transparency of the requirements management process, thus
ensuring motivated participation of as many employees as possible during requirements
elicitation.

Specify
Discuss

Prioritize

Decide

Implement

EEnndd--UUsseerr

RReeqquuiirreemm eennttss
aannaallyysstt

SSooffttww aarree
eennggiinneeeerr

FFaasstt
GGeenneerraattiioonn
and
BBaacckkttrraacckkiinngg
of own
requirements

guarantee rreessppeeccttttoo
ssttrraatteeggyy and eeccoonnoomm yy Understand users

requirements and
guarantee correct
implementation

Figure 1: The OpenProposal Process

3.1 Process of OpenProposal

The OpenProposal process (see Figure 1) centres around five actions, specify, discuss,
prioritize, decide and implement, and three roles, end user, requirements analyst and
software engineer. Each role has its own special set of requirements and participates in a

13

13

certain subset of the five actions. The end user requires a possibility to generate his own
requirements in a fast way. He also wishes to track progress on his requirements. End
users take part in the specification and discussion of requirements. The requirements
analyst needs to guarantee that whatever is done respects the company’s overall strategy
and is economically feasible. He takes part in the discussion of the proposals, prioritizes
them and decides on which proposal will be implemented and which will not. He may
also propose his own ideas and have them discussed with the other stakeholders. The
software engineer has as a requirement the need to understand the users’ proposals and
to guarantee their correct implementation. He can submit his own proposal
specifications, participate in discussions to contribute with his professional knowledge of
what is technically possible and feasible, and is responsible for implementing the
proposals that have been decided on.

3.2 Concept of OpenProposal

To ensure the involvement of users in distributed RE being successful, a system is
needed permitting users to formulate their proposals with simple tools, to submit the
created proposal to the developers and to track the proposal’s progress. Furthermore the
decision maker and the software developer should be able to manage and edit the
proposals in an efficient way in order to benefit from the possibilities of the RE system,
too.

OpenProposal is a software system which is supposed to fulfil these criteria. It should be
possible to use it in conjunction with any established requirements analysis procedure
currently employed in the company, which will thus be extended with efficient user
involvement. Users should be enabled to create and discuss proposals for existing
software as well as software currently being under development and it should be possible
to propose improvements as well as new features. The level of detail is up to the user.

The OpenProposal process provides two tools. The annotation tool enables the user to
visually formulate his ideas and send them to the collaboration platform tool, which
gives an overview of the submitted proposals and allows discussions between users,
developers, deciders etc. The process can be initiated in two ways. One way is to
explicitly call for user participation, mostly for software which is currently under
development. The other way is that the user wants to submit a proposal for an
application without external motivation merely wishing to improve the software.

One essential benefit for the user is that he can actively participate in the process of
software improvement and is thus able to shape the application the way he wants to. The
user employs the annotation tool for the fast generation of graphical requirements and
submitting them to the collaboration platform. The user can then track the progress using
the collaboration platform.

The system is used by the decision maker to collect and consolidate the users’
requirements and to compare them with the strategic and economic targets of the
company. If the requirements are collected globally, covering all company divisions, he
can detect and use synergies between the divisions. Using the collaboration platform, he

14

14

can receive an overview of the requirements, can discuss them with users and developers
and thus determine the priorities.

The developer benefits from being able to participate in the discussion at an early stage,
to inform users, decision makers and analysts about the technical possibilities and
restrictions. The graphical specification is supposed to improve the process of
understanding what users want, and implement the proposals in the correct way.

3.3 Architecture of OpenProposal

The OpenProposal implementation consists of an annotation tool, an XML specification,
an Issue-Tracker and a mediator. As can be seen in Figure 2, the annotation tool gathers
annotated screenshots which are stored together with the individual annotation objects in
an XML specification. This specification also contains metadata about the proposal as
well as the user's system. This specification is sent to a mediator specific to the Issue-
Tracker. The mediator takes the information from the specification which will be
directly entered into the Issue-Tracker software and creates a new issue with it, attaching
the screenshot image and the XML file in the process. Stakeholders can log into the
Issue-Tracker to rate and discuss proposals. This information can then be requested by
the annotation tool through the mediator from the Issue-Tracker, in order to present users
of the annotation tool a list of previous annotations of that application with their ratings
and discussions.

Figure 2: The OpenProposal Architecture

15

15

3.3.1 User Interaction: Annotating and Handing-In of Issues

Figure 3 exemplifies the functionality of OpenProposal and illustrates the way of
annotating with OpenProposal. Imagine a user writing a document with Microsoft Word.
The user has some ideas for improvement and starts OpenProposal. First, the
OpenProposal notepad is opened and the user is asked to choose a category for his
suggestion (C) in section A (I). Then, section B (II) is selected. The screen of the
application is captured automatically and the user can sketch his suggestions for
improvement directly on the screenshot. The toolbar offers four annotation related tools.
The “Add” tool (1) allows users to specify a position where they would like to have a
new object on the screen. The “Remove” tool (3) is the inverse; an existing element is
marked as superfluous. With the “Move” tool (2) users first select an area which should
be moved to a different place in the applications workspace, then to the new target area.
The “Comment” tool (4) can be used for suggestions the other tools are not able to
express directly, as well as refining and adding further detail to the other tools’
annotations. Users may pause the annotation, e.g. if they want to change the layout of the
application they are annotating (A).

Figure 3: OpenProposal tool bar

All annotations are represented as objects which may be edited, moved or deleted
whenever the users want to (D). Once they finish their annotations, users can send their
requests to the issue-tracker (H). Prior to sending, the users are prompted to give their

I

II

III

16

16

request a title (E), a text description (F) and their usernames (G) in section C (III). Users
may exit the application at any time. By pressing the Button Specification List (B) users
can access to the window illustrated in Figure 5. The functionality of this window is
described in the next chapter.

3.3.2 Collaboration: Viewing, Discussing and Rating Issues

The data provided by users is stored in the collaboration platforms’ database, which may
be accessed via a web front-end. When logging into the collaboration platform, the users
are first presented with a list of all issues entered. When selecting one of the issues in the
list, the issue window is shown (Figure 4). Here the users will be able to read a
description of the issue (I), view details such as the status or the priority (L), participate
in the discussion about this issue (K) and take a look at the annotated screenshot
associated with this issue (M).

Figure 4: Web-based Issue Tracker

To support the user, the annotation tool of OpenProposal offers a window with a list of
all issues (Figure 5) which have been created for the application. This makes it possible
to view submitted issues directly in the annotation tool, without the need to open the
web-based issue tracker. Because of the large number of specifications, the user is not
able to view each specification in the list. In order to reduce the lists’ size, OpenProposal
provides a filtering function (N). This specification filter works as follows:

17

17

1. First all running applications are stored. If a running browser is detected
(currently Internet Explorer, Firefox and Opera are supported), the application
retrieves the address of the active website.

2. Then the topmost window on the screen is determined. If the user has already
created some annotations, the filter also determines the applications which the
user has annotated.

3. Lastly, the specifications belonging to one or more applications or website
addresses which were determined in the two steps above are shown.

Figure 5: Specification list

The filtered list will be noticeable smaller than the unfiltered list and the user can see
through the specifications more easily. Additionally the users can vote for each
specification by giving a rating from one to five to express his conformance with the
specification.

4 Experiences with OpenProposal

In the course of this research OpenProposal has been evaluated in several steps. First,
usability tests were performed to ensure the usability of the annotation tool. Next, case
studies with the software development department of the company TRUMPF and a
department of the University of Karlsruhe were set up. At present, several case studies in
cooperation with small companies specialising in usability design and software
development as well as software development departments of larger companies have
been started.

18

18

4.1 Usability Test of OpenProposal

In February 2007 a first usability and user test was performed with the goal of evaluating
the current version regarding usability and user satisfaction. The results of the test would
also be used as a basis to create the next version of our OpenProposal application. The
16 test subjects consisted of students from the University of Karlsruhe and employees of
the FZI Forschungszentrum Informatik in Karlsruhe, Germany. The test was centred
around five annotation tasks the subjects had to perform on an old version of the Firefox2

browser. A short pre-test interview and a long post-test questionnaire where used to
gather information about users thoughts and expectations of the system, as well as the
degree to which these expectations where fulfilled. Test subjects where monitored by the
investigator the whole time in addition to a video and screen capture being recorded.

The results of the interviews, the observations of the investigator, an analysis of the
video recordings and the questionnaires yielded numerous proposals for enhancements,
ranging from start-up behaviour (e.g. OpenProposal used to switch to annotation mode
directly after program start, freezing the users screen in the process – this was later
changed because of empirical evidence) to interface refinements (e.g. the previous
version used a separate object list, user demand was an integrated list). But
OpenProposal also received encouraging ratings concerning ease of use and usefulness
of its annotation concept, for example when being asked if a tool for graphical creation
of proposals for software should be provided (averaging to “agree” on a five point scale
ranging from “strongly agree” to “strongly disagree”). All in all, the users rated the
software as a whole with “good” on a five point scale ranging from “very good” to “very
bad”. The enhancement proposals as well as the questionnaire results formed the basic
set of changes to be implemented in OpenProposal 2.0.

New possibilities for further studies were found as well. For example, a question during
the interview was “What advantages do you think OpenProposal would have?” to which
test subjects replied, that the creation of proposals would be faster with this application.
This assumption was tested against traditional methods, by taking the time both need for
a given task. Some of these questions were addressed in the subsequent case studies,
others required special setups or a long evaluation time and could not be answered yet.

4.2 Case Study ‘TRUMPF’

In September 2007 a second test was done at the TRUMPF Company. TRUMPF is a
high-tech company focusing on production and medical technology. The TRUMPF
Group is one of the world's leading companies in manufacturing technology, with sales
of 1.65 billion/US$ 2 billion and approximately 6500 employees. Since efficient
fabrication of high quality components is not a question of hardware alone, TRUMPF
also develops the software systems for their hardware. Usability workshops are a part of
the software development cycle at TRUMPF, and such a workshop was used to evaluate
our new OpenProposal 2.0 which was used to create proposals for the software being
tested during the workshop.

2 http://www.mozilla-europe.org/de/products/firefox/

19

19

This short case study encompassed 11 test subjects in total and was carried out over two
days. There were two groups on each day, one using OpenProposal, the other using
another interface for proposals provided by the issue tracking software used by the
TRUMPF software development department. The groups were set up so that every test
subject would be able to use both interfaces for his proposal, and at the end of each day
the subjects were given a questionnaire specific to the interface they used that day.
Besides the analysis of the questionnaires’ results, the proposals themselves were
evaluated and the developers were interviewed. Additionally, an investigator monitored
the study and wrote down comments, problems and observations he made during the
workshop.

Question OpenProposal Tracker Interface

I was able to quickly find my way in
…

Agree Agree

I often got stuck using … and had to
find a work around.

Strongly disagree Disagree

… shows too much information at
once. I found this confusing.

Strongly disagree Disagree

Proposals are easy to create and
don’t require much mental effort

Agree Agree

I made mistakes using … Disagree Disagree somewhat

Symbols and naming are easy to
understand in …

Agree somewhat Undecided /
Disagree somewhat

The structure of the interface is easy
to understand

Agree Agree

Creating proposals was unnecessarily
complex and took a long time.

Strongly Disagree Disagree

Table 1: Results of the case study ‘TRUMPF’

The results showed that OpenProposal was in general well received by the participants.
Eight questions on the questionnaire were asked twice, once for OpenProposal and once
for the tracker interface (see Table 1). The items were measured on a seven point Likert
scale with the options “strongly disagree”, “disagree”, “disagree somewhat”,
“undecided”, “agree somewhat”, “agree”, “strongly agree“. The first item, “I was able to
quickly find my way in …”, had an average rating for both systems of “agree”. The
second item “I often got stuck in … and had to find a work around” received average
ratings of “strongly disagree” for OpenProposal, which was thus a bit better than the
average of “disagree” for the tracker interface. Similarly the third item “… shows too
much information at once. I found this confusing.” also received an average of “strongly
disagree” for OpenProposal and “disagree” for the tracker. The fourth item, called
“Proposals are easy to create and don’t require much mental effort”, was again rated

20

20

“agree” for both systems. Item five, “I made mistakes using … “, was rated with
“disagree” for OpenProposal and with “disagree somewhat” for the tracker, again
OpenProposal received a slightly higher rating. The biggest difference was found at item
six “Symbols and naming are easy to understand in … “, where OpenProposal received
an average rating of “agree somewhat” and the tracker was rated between “undecided”
and “disagree somewhat”, another rating where OpenProposal comes out on top. Item
seven, “The structure of the interface is easy to understand”, received an “agree” rating
for both systems and at the last item, “Creating proposals was unnecessarily complex
and took a long time.”, OpenProposal received another slightly better rating: “strongly
disagree” as compared to “disagree”. The list of “must fix” enhancement requests was
noticeably shorter as well. The participants noted that they did not see OpenProposal as a
replacement of the existing tracker interface, but rather as an easy-to-use alternative
frontend. The software was so well received, that by now it has become an inherent part
of the usability process at TRUMPF.

4.3 Case Study ‘University of Karlsruhe’

In November 2007 a third usability and user test was launched at the IISM (Institute of
Information Systems and Management) at the University of Karlsruhe. The software
being tested was a new content management system which would be responsible for the
institutes web pages and intranet services. The test phase of the system would be at least
two weeks, and users were encouraged to transfer data from the old system to the new
during that phase and report any problems or errors they found in the process. To ease
the reporting process, OpenProposal would be provided to all users and would be
configured so proposals are directly sent to the issue tracker included in the content
management system.

In a first step, the first usability and user test was replicated with several test subjects
from IISM. This was done to evaluate, whether the new version was indeed an
improvement over the old version. The second step began with the introduction of the
new content management system as well as OpenProposal in mid of November. A time
frame of two weeks was given to the participants to get used to the new system, file bug
reports, enhancement and feature requests and transfer data. This phase of the test is still
in progress because the deadline of the introduction of the content management system
had to be rescheduled to May 2008.

Test Item Median
Feb07

Median
Nov07

p

Handling the user interface was [easy, medium, hard] medium easy 4,67 %

There are [none, some, many] functions I miss in
OpenProposal

some none 0,50 %

OpenProposal sufficiently informs me about what it
is doing at the moment [strongly agree, agree,

neutral, disagree, strongly disagree]

neutral strongly
agree

2,38 %

21

21

OpenProposal has a persistent style of handling
throughout the whole program [strongly agree, agree,

neutral, disagree, strongly disagree]

agree strongly
agree

3,71 %

Technical performance of OpenProposal was [very
good, good, neutral, bad, very bad]

neutral very
good

1,52 %

Table 2: Results of the Case Study ‘University of Karlsruhe’

Only results of the replication test are available as of now. Due to time constraints only
five test subjects could be interviewed and observed. A Mann-Whitney-U test was
performed for each question on the two sets of answers (one from February, one from
November). This statistical non-parametric test can be used to check if two samples have
equal distributions, in this case meaning that if the test yields a significant result, the sets
of answers can be considered statistically different. According to Albers et al [AKK07]
the level of significance is usually set to 5% for significant results and 1% for highly
significant results. For five of the 30 items the Mann-Whitney-U test calculated a
significant difference (p<5%), all other differences in sets of answers were not
significant (see Table 2). The first statistically different item was “Handling the user
interface was … “ with the three choices “easy”, “medium” and “hard” being possible.
While in February participants on average answered with “medium”, in November the
average answer was “easy”, the difference being statistically different with a significance
of p=4,67%. The second item was “There are … functions I miss in OpenProposal” with
the three options “none”, “some”, “many” where the first test in February had an average
result of “some” while the second test in November had an average result of “none”, the
difference being highly significant with a significance of p=0,50%. The third item was
“OpenProposal sufficiently informs me about what it is doing at the moment” with the
five options “strongly agree”, “agree”, “neutral”, “disagree” and “strongly disagree”.
The average answer in February was “neutral”, while in November the participants on
average choose “strongly agree”, the significance being p=2,38%. When being asked
about persistency of handling, “OpenProposal has a persistent style of handling
throughout the whole program” with the options “strongly agree”, “agree”, “neutral”,
“disagree”, “strongly disagree”, the participants of the first test in February answered on
average with “agree” while in November the average answer was “strongly agree”. The
difference had a significance of p=3,71%. Lastly, the item “Technical performance of
OpenProposal was …”, with the choices ranging from “very good”, “good”, “neutral”,
“bad”, “very bad”, was rated with an average of “neutral” in the first test, while the
November test had an average rating of “very good”, the significance of this difference
being p=1,52%. This shows that in all significantly different results, the new version
received better ratings than the old version and can thus be considered an improvement.

5 Possible Fields of Application of OpenProposal

OpenProposal is supposed to support the RE phase of the software development process.
During the course of the research project, it became apparent that the most promising

22

22

fields seemed to be ‘Usability Tests in Usability Workshops’, ‘Support and Maintenance
of Software’ and ‘Global Software Development’.

5.1 Usability Test of Software in Usability Workshops

OpenProposal was built with a non-intrusive integration into the users’ workflow in
mind. A field of application where this is especially helpful is that of usability
workshops. The purpose of these workshops is an evaluation of an existing piece of
software using people which correspond to the actual user as well as possible. The most
important sources of information in these workshops are the test subjects themselves,
especially their suggestions and ideas for improving the software at hand. Traditionally,
when making such a suggestion the test subject would either make a handwritten note on
a piece of paper, switch application context to write an electronic note or report their
suggestion to the investigator. The best traditional way would be the third option, since it
allows questions for clarification and refinement of the new proposal. This however
would require having close to as many investigators as there are test subjects, making
this option expensive. Having the test subject switch application context makes writing
proposals cumbersome for the subject, since he may need to switch back and forth a
number of times to write a good proposal. This can be solved when using handwritten
notes. Here however the problem arises, that these notes need to be deciphered and
converted into an electronic format. While OpenProposal cannot replace an investigator,
when time and money are an issue it is likely to perform better than both alternative
methods. The user does not have to switch context to some other application, but creates
his annotation directly inside his current context. And there are no handwritten notes
which need to be processed after the workshop improving clearness and correctness of
the resulting proposals.

5.2 Support and Maintenance of Software

When considering software support, OpenProposal allows the end user to graphically
formulate his problem – if it is referring to the user interface - and send it to support, for
example via e-mail. The support team can then quickly detect the user’s problem without
reading a long textual description of the problem. On the other hand OpenProposal can
also be used by the support team, helping to translate the user’s support request into a
graphical specification and sending it onto an Issue-Tracking platform. Similarly,
OpenProposal can be used for software maintenance, where both end users as well as
developers can file bug/error reports and improvement proposals as well as discuss the
existing proposals.

5.3 Global Software Development

Modern software products often tend to be highly complex. Their development and
production requires a lot of expertise and competence that can rarely be found in one
place, at least not with the economy necessary for a fiercely competitive, global world.
Thus, modern software production tends to be highly fragmented, geographically

23

23

distributed on a more or less global scale, where each participant is specialized in its own
core competence. The resulting “global” software products should have the same quality
at a more attractive price compared to those one would achieve at a single place. The
design, the development and the production processes for a global software development
involve new competencies in communication, collaboration, integration, and technical
and managerial control.

There are some problems in global software development, particular to communication
or information sharing. Problems like time zone difference or geographical distance
hinder successful communication. Nowadays these problems are reduced by the wide
availability of modern communication techniques like the internet.

OpenProposal supports the requirements engineering in geographically distributed
environments. The tool supports the communication between the project team, users and
customers occur in a geographically distributed way using modern communication
techniques to reduce the impact of the geographical dispersion, e.g. different time zones.
By generating requirements descriptions it supports the user in a formal and
understandable way.

6 Summary & Outlook

In this research, the concept and first evaluation of OpenProposal are presented. All the
conclusions drawn so far are based on software companies’ practical knowledge as well
as on previous related research and the results of the first case studies. Major findings of
our research are the conception of the OpenProposal methodology for acquisition and
management of user feedback in software development projects, the implementation of a
tool support and the evaluation of the elaborated concept and implementation.

Our research has shown that the OpenProposal approach can help to improve the
communication processes in software development projects. The usability tests revealed
users’ acceptance of the OpenProposal concept and the sufficiency of the functionality of
the OpenProposal annotation tool for users’ needs. In the case study ‘TRUMPF’
OpenProposal was successfully realized in a real life scenario and is still in use. In the
view of Users, Designer and Developer of TRUMPF OpenProposal performed better
than usual methods. It seems possible that this work can reveal new findings about the
way users and software developers interact and can therefore offer new opportunities for
innovative ways of collaboration in RE e.g. corresponding methods in Global Software
Development.

The evaluation also point out open issues of the OpenProposal approach. In future
studies we need to focus our research on the view of developers and deciders and
improve the management and assessment of OpenProposal annotations.

The limits of our approach are clear: It was never our goal to argue that OpenProposal is
the best and only solution. It can be only an additional methodology in users’

24

24

involvement and cannot replace interviews and usability workshops, but it can be a
reasonable supplement.

References

[AKK07] Albers, S.; Klapper, D.; Konradt, U.; Walter, A.; Wolf, J.: Methodik der empirischen
Forschung, Gabler Verlag, Wiesbaden, Germany, 2007.

[An06] Annotate Pro, http://www.annotatepro.com/, viewed on 13.06.2006.

[BH98] Beynon-Davies, P.; Holmes, S.: Integrating rapid application development and
participatory design, In: IEEE Software, Volume 145, Issue 4, pp. 105-112, 1998.

[BLR03] Bottoni, P.; Levialdi, S.; Rizzo, P.: An Analysis and Case Study of Digital Annotation.
In: Bianchi-Berthouze, N. (Eds.): Proc. 3rd International Workshop on Databases in
Networked Information Systems, Aizu-Wakamatsu, Japan, 2003, pp. 216 - 230. Lecture
Notes in Computer Science 2822, Springer, Heidelberg, Germany, 2003.

[Br04] Bruegge B.; Creighton, O.; Purvis, M.: Software Cinema, CHI Workshop on Identifying
Gaps between HCI, Software Engineering and Design, and Boundary Objects to Bridge
Them, Vienna, Austria, 2004.

[CM96] Chatzoglou, P.C.; Macaulay, L.: Requirements Capture and Analysis: A Survey of
Current Practice, Requirements Engineering, Volume 1, Issue 2, pp. 75-87, 1996.

[DESG00] Damian, D.E. H.; Eberlein, A.; Shaw, M.L.G.; Gaines, B.R.: Using different
communication media in requirements negotiation, IEEE Software Volume 17, Issue 3,
May-June, pp. 28-36, 2000.

[DND06] Danielson, K., Naghsh, A.M., Dearden, A.: Distributed Participatory Design. Extended
Abstract of the workshop for Distributed Participatory Design at conference NordiCHI’
06, 2006.

[EQM96] El Emam, K.; Quintin, S.; Madhavji, N.H.: User Participation in the Requirements
Engineering Process: An Empirical Study, Requirements Engineering, Volume 1, Issue
1, pp. 4-26, 1996.

[FFM04] Fogli, D.; Fresta, G.; Mussio, P.: On Electronic Annotation and its Implementation. In:
Proceedings of the working conference on advanced visual interfaces, Gallipoli, Italy,
pp. 98 – 102, 2004.

[HL01] Hofmann, H.F.; Lehner, F.: Requirements: Engineering as a Success Factor in Sofware
Projects, IEEE Software Volume 19, Issue 4, Regensburg, Germany, pp. 58-66, 2001.

[Ji07] JING, http://www.jingproject.com/, viewed on 03.12.2007.

[KB03] Kensing, F.; Blomberg, J: Participatory Design: Issues and Concerns. In: Kensing, F.:
Methods and Practices in Participatory Design. Copenhagen. ITU Press Copenhagen,
Denmark, pp. 365-387, 2003.

25

25

[KC95] Keil, M.; Carmel, E.: Customer-Developer Links in Software Development,
Communications if the ACM, Volume 38, Issue 5, pp. 43-51, 1995.

[KKL05] Kujala, S.; Kauppinnen, M.; Lehtola, L.; Kojo, T.: The Role of User Involvement in
Requirements Quality and Project Success, IEEE International Conference on
Requirements Engineering (RE’05), 2005.

[Ku05] Kujala, S.: User Involvement: A Review of Benefits and Challenges, Behavior &
Information Technology, Volume 22, Issue 1, pp. 1-16, 2003.

[LDP05] Li, K.; Dewar, R.G.; Pooley, R.J.: Computer-Assisted and Customer Oriented
Requirements Elicitation, Proceedings of the 13th IEEE International Conference on
Requirements Engineering, Edinburgh, UK, 2005, pp. 479- 480, 2005.

[Ma96] Macaulay, L.: Requirements for Requirements Engineering Technique, Second
International Conference on Requirements Engineering, (ICRE'96), Colorado Springs,
USA, p. 157, 1996.

[Mo03] Moore, J.M.: Communicating Requirements Using End-User GUI Constructions with
Argumentation, Proceedings of the 18th IEEE International Conference on Automated
Software Engineering ASE’03, Montreal, Canada, pp. 360 – 363, 2003.

[Mo07] MORAE, http://www.techsmith.com/morae.asp, viewed on 03.12.2007

[NJ97] Nandhakumar, J.; Jones, M.: Designing in the Dark: the Changing User-Developer
Relationship in Information Systems Development, Proc. ICIS, 1997.

[Po95] Potts, C.: Software Engineering Research Revisited, IEEE Software, Volume 10, Issue 5,
pp. 19-28, 1995.

[RS92] Reeves, B.; Shipman, F.: Supporting Communication between Designers with Atrifact-
Centred Evolving Information Spaces, Proceedings of the CSCQ ’92, Toronto, Canada,
pp. 394-401, 1992.

[SD06] Stevens, G.; Draxler, S.: Partizipation im Nutzungskontext. In: Heinecke, A.M.; Paul, H.
(Eds.): Mensch & Computer 2006. Oldenbourg Verlag, Munic, Gemany, pp. 83- 92,
2006.

[Su93] Suchmann, L.: Forword. In: Schuler, D.; Namioka, A. (Hrsg.): Participatory Design:
Principles and Practices. Lawrence Erlbaum, New York, pp. vii – ix, 1993.

26

26

Alignment of Software Specifications with Quality- and
Business Goals in the SIKOSA Method

Andrea Herrmann1, Daniel Weiß2

1Software Engineering Group, Faculty of Mathematics and Computer Science
University of Heidelberg

Im Neuenheimer Feld 326
69120 Heidelberg, Germany

herrmann@informatik.uni-heidelberg.de

2 Information Systems II (510 O)
University of Hohenheim
70593 Stuttgart, Germany

daniel.weiss@uni-hohenheim.de

Abstract: Business-IT alignment for software specifications means that the
specifications have to be aligned with business goals. In the SIKOSA research
project, we developed the SIKOSA method which supports the integrated
assurance of quality during the whole software development process. In this work,
we present these aspects of the SIKOSA method, which especially align
specification decisions to quality goals and thus indirectly to business goals. Such
goals play a role in the following activities: the derivation of software requirements
from quality goals, the prioritization of these software requirements, and the
definition of decision criteria for architectural design decisions. The results of all
three activities influence architectural decisions.

1 Introduction

Business-IT alignment for software development means that the software (and all other
artefacts) have to be designed in a way to support the business goals (problem).
Assuming that the software works as it was specified, the software specifications have to
be aligned with the business goals as well. Specifications are the result of a complex
decision-making process which involves a variety of interdependent decisions on
different levels of granularity, involving diverse stakeholders. Therefore, our objective in
the research project SIKOSA was to develop a modelling method which supports a
consistent alignment of specification-related decisions to business goals during different
phases of the software development process (object of investigation) in an integrated
way. For this purpose we took an overall method engineering perspective.

The SIKOSA method supports the integrated assurance of quality and of business-IT
alignment during the whole software development process. No other software modelling
method exists for doing so. Our prior work [HPK06] and [WKK07] describes this
method. In the present work, we highlight those aspects of the SIKOSA method which

27

27

align specifications to quality- and business goals. The SIKOSA method consists of
several modules. Those modules treating specification issues are: ProQAM (Process-
oriented Questionnaires for Analyzing and Modeling Scenarios) [DOK05], TORE (Task
Oriented Requirements Engineering) [PK03], MOQARE (Misuse-oriented Quality
Requirements Engineering) [HP05], [HP07], and ICRAD (Integrated Conflict Resolution
and Architectural Design) [HPP06].

Software properties and how well they are aligned with the business goals are defined by
the decisions made during the software specification process. The requirements
specification describes the needs, while the architectural design (specification) describes
what will be implemented. Decisions based on the needs are made during the following
activities: the software requirements specification, the definition of decision criteria for
architectural design decisions and the prioritization of software requirements.1 The
results of all three activities influence the fourth activity: architectural decisions
concerning the solution.

In the SIKOSA method, these activities produce the following artefacts (Figure 1):

1. Software requirements (here: MOQARE countermeasures) are derived from
business goals by ProQAM and MOQARE.

2. Decision criteria for architectural design decisions with ICRAD are derived
from business goals.

3. Software requirements priorities are attributed to the software requirements,
taking into account the ICRAD decision criteria and the business goals.

4. Architectural design decisions are made with ICRAD.

Figure 1: Business goals indirectly influence architectural decisions via three intermediate
artefacts; the arrows signify relationships of the type “influences” between the artefacts

1 Priorities support many further decisions such as conflict solution or test decisions.

28

28

The remainder of the paper is as follows: Section 2 cites related work. The subsequent
sections treat the four above mentioned activities: Section 3 describes how
countermeasures are derived from goals by MOQARE. Section 4 discusses ICRAD´s
architectural design decision criteria, section 5 treats requirements prioritization. Section
6 presents how architectural decisions in ICRAD are indirectly aligned with goals, when
they are based on software requirements, their priorities and the architectural decision
criteria as defined in the preceding sections. Section 7 provides a summary.

2 Related Work

How decisions concerning specifications can be consistently aligned to business goals
during different phases of the software development process, is no new question.
Software modelling and specification methods have treated parts of this question, which
now is fully treated by the SIKOSA method for the first time. In this section, we cite
work which we built upon.

Business goals are “high-level reasons for getting the new product” [La02] and a “non-
operational objective to be achieved by the […] system” [DVF93]. A lot of research
activities focus on the business goals of software systems, projects or organizational
units dealing with their classification and identification. Business goals can be
categorized according to the five dimensions: product size, quality, staff, cost, and
(calendar) time [Wi02]. Orthogonally to these dimensions, business goals can be
classified according to the four perspectives of the Balanced Scorecard [KN92]:
financial, customer, internal processes, learning & growth. For details, we refer the
interested reader to the business literature mentioned above.

Software requirements and software requirements decisions can be described on
different levels of granularity and with different focus. Aurum et al. [AWP06]
distinguish four levels of requirements decisions: business, stakeholders, project, and
product level. Lamsweerde et al. [La01] discern business goals, project goals, and
software system goals. The distinction between business goals and software goals as
well as their alignment are important features of the SIKOSA method.

The goal-oriented requirements engineering methods [La01] have been using software
(product) goals successfully as a starting point for software requirements specification.
In [He07], we have discussed how goal-orientation and hierarchical top-down detailing
from goals to software requirements ideally supports decision-making during
requirements elicitation. Other authors also emphasize the importance and multiple roles
of goals for requirements elicitation, alignment of requirements with business goals,
requirements validation, conflict solution and architectural design [YM98], [RS05].
However, these methods do not distinguish between business goals and software goals.

It seems logical to derive software requirements from business process requirements.
Nevertheless, there are only few approaches to do so [BE01], [KL06a]. Business process
modelling and software requirements modelling still use different notations and
semantics. Approaches to their integration are presented by [SH00], [No04], [BCV05],

29

29

[KL06b]. However, some weaknesses of the integrations remain [BE01], [KL06a].
Especially, former work concentrates on functional requirements (FR). Non-functional
requirements (NFR) are neglected, although they are gaining more and more relevance,
as the competition on the market cannot be won by a software´s functional scope alone,
but also quality is crucial. The SIKOSA method is the first one which models business
process requirements as well as software requirements, FR as well as NFR.

Goals can serve as decision criteria. This means that among several available
alternatives, the one is chosen which supports the goal(s) best. Which goals and decision
criteria are used in a specific context depends on the stakeholder preferences. However,
in literature it is not discussed which further factors influence the choice of a decision
criterion. During our literature research and case study experience, we found that the
decision criterion strongly depends on the question which is to be answered during a
specific software development phase [He07]. For instance, requirements engineering
aims at identifying those requirements which are most beneficial to the stakeholders,
while architectural design chooses that design which satisfies the requirements best.
Furthermore, the satisfaction of some criteria can not be estimated in each phase, e.g.
reliable cost estimates are more difficult to obtain during requirements engineering than
during design, when there is some – even preliminary – knowledge about the IT
system´s realization. This is why in the SIKOSA method use different decision criteria
for each of the four activities shown in Fig. 1.

3 Derivation of software requirements from software goals

The distinction between business goals and software goals is fundamental in the
SIKOSA method. Software goals can be functional or non-functional goals. In the
SIKOSA method, the functional goals are described by the business processes to be
supported, while the non-functional goals are called quality goals.

We integrate the ProQAM business requirements modelling with software requirements
specification based on quality goals and countermeasures (NFR described with
MOQARE) and use cases (FR described with TORE). Usually, goal-oriented analyses
proceed from high-level goals down to requirements [He07]. This is supported
systematically by the modules of the SIKOSA method, as presented in Figure 2.

Figure 2: ProQAM, TORE and MOQARE derive software requirements from business goals

The five concepts shown in Figure 2 are defined as follows:

30

30

Business goal: ProQAM identifies the stakeholders´ business goals. These
can be formal or technical and express situations to be achieved and results
respectively modes of action by means of decisions.

Process requirements: The process requirements describe the process which
is to be executed. Not only does it contain the steps which are to be
supported by software, but also staff needed or relevant competences. In
ProQAM, such elements are described by central constructs of event-driven
process chains (EPCs [Sc01]). The central element, the function, is defined
in a way to support the business goals.

Use case: Use cases [Co01] describe the requirements for the interaction
between user (or other, maybe non-human actors) and the software,
including pre-conditions, interaction steps and post-conditions. They can be
derived from the process requirements. Deriving FR from business processes
in the form of such use cases is supported by the method TORE.

Quality goal: A quality goal is a goal which is to be satisfied by the software
and therefore is a high-level NFR. In MOQARE, quality goals are expressed
by the combination of an asset plus a quality attribute, like “usability of the
user interface”. An asset can be any protectable part of the system. A quality
attribute describes an aspect or characteristic of quality.

Countermeasure: A countermeasure is an operational requirement which
supports the quality goal. Countermeasures can be FR, exception scenarios
of use cases, NFR constraining use cases, architectural constraints, user
interface constraints, constraints on project and software development,
constraints on administration or maintenance, or another quality goal.

The five concepts above describe desired properties of the business, the business
processes, and the software. From the security field, the idea of negative, undesirable
concepts has been adopted in the SIKOSA method. The most famous concept based on
this principle is the misuse case [SO00], [SO01], [Al02]. Like use cases, misuse cases
describe the interaction of the software system with an actor, but misuse cases describe
unwanted scenarios (e.g. attacks, user errors, accidents) which threaten goal satisfaction.
Misuse cases help to define and to complement the software requirements and also to
document the justification of these requirements. This principle is used in the SIKOSA
method with respect to business goals and quality goals.

Due to limited space, we focus on the realization of Business IT-alignment in the
SIKOSA method. For a complete description of the methods, we refer the reader to the
publications cited in the introduction. In the remainder of this section, we describe how

31

31

countermeasures are derived from functional and non-functional process requirements
by MOQARE. These process requirements are output of ProQAM2.

To illustrate our methods, we describe a case study performed during the Sysiphus
enhancement3. Sysiphus is a tool which is developed and used at the University of
Heidelberg and the Technical University of Munich to teach software engineering and to
document the results of case studies [Sy07]. Sysiphus implements TORE and
MOQARE. It also supports design according to Brügge and Dutoit [BD04] and ICRAD.
The case study objectives were: We wanted to test and to measure the usability of
Sysiphus and to propose requirements on potential improvements. These requirements
had to be prioritized in order to be integrated into plans for the further enhancement of
Sysiphus. Finally, a workshop was held to discuss strategies of how to implement the
improvements and a decision was made.

To meet these objectives, this case study included the following steps:

1. Definition of a usage context and the business goal
2. Description of the FR
3. Detailing of the quality goal „usability of the user interface“ and derivation of

countermeasures, in order to define what usability means for this system
4. Benefit estimation for the FR and countermeasures
5. Usability test and evaluation of the software to measure how well the

countermeasures and the quality goal “usability” are satisfied
6. Prioritization of the countermeasures for release planning
7. Decision on implementation alternatives

The results of the steps 4 to 6 are presented in section 5, and step 7 in section 6.

Step 1: We restricted the scope of the analysis to the requirements engineering (RE) and
architectural design (AD) modules of Sysiphus. Their business goal is “efficient support
of RE and AD”. The analysis started with the quality goal “usability of user interface”,
which in a former analysis (not presented here) had been identified to contribute to this
business goal. We assumed a usage context where Sysiphus is applied in a small
company by ten IT professionals. They are irregular users, had only short Sysiphus
training and are offered no helpline support. They must use the tool during RE and AD.

Step 2: The FR supported by the RE & AD part of Sysiphus are described by 27 use
cases, such as “specification of misuse cases” or “review of design”.

2 We want to remark that one of the strengths of the SIKOSA method is that it integrates modular methods
which can be applied independently of the others as well as in combination.
3 Further MOQARE case studies have been published here: [HRP06], [HKD07], [HP07]. However, most
industry case studies we performed are confidential.

32

32

Figure 3: Section of the Misuse Tree resulting from the case study

Step 3: From quality goals, MOQARE derives misuse cases and countermeasures. The
misuse cases threaten the quality goals. A countermeasure reduces the probability of a
misuse case or reduces its predicted negative consequences. By analyzing the quality
goal with MOQARE, 22 misuse cases and 31 countermeasures were identified. Two ISO
standards [ISO13], [ISO92] supported the identification of usability requirements, which
then were chosen and detailed specifically to the context and its needs. Figure 3 shows a
section of the resulting Misuse Tree. System specific misuse cases and countermeasures
should be worded in a way to apply to the 27 use cases individually, but we did not do so
here because so many details would have complicated the Misuse Tree and all later
treatments of the countermeasures.

4 ICRAD decision criteria for architectural decisions

As business-IT alignment is our objective, the decision criteria for architectural decisions
have to be defined in a way to support the business goals. The business goals usually can
not be used as design decision criteria directly. For instance, it might be difficult to
estimate how well an architectural solution supports the business goal “high market
share” or “efficient process support”, as their satisfaction does not depend on the
software alone. It is easier to predict how well the quality goal “usability of user
interface” is supported.

Frequently used decision criteria for architectural decisions are benefit, cost, complexity
and risks, or combinations of these factors, like net value and benefit-cost-ratio
[XMC04] [KAK01], [IKO01]. Therefore, in ICRAD these are the four standard
evaluation criteria for architectural alternatives (see section 6). If necessary, ICRAD can
be adapted in order to use other or additional criteria, like the satisfaction of goals
[GY01], of non-functional goals [KAK01], [IKO01] or of functional goals [CB95],
[KAB96]. But usually, if the benefit of these goals is known, their satisfaction is taken
into account by considering their contribution to the benefit.

33

33

5 Prioritization of requirements

In [HPP06], we discussed that some requirements conflicts can only be solved knowing
the possible technical solutions and by selecting one of these architectural alternatives.
However, one out of three types of requirements conflicts can be solved without this
knowledge, based on requirement priorities [HPP06]. Presorting of requirements is
useful for supporting such conflict solution and other decisions. Davis talks of
“requirements triage” [Da03] and also the “Planning Game” of Extreme Programming
[Be00] classifies requirements according to which ones have to be implemented, which
can be postponed and which have to be analyzed in more detail. Such a classification
facilitates decisions like release planning. During architectural decisions, must-
requirements can be an exclusion criterion: Those architectural alternatives which do not
satisfy the must-requirements will not be considered further. Some decisions later in the
software development process can use requirement priorities, like testing (where
requirements priorities support test case prioritization) or – as in the case study – the
assessment of the overall level of quality.

Step 3 of the case study identified requirements which Sysiphus should satisfy in order
to support the quality goal “usability of user interface”. Some of these countermeasures
are currently not satisfied, while others are (at least partly) satisfied by Sysiphus. In the
case study, we used two prioritization criteria: With respect to the overall assessment of
the usability of Sysiphus, our main criterion for requirements prioritization was its
benefit relative to the usability quality goal. For the planning of later software releases, it
was important whether and how well a countermeasure is already satisfied; its
implementation cost also played a role.

In MOQARE, we derive a countermeasure´s benefit from the risk reduction which it
causes with respect to the misuse case risk. Misuse Case risk is defined as the product of
probability and caused damage [ISO02], [XMC04]. Common methods for requirements
prioritization4 do not consider dependencies among the benefits of requirements at all or
only superficially. In reality, however, such dependencies are frequent and critical. For
instance, countermeasures can replace each other partly, when they mitigate the same
misuse case. Or countermeasures may need each other for being effective against the
same misuse case. We take into account such dependencies by bundling requirements
and by relating all estimations to a reference system [HP06]. In many prioritization
methods, it is common to bundle those requirements which depend on each other most in
relatively independent bundles5. The reference system is the idea of a set of requirements
which are imagined to be implemented. If perfect quality is the benchmark, the perfect
system is the reference, i.e. a system in which all requirements are implemented

4 Such methods are the analytic hierarchy process (AHP) [Sa80], [KWR98], numeral assignment [Ka96] or
cumulative voting (CV), also called “$100 test” [LW00], [BJ06]. According to [HP06], all methods which
attribute one fixed priority value to each requirement can be said to neglect dependencies.
5 These groups are then called features [RHN01], [Wi99], feature groups [RHN01], super-requirements
[Da03], classes of requirements [REP03], bundles of requirements [PSR04], categories [XMC04], User Story
[Be00], super attributes [SKK97] or Minimum Marketable Features [DC03].

34

34

[XMC04]. The reference system can also be the ensemble of all mandatory requirements
[REP03], the former system version or a competitor´s product.

When estimating a countermeasure´s benefit relative to a reference system, the risk of
the corresponding misuse case(s) is estimated twice: Firstly, the “reference risk” in the
reference system is estimated, secondly the “varied risk” if this countermeasure is not
implemented or if it is implemented additionally. The benefit achieved by a
countermeasure in relation to a misuse case equals the risk reduction [AH04], [XMC04].

On this basis, we can continue with the case study´s Step 4: The reference system was
defined to support all the FR identified in step 2 plus all countermeasures defined in step
3. This means that our benchmark is the system with perfect usability. The benefit of this
reference system is set to 100 benefit points. This benefit is defined to be achieved by
the satisfaction of the FR alone. Then, the satisfaction of the usability goal does not add
direct benefit, but only prevents risk. We use the unit “benefit points”, because it is
difficult in an example with fictitious usage context to estimate benefits in Euro.

The FR benefits were defined on two levels of granularity. On a high level, we identified
three FR bundles defined according to the three methods supported. We assumed these
bundles to be independent and simply distributed the 100 benefit points. On the use case
level, within each bundle use case benefits were estimated.

Misuse case probabilities were estimated in percentage and damages in benefit points
relative to the total system benefit of 100. Resulting benefits for the most important and
some less important countermeasures are shown in Table 1. There usually are n-m-
relationships among misuse cases and countermeasures, which complicate the
estimations. Countermeasures which need each other for being effective, should be
bundled and estimated like one. All others are estimated individually relative to the
reference system. We here discuss the countermeasure “all necessary data on user
interface” (which is a quality goal itself and further analyzed in Figure 3). It refers to two
misuse cases. In the reference system, the risk of both misuse cases is supposed to be 0.
If the countermeasure was not implemented, then the user – as a workaround - can open
several Sysiphus windows and this way get all necessary data. However, this does not
work for all user actions and it is inefficient. The misuse case “User interface does not
show all necessary data” causes a damage of 100 points, because it makes the system
useless. However, this happens only in an estimated 40% of the user actions. Therefore,
its varied risk without the countermeasure being implemented is 40 points. Without the
countermeasure, the other misuse case – “the user interface does not support the user
efficiently” - is true to 100%. As the users are obliged to use the system and because
they are IT professionals, who can handle two windows on their screen, the damage was
estimated to be only 10 points (the value of loss of productive work time). Assuming that
both misuse cases are independent of each other, the countermeasure´s benefit then is
40+10=50 benefit points. As can be seen in the table, all other countermeasures have a
much lower benefit. There was no other misuse case in the analysis which caused such
high damage.

35

35

Table 1: Countermeasure benefits resulting from the case study (Remark: These benefits are
specific to the case study and not generally valid.)

Benefit (in
benefit points)

Countermeasure

50 All data necessary for one user action must be presented at the same time.

2.0 At any time, the currently executed user action must be obvious to the user.

1.8 The system allows filtering of data.

1.4 Automated check whether input data are within the valid range

1.1 Context sensitive help for any screen and data field

1.02 User training

1.0 Success notification after completion of each user action

1.0 Support of users for doing the user actions in the right order

1.0 Explanations on user interface + self-explanatory names

…

0.1 The system allows to adapt the size of the work space.

0.0875 Data fields are initialized with default values.

Step 5: Usability test: To save time during the case study, we did not specify detailed
test cases for evaluating the current satisfaction of the usability requirements by the
system. Instead, we executed the 27 use cases as defined in step 2 and assessed how well
each of them satisfies each of the countermeasures. The results of these tests were
entered in a spreadsheet table where each column corresponds to a use case and each
row to a countermeasure. These results xij measure the degree of satisfaction of a
countermeasure i during the execution of a use case j between 0 (not satisfied at all) and
1 (perfectly satisfied). These tests were performed by two testers and the results were
discussed afterwards to obtain a shared judgement.

The satisfaction of each countermeasure i was calculated as weighted sum xi = j (xij ·
benefit of use case j). If all countermeasures were satisfied, the total system benefit
would have been 100 points. As some were only partly satisfied, the total usability risk
(benefit loss) was the weighted sum = i [(1- xi) · (benefit of countermeasure i)]. This
risk was 18 points and consequently the effective benefit of the system 100-18 = 826.
This value will be especially interesting when we will re-assess the usability after a
system enhancement to measure the usability improvement quantitatively.

Step 6: Countermeasure prioritization for release planning: For those
countermeasures which are not yet satisfied to 100%, the cost of doing so was estimated
in 1, 2 or 3 cost points. The priority of a countermeasure i with respect to release
planning was defined to be proportional to “(1-xi) · benefit of countermeasure i”. Those

6 We must remark here that we were very strict when evaluating the software!

36

36

countermeasures with the highest priorities and those with cost = 1 were candidates to be
scheduled for the next release.

6 Architectural decisions which are aligned with goals

ICRAD [HPP06] is an iterative and integrated process for the solution of
requirements conflicts and for architectural design. In this section, we describe how it
compares architectural alternatives and how the decision is made. Decisions among two
or more alternatives and their justifications are documented in the template shown in
Table 2. Each alternative is evaluated with respect to its benefit, risk, implementation
cost and complexity cost. The reference system can be different for each decision, as it is
modified by the decisions made before7. The benefit of an alternative is not equal to the
sum of the benefits of the requirements realized by this alternative, due to dependencies.
The risk of an alternative includes risks provoked by realizing risky requirements or
provoked by the architectural alternative, as well as risks provoked by not realizing some
countermeasures. Cost of implementation ideally is estimated in the same unit as the
benefit, in order to be comparable. Complexity includes architectural and organizational
complexity and will lead to maintenance and other cost. For being comparable to the
other criteria, complexity is transformed into complexity cost. Complexity is caused by
software complexity, e.g. by coupling of its components [KAB96], [CB95], [LRV99]
and also by the complexity of the software´s integration into its environment. These
estimations are done for both (respectively all) alternatives of the same decision and
their results are documented in Table 2.

Table 2: Template table used to compare alternatives in ICRAD.

Alternative 1 Alternative 2 Difference

Cost C1 C2 C2-C1
Complexity Cost CC1 CC2 CC2-CC1

Risk R1 R2 R2-R1

Benefit B1 B2 B2-B1

Total benefit B1-R1 B2-R2 (B2-R2)-(B1-R1)
Total cost C1+CC1 C2+CC2 (CC2- CC1)+(C2-C1)

Net value (B1-R1)-
(C1+CC1)

(B2-R2)-
(C2+CC2)

(B2-R2)-(C2+CC2)
-(B1-R1) +(C1+CC1)

Total Benefit/
total cost

(B1-R1) /
(C1+CC1)

(B2-R2) /
(C2+CC2)

[(B2-R2)-(B1-R1)] /
[(CC2- CC1)+(C2-C1)]

7 This – together with requirements dependencies – is why the requirements benefits estimated in section 4
cannot be re-used directly here.

37

37

The total benefit is calculated as benefit minus risk. Total cost includes
implementation plus complexity cost. Two decision criteria are:

net value = total benefit minus total cost
Benefit-cost-ratio = total benefit / total cost

If the more expensive solution has a lower benefit, then it is logical to choose the
cheaper and better solution. However, very often, the alternative with the higher benefit
is the more expensive one, as is also the case in our case study. The value [(B2-R2)-(B1-
R1)] / [(CC2- CC1)+(C2-C1)]= TB/ TC (see Table 2, in the lower right field) has
shown to be a good third decision criterion [HPP06]. These three criteria do not always
lead to the same decision. How to proceed if they are in favour of different decisions is
described in [HPP06].

In the case study, we have identified a multitude of countermeasures which signify
improvement ideas. One might have realized them in a series of subsequent releases
improving the user interface´s usability incrementally. As an alternative, we considered
re-designing the user interface. This decision was fundamental and was discussed in a
workshop of several hours with ten participants. The workshop started with a discussion
of the countermeasures and architectural alternatives. Without going into detail, we want
to present the resulting decision between two alternatives. Although in the preceding
steps, a countermeasure´s benefit was a main criterion for its prioritization, now the
default criteria of ICRAD have all been taken into account, because the implementation
cost, complexity cost and risks caused by a solution also play a role for the decision for
or against the one or the other solution. The must-requirement “All data necessary for
one user action must be presented at the same time.” (from Table 1) was realized in both
alternatives. The other countermeasures were considered indirectly by estimating the
benefit on the basis of which countermeasures can be realized by each of the
alternatives. The benefit of a requirement was again measured in “benefit points”,
relative to the 100 value of the perfect system. Benefit should ideally be comparable to
cost, yet in this case study they were not. The cost of each alternative here was estimated
in person months (unlike cost estimation for individual requirements in step 6).

Table 3: Comparison of alternatives in the case study; “PM” stands for “person months”
and “BP” for “benefit points”

Alternative 1:
incremental
improvement

Alternative 2:
re-design

Difference (Alternative
2 – Alternative 1)

Cost 3 PM 6 PM 3 PM
Complexity Cost 2 PM 1 PM -1 PM

Risk 0 BP 2 BP 2 BP

Benefit 6 BP 14 BP 8 BP

Total benefit 6 BP 12 BP 6 BP
Total cost 5 PM 7 PM 2 PM

Net value 6 BP – 5 PM 12 BP – 7 PM 6 BP – 2 PM
Total Benefit/ 1.20 BP/ PM 1.71 BP/ PM 3 BP/ PM

38

38

As can be seen in Table 3, the re-design has higher implementation cost than the
incremental improvement, but lower complexity cost because it reduces the software´s
complexity8. It can be expected that the re-design achieves a much higher improvement
of the usability and, therefore, more benefit, but also includes the risk to loose benefit.
The re-design has the higher total cost and higher total benefit. The net values are
difficult to compare, as cost and benefit are estimated in different metrics. The benefit-
cost-ratio is higher for the re-design. Criterion TB/ TC (right bottom field) also is in
favor of the re-design. Therefore, the re-design was chosen.

7 Summary

This work presents in which way the SIKOSA method aligns software specification and
decisions to functional as well as to non-functional quality- and business goals. The
following four activities align specification with goals and, therefore, are presented here:
the software requirements specification, the prioritization of these software
requirements, the definition of decision criteria for architectural design decisions, and
making architectural decisions. For aligning software specification and software with
goals consistently, it is important to execute these four activities in an integrated way, as
it is done by the SIKOSA method, unlike in any other method.

The four activities were executed in a case study where software usability requirements
were defined, the usability was assessed, the most important improvements identified,
and finally a decision was made between two alternatives: incremental improvement and
re-design of the user interface. This quantitative decision-support has shown to be a good
artefact for structuring discussions, documenting decision rationale and identifying
missing information. However, estimating and consensus-making among several
stakeholders demands more time compared to ad hoc decisions. Therefore, we
recommend applying such approaches mainly to such decisions which have an important
impact and/ or are difficult to make.

References

[AH04] Arora, A.; Hall, D.; Pinto, C.A.; Ramsey, D.; Telang, R.: An ounce of prevention vs. a
pound of cure: How can we measure the value of IT security solutions? Lawrence
Berkeley National Laboratory. Paper LBNL-54549. 2004.

[Al02] Alexander, I.: Misuse Cases Help to Elict Non-Functional Requirements.
http://easyweb.easynet.co.uk/~iany/consultancy/ misuse_cases/misuse_cases.htm

[AWP06] Aurum, A.; Wohlin, C.; Porter, A.: Aligning Software Project Decisions: A Case Study.
In: Int. J. of Software Eng. and Knowledge Eng., 16(6), 2006, pp. 795-818.

8 We remark that the next release was defined in a way that at realistic cost a good improvement could be
attained without any risk. A larger release would have caused more cost without significantly higher usability
improvement.

39

39

[BCV05] Bleistein, S.J.; Cox, K.; Verner, J.: Strategic Alignment in Requirements Analysis for
Organizational IT: an Integrated Approach. In: ACM Symposium on Applied
Computing, Santa Fe, 2005.

[BD04] Bruegge, B.; Dutoit, A.H.: Object-Oriented Software Engineering - Using UML,
Patterns, and Java, Prentice Hall, 2004.

[Be00] Beck, K.: Extreme programming explained, Addison-Wesley, Upper Saddle River, 2000.
[BE01] Brücher, H.; Endl, R.: Erweiterung von UML zur geschäftsregelorientierten

Prozessmodellierung. In: Proc. Referenzmodellierung RefMod2001, http://www.wi.uni-
muenster.de/is/Tagung/Ref2001/Kurzbeitrag13.pdf

[BJ06] Berander, P.; Jönsson, P.: Hierarchical Cumulative Voting (HCV) - Prioritization of
Requirements in Hierarchies. In: Int. J. of Software Eng. and Knowledge Eng., 16(6),
2006, pp. 819-849.

[CB95] Clements, P.; Bass, L.; Kazman, R.; Abowd, G.: Predicting Software Quality by
Architectural-Level Evaluation. In: Proc. 5th Int. Conf. on Software Quality ICSQ,
Maribor, Slovenia, 1995.

[Co01] Cockburn, A.: Writing effective use cases, Addison-Wesley, 2001.
[Da03] Davis, A.M.: The Art of Requirements Triage. In: IEEE Computer 36(3) 2003, pp.42-49.
[DC03] Denne, M.; Cleland-Huang, J.: Software by Numbers: Low-Risk, High-Return

Development. Prentice-Hall, 2003.
[DOK05] Dietrich, A.; Otto, S.; Kirn, S.: Simulationsmodell für logistische Prozesse in Mass-

Customization-Szenarien. In: Kirn et al. (Hrsg.): Kundenzentrierte Wertschöpfung mit
Mass Customization. 2005, pp. 118-147.

[DVF93] Dardenne, A.; van Lamsweerde, A.; Fickas, S.: Goal-Directed Requirements
Acquisition. In: Science of Computer Programming 20, 1993, pp. 3-50.

[GY01] Gross, F.; Yu, E.: Evolving system architecture to meet changing business goals: An
agent and goal-oriented approach. In: Proc. Fifth IEEE Int. Symposium on Requirements
Engineering, 2001, pp.316 - 317.

[He07] Herrmann, A.: Entscheidungen bei der Erfassung nicht-funktionaler Anforderungen.
Workshop "Erhebung, Spezifikation und Analyse nichtfunktionaler Anforderungen in
der Systementwicklung", SE 2007, Hamburg, Germany, 2007.

[HKD07] Herrmann, A.; Kerkow, D.; Doerr, J.: Exploring the Characteristics of NFR Methods – a
Dialogue about two Approaches. In: Proc. 13th Int. Workshop on Requirements
Engineering for Software Quality, Foundations of Software Quality – REFSQ 07,
Trondheim, Springer, 2007; pp. 320-334.

[HP05] Herrmann, A.; Paech, B.: Quality Misuse. In: Proc. 11th Int. Workshop on Requirements
Engineering: Foundation of Software Quality – REFSQ 05, Essener Informatik Beiträge,
Band 10, 2005; pp. 193-199.

[HP06] Herrmann, A.; Paech, B.: Benefit Estimation of Requirements Based on a Utility
Function. In: Proc. 12th Int. Workshop on Requirements Engineering: Foundation of
Software Quality – REFSQ 06, Essener Informatik Beiträge, Band 11, 2006; pp.249-250.

[HP07] Herrmann, A.; Paech, B.: MOQARE: Misuse-oriented Quality Requirements
Engineering. In: Requirements Engineering Journal, to be published.

[HPK06] Herrmann, A.; Paech, B.; Kirn, S.; Kossmann, D.; Müller, G.; Binnig, C.; Gilliot, M.;
Illes, T.; Lowis, L.; Weiß, D.: Durchgängige Qualität von Unternehmenssoftware. In:
Industrie Management, 6, 2006; pp. 59-61.

[HPP06] Herrmann, A.; Paech, B.; Plaza, D.: ICRAD: An Integrated Process for Requirements
Conflict Solution and Architectural Design. In: Int. J. of Software Eng. and Knowledge
Eng. 16(6) Dec. 2006, pp. 917-950.

[HRP06] Herrmann, A.; Rückert, J.; Paech, B.: Exploring the Interoperability of Web Services
using MOQARE. IS-TSPQ Workshop “First International Workshop on Interoperability
Solutions to Trust, Security, Policies and QoS for Enhanced Enterprise Systems”,
Bordeaux, 2006.

40

40

[IKO01] In, H.; Kazman, R.; Olson, D.: From Requirements Negotiation to Software
Architectural Decisions. In: Proc. from Software Requirements to Architectures
Workshop STRAW, 2001.

[ISO02] International Standards Organization ISO: Risk management – Vocabulary – Guidelines
for use in standards. ISO Guide 73, International Standards Organization, 2002.

[ISO13] International Standards Organization ISO: Norm DIN EN ISO 13407, Benutzer-
orientierte Gestaltung interaktiver Systeme.

[ISO92] International Standards Organization ISO: Norm DIN EN ISO 9241, Ergonomische
Anforderungen für Bürotätigkeiten mit Bildschirmgeräten.

[KAK01] Kazman, R.; Asundi, J.; Klein, M.: Quantifying the Cost and Benefits of Architectural
Decisions. In: Proc. Int. Conf. Software Eng., 2001; pp.297-306.

[KAB96] Kazman, R.; Abowd, G.; Bass, L.; Clements, P.: Scenario-based analysis of software
architecture. In: IEEE Software, 13(6), 1996; pp. 47-55.

[Ka96] Karlsson, J.: Software requirements prioritisation. In: Proc. 2nd Int. Conf. Requirements
Engineering, 1996; pp.110-116.

[KN92] Kaplan, R.S.; Norton, D.P.: The Balanced Scorecard: Measures That Drive Performance.
In: Harvard Business Review, 70(1), 1992; pp. 71-79.

[KL06a] Korherr, B.; List, B.: Aligning Business Processes and Software Connecting the UML 2
Profile for Event Driven Process Chains with Use Cases and Components. In: Proc. 18th
Int. Conf. on Advanced Inf. Systems Eng. CAiSE´06, Luxembourg, 2006: pp. 19-22.

[KL06b] Korherr, B.; List, B.: A UML 2 Profile for Event Driven Process Chains. A UML 2
Profile for Business Process Modelling. In: Proc. 1st Int. Workshop on Best Practices of
UML at the 24th Int. Conf. on Conceptual Modeling ER 2005, Klagenfurt 2005.

[KWR98] Karlsson, J.; Wohlin, C.; Regnell, B.: An evaluation of methods for prioritizing software
requirements. In: Information and Software Technology 39, 1998; pp. 939-947.

[La01] van Lamsweerde, A.: Goal-Oriented Requirements Engineering: A Guided Tour. In:
Proc. of 5th Int. Symposium on Requirements Eng., 2001; pp. 249-263.

[La02] Lauesen, S.: Software Requirements - Styles and Techniques. Addison-Wesley, 2002.
[LRV99] Lassing, N.; Rijsenbrij, D.; van Vliet, H.: On Software Architecture Analysis of

Flexibility, Complexity of Changes: Size Isn´t Everything. In: Proc. Second Nordic
Software Architecture Workshop NOSA 99, 1999; pp. 1103-1581.

[Lu00] Luftman, J.N.: Assessing business/IT alignment maturity. In:Comm. of AIS, 4(14), 2000.
[LW00] Leffingwell, D.; Widrig, D.: Managing Software Requirements - A Unified Approach,

Addison-Wesley, Reading, Massachusetts, USA, 2000.
[No04] Noran, O.S.: Business Modelling: UML vs. IDEF. Griffith University, School of

Computing and Information Technology, 2004.
http://www.cit.gu.edu.au/~noran/Docs/UMLvsIDEF.pdf (last visit: 12 nov 2007)

[PK03] Paech, B.; Kohler, K.: Task-driven Requirements in object-oriented Development. In
(Leite, J.; Doorn, J., eds.): Perspectives on Requirements Engineering, Kluwer Academic
Publishers, 2003.

[PSR04] Papadacci, E.; Salinesi, C.; Rolland, C.: Payoff Analysis in Goal-Oriented Requirements
Engineering. In: Proc. 10th Int. Workshop on Requirements Eng.: Foundation of
Software Quality – REFSQ04, 2004.

[REP03] Ruhe, G.; Eberlein, A.; Pfahl, D.: Trade-Off Analysis For Requirements Selection. In:
Int. J. of Software Eng. and Knowledge Eng. 13 (4), 2003; pp. 345-366.

[RHN01] Regnell, B.; Höst, M.; Natt och Dag, J.; Beremark, P.; Hjelm, T.: An Industrial Case
Study on Distributed Prioritisation in Market-Driven Requirements Engineering for
Packaged Software. In: Requirements Eng. 6, 2001; pp. 51–62.

[RS05] Rolland, C.; Salinesi, C.: Modeling Goals and Reasoning with Them. In (Aurum, A.;
Wohlin, C., Eds.): Engineering and Managing Software Requirements, Springer, Berlin,
Heidelberg, 2005.

[Sa80] Saaty, T.L.: The Analytic Hierarchy Process, McGraw-Hill, New York, 1980.

41

41

[Sc01] Scheer, A.-W.: ARIS – Modellierungsmethoden, Metamodelle, Anwendungen. 4th

edition, Springer, Berlin, 2001.
[SH00] Scheer, A.; Habermann, F.: Making ERP a success. In: Communications of the ACM,

43(3), 2000; pp. 57-61.
[SKK97] Stylianou, A.C.; Kumar, R.L.; Khouja, M.J.: A total quality management-based systems

development process. In: ACM SIGMIS Database, 28(3), June 1997, pp. 59-71.
[SO00] Sindre, G.; Opdahl, A.L.: Eliciting Security Requirements by Misuse Cases. In: TOOLS

Pacific, 2000; pp. 120-131.
[SO01] Sindre, G.; Opdahl, A.L.: Templates for Misuse Case Description. In: Proc. 7th Int.

Workshop on Requirements Eng.: Foundation of Software Quality – REFSQ 01, Essener
Informatik Beiträge Band 6, 2001; pp. 125-136.

[So01] Sommerville, I.: Software Engineering, Pearson Education Deutschland, 6th ed. 2001.
[Sy07] Sysiphus http://sysiphus.in.tum.de/, 2007 (last visit: 12 nov 2007)
[Wi99] Wiegers, K.E.: First things first: prioritizing requirements. In: Software Development

7(9), September 1999.
[Wi02] Wiegers, K.E.: Success Criteria Breed Success. In: The Rational Edge, 2(2), 2002.
[WKK07] Weiß, D.; Kaack, J.; Kirn, S.; Gilliot, M.; Lowis, L.; Müller, G.; Herrmann, A.; Binnig,

C.; Illes, T.; Paech, B.; Kossmann, D.: Die SIKOSA-Methodik – Unterstützung der
industriellen Softwareproduktion durch methodisch integrierte
Softwareentwicklungsprozesse. In: Wirtschaftsinformatik 49(3), 2007; pp. 188-198.

[XMC04] Xie, N.; Mead, N.R.; Chen, P.; Dean, M.; Lopez, L.; Ojoko-Adams, D.; Osman, H.:
SQUARE Project: Cost/Benefit Analysis Framework for Information Security
Improvement Projects in Small Companies. Technical Note CMU/SEI-2004-TN-045,
Software Engineering Institute, Carnegie Mellon University, 2004.

[YM98] Yu, E.; Mylopoulos, J.: Why Goal-Oriented Requirements Engineering? In: Proc. 4th Int.
Workshop on Requirements Engineering for Software Quality, Foundations of Software
Quality – REFSQ 1998, Pisa, Presses Universitaires de Namur, 1998, pp. 15-22

42

42

Extended Privacy Definition Tool

Martin Kähmer and Maike Gilliot
{kaehmer, gilliot}@iig.uni-freiburg.de

Abstract: Eliciting non-functional security requirements within a company was one
of the major aspects of the SIKOSA project1. Scenarios, such as that of METRO
presented in this paper, show how besides a company’s internal requirements, cus-
tomers’ preferences also play an important role. However, conflicts between specific
customers’ privacy policies and those of a company need to be detected and dealt with.
To this end we present a policy language that is able to tackle this comparison problem
and two tools: An editor tool allowing users to specify their policies in a user-friendly
way and a monitoring tool to evaluate und enforce the policies at runtime.

1 Introduction

Personalized services are often viewed as the panacea of e-commerce [SSA06]. User pro-
files, such as click streams logging which sites users access, are used to generate a profile
of the interests of the users. The decisive advantage of such services lies in the opportunity
of entering a one-to-one relationship in order to achieve more effective customer loyalty.
Service tailoring is thereby no longer limited to e-commerce. In Germany, the METRO-
Group is developing the “Future Store”, where shopping trolleys are fitted with personal
shopping assistants, i.e. computers connected to the store’s information system. Services,
such as recommender systems, are personalized by means of customer cards [KA06].
However, personalization involves intensive collection and usage of personal-related data.
If customers want to benefit from such services, enforcing privacy by minimizing data
disclosure is no longer possible. Customers need means to control the usage of their
data [PHB06].

In this paper, we present the Extended Privacy Definition Tool (ExPDT) as a means for
companies to comply not only with regulatory and business requirements, but also with
customers’ privacy preferences. In Section 2, we classify our ExPDT solution consisting
of a policy language and corresponding tools. The language itself is described in Section 3,
and the editor tool and the monitor tool are presented in Section 4. The closing section
gives an outlook on further work.

1SIKOSA: Sichere Kollaborative Softwareentwicklung und Anwendung [WKK+07], in collaboration with
the Uni of Heidelberg, Uni of Hohenheim, and ETH Zürich, funded by MWK of the Land Baden-Württemberg

43

43

2 Tackling the privacy problem

Privacy and security for enterprise information systems is about ensuring that business
processes are executed as expected and operations such as data accesses are in accordance
with a prescribed or agreed on set of norms, such as laws, regulations, and decisions.
Solutions to achieve this can be broken down to two main approaches according to the time
of application. One approach is called retrospective reporting, where traditional audits
usually done through manual checks based on comprehensive logs and reports of the last
period of time are used to show policy conformance [Acc08].

Figure 1: ExPDT within the layer model

The other, more recent approach is often called
security by-design, exhibiting a more preven-
tive focus. Non-functional privacy and se-
curity requirements are captured and subse-
quently propagated into the enterprise appli-
cations. We propose a model of different
layers with respect to abstraction and poten-
tial for automation (cf. Figure 1). Since laws
only describe what has to be done in gen-
eral, these regulations have to be interpreted
to obtain control objectives for the particular
business domain of a company. Although formulated by experts, these control objectives
are still in natural language. For IT systems, they need to be interpreted once more and
mapped to the particular services, components, and employees of the company. Policies
are a set of formalized rules specifying precisely for each unit what is allowed or manda-
tory and what is prohibited. Such policies serve as input for security monitors, enforcing
them on the lower system level. A high degree of automation is only possible within the
policy and the monitor layer, where ExPDT is situated, as this is the first level providing
laws in a machine-readable format.

2.1 Policy and monitor requirements

For a policy language, it is not merely essential to feature sufficient expressiveness based
on a wide range of compassing modalities like permissions, prohibitions and orders as well
as on context inclusion based on a fine grained vocabulary [HPSW06, BAKK05]. It is also
necessary for a policy language to allow for modular specification and policy compari-
son so that every single requirement can be addressed and combined with a valid policy
for deployment and, since requirements can stem from different regulations and privacy
agreements, inconsistencies or contradictions are taken into consideration. Conflicting
rules result in operational risk and should be detected and as far as possible solved. Not
just regulatory objectives that could be realized in one central policy have to be enforced by
a company. Its customers need to be able to control the collection and usage of their own
personal data by formulating their own privacy and security preferences [Bun83, PHB06].

44

44

To enforce such expressive languages, monitors not only have to cope with conditions,
i.e. “traditional” access control, but also control orders and obligations. As those types of
rules are generally not enforceable, the monitor has to provide other means to control the
fulfillment on system level.

2.2 Related Work

Tackling privacy by means of policies is not new. The World Wide Web Consortium
(W3C) developed the Platform for Privacy Preferences (P3P) to express privacy policies
in a machine-readable format and its counterpart, the P3P exchange language APPEL, to
express customers’ preferences [W3C06, CLM05]. Both lack conditions, obligations, and
any kind of enforceability and are thus drastically reduced in their usage control capability.
For internal policies, the eXtensible Access Control Markup Language XACML [Mos05]
was designed by the OASIS consortium as open standard to specify expressive policies
that can be interpreted and enforced by a security monitor. XACML even provides policy
combination tools to support distributed policies, although it is not suitable for comparing
policies, because the intersection of two general policies is not defined. The WS-Policy
framework [WSP07] for web services provides a general purpose model and syntax to de-
scribe and communicate policies of web services, which consists of sets of different kinds
of assertions, e.g. for security, privacy or reliability. Although allowing for optional as-
sertions, this flexibility cannot be guided by sanctions or penalties. While XACML and
WS-Policy can be used for privacy related policies, IBM’s Enterprise Privacy Authoriza-
tion Language (EPAL) is dedicated to this task [AHK+03]. It accounts for the further
usage of accessed data objects by supporting obligation elements in its policy rules and
exhibits a fine grained vocabulary as well as monitor integration. The Novel Algebraic
Privacy Specification (NAPS) framework enhances EPAL on a logical level to an algebra
additionally allowing for modular specification of policies and adds a concept of sanctions
to allow for flexible rule adherence [RS06]. However, common to all of these policy
languages is the lack of adequate operators for comparing and analyzing policies.

3 ExPDT – Expressing Privacy Policies

The Extended Privacy Definition Tool (ExPDT) language allows users to specify declara-
tive privacy and security policies over specific domain knowledge using OWL-DL, a com-
putational complete and decidable subset of the OWL Web Ontology Language [MvH04]
corresponding to Description Logic. The ExPDT language is used to describe permis-
sions, prohibitions, and orders that have to be adhered to if certain contextual conditions
are met or some obligations have to be fulfilled. As ExPDT is geared towards dynamic
environments, it deals with incomplete context information and also includes sanctions
that can be imposed. Based on the algebraic framework NAPS, it inherits semantics and
combination operators allowing for a modular specification of policies. A distinguishing
feature of the language is the difference operator for policy comparison. For deployment

45

45

of the language, an editor tool was developed. Additionally, a tool for interpreting and
enforcing ExPDT policies is presented in Section 4.

For the presentation of the ExPDT language in the following chapters, we introduce three
logical layers: the language layer, the domain layer and the instance layer. At the bottom,
the language layer establishes the basis by providing fixed vocabulary for the specifica-
tion of language itself, just like the grammar of a natural language. Based upon that, the
domain layer fills up vocabulary by defining the instances of assets, actuators and envi-
ronment. In contrast to the language layer, the specifications on the domain layer have to
be consistent with the current scenario. Therefore, they are subject to occasional adapta-
tions. A common understanding of privacy preferences is not possible, until language and
domain are commonly defined. On the third layer, concrete policy instances both of the
companies as well as of the customers can be defined, exchanged and agreed upon.

3.1 Language specification layer

A language is made from its syntax and semantics. Hereby, syntax is the definition of all
words allowed to be used in the language as well as their set up, in particular the definition
of a rule and its parts. The semantics describes the meaning behind the syntax. For a
policy, the semantics is given by its evaluation function that provides the results for a
particular policy query.

3.1.1 Syntax

Although the ExPDT language features a representation in OWL, its syntax is presented
in a more space-saving way on the basis of the simplified OWL class diagram with the
inheritance and selected properties of the OWL classes shown in Figure 2. Short examples
of the actual OWL syntax are given in Sections 3.2 and 3.3 for domain and instance layer.

A policy consists of a prioritized list of rules and a default ruling in the case where no rule
applies. A rule itself is comprised of one or more possibly negated guards constraining
the scope of this rule from users, actions, data and purpose, a number of conditions and
the ruling that subsequently delivers the decision of this rule. Hence, a generic rule has the
following form: [(user, data, action, purpose), conditions, ruling].

For intuitive specification of the scenario on the domain layer later on, the element in-
stances of a guard are partially ordered in hierarchical structures allowing for grouping of
instances and the formulation of policies rules applying to entire sub-hierarchies, e.g. to all
users of a particular department or all the data belonging to contact information. Thereby,
each of them has his own structure: customers, employees and services are combined in
the user structure, sensitive data items are described in data, possible actions on these
items in action and the possible intentions of actions in question are structured in purpose.

Regulations often depend on context information, e.g. permitting data access only if the
customer is not under age or the legal guardian has given his consent. For the inclusion of
such constraints, ExPDT reverts to a 3-valued, many-sorted condition logic. A condition

46

46

Figure 2: Syntax of ExPDT policy language as class diagram

is a formula of this condition logic defined over the condition vocabulary and its interpre-
tation functions. A vocabulary consists of the final set of sorts (i.e. variable types) each
with a final set of variables. The set of non-logical symbols of simple constraints includes
relations, the set of logical symbols the operators and, or, not, weak not, 0, 1 and u as
undefined. The single-valued operators not and weak not have only a first parameter, the
others a second additional one. Formulas and terms of the condition logic are recursively
defined as usual as in the predicate logic free of quantors. The semantics of a formula
is given as in the 3-values Łukasiewicz L3 logic. The undefined value is advantageous
to an environment of dynamic character, such as stores with continuously changing cus-
tomers and modified or switched services, in that it supports the rule evaluation even with
incomplete context information as will be shown in Section 3.1.2.

A policy rule not only regulates the actions on data items, but can impose obligations,
such as “notify customer” or “delete data within one day”. In contrast to many other
policy languages, ExPDT does not consider obligations as pure black box instructions, but
has an underlying obligation model of a half lattice above the power set of the elementary
obligations Õ, subset as relation, conjunction as aggregation, with maximum element top

as the empty obligation and the minimal element bottom ⊥ as the impossible obligation.
Imposing the obligation means that the action of the guard can be carried out without
further undertaking, imposing ⊥ that an action may not be carried out. Eliminations of
contradicting elementary obligation combinations, such as “delete data within a week”

47

47

Modality Obligations Sanctions Ruling
Permission (,)

o+ (o+,)
Prohibition (⊥,)

o− (⊥, o−)
Order (,⊥)

o+ (o+,⊥)
o− (, o−)

o+ o− (o+, o−)
Error (⊥,⊥)

Table 1: ExPDT codes modalities into ruling.

and “keep data for a year” at the same time, can be achieved by excluding from the lattice
all those obligation sets containing problematic obligations.

The ruling of an ExPDT rule and the default ruling of the overall policy are specified by a
tuple of obligation (postiveObligation, negativeObligation). Since ExPDT policies make
statements about users performing an action on some data for a particular purpose, the
policy query is accordingly also a tuple of user, action, data, and purpose, too.

3.1.2 Semantics

While the specification of policies, queries and rulings were part of the syntax, the evalua-
tion function of a query resulting in a ruling for a given policy defines the semantics of the
ExPDT policy language. Firstly, the semantics of a single ruling is explained, followed by
the description of the evaluation function.

Ruling of a rule The required authorization and order rule modalities presented can both
be expressed in the ExPDT language, as shown in Table 1. Actions can therefore not only
be permitted but also forbidden. It is also possible to compulsorily regulate the execution
of actions. In addition to the conditions obligations can also be imposed on the user. These
are actions that have to be performed in future. The ExPDT language also allows the users
a certain degree of freedom in rule compliance. While this always applies in the case of a
permit – if an action is allowed, one does not necessarily have to use this right – users can
decide for themselves whether they adhere to a prohibition or a command. If they do not,
sanctions in the form of additional obligations can be specified in an ExPDT rule. If these
sanctions correspond however to the impossible obligation , adherence becomes necessary
for the users. The various rule modalities are mapped in ExPDT via the tuple of the ruling.
Here are some examples:

• Permission: A retailer can access the customer number. Ruling: (,)

• Permission with obligation: A retailer can access the customer’s shopping list but
not secretly. Ruling: (notify,)

48

48

• Prohibition with sanction: A retailer may not access the shopping list, which is
achieved by imposing the impossible obligation. Disregarding this prohibition, he
must inform the customer and pay a fine as sanction. Ruling: (⊥, payFine)

• Compulsory command: The security administrator must in any event classify the
data requested according to its sensitivity. The sanction according to the impossible
obligation makes adherence to this order indispensable. Ruling: (, ⊥)

Evaluation of a policy The semantics of the policy language is determined through
the evaluation function evalα(P, q) for a query q regarding a particular policy P and
current assignment α of the contextual condition variables. Roughly, the function searches
through the list of policy rules until a rule is matched by the query. Matching means that
all elements of the rule guard are either equal to the user, action, data, and purpose of the
query or stand higher up in their corresponding hierarchy. Additionally, the condition of
the rule must not evaluate to false using the current variable assignment. Thus, queries are
not restricted to minimal elements of the guard hierarchies and allow for scenarios, where,
for example, a basic policy company policy referring to departments is only composed
with a department policy making concrete statements about individuals. Although the
particular user Bob may not be mentioned in the company policy, its rules still apply to
him. The complete evaluation algorithm works as follows:

1. Initialize the ruling rp with (,) and preset evaluation status v to default.

2. Evaluate rules one by one according to their priority.

a. If the rule’s guard is matched by the query and its condition evaluates to 1,
return the conjunction of the rule’s ruling and hitherto accumulated rp as policy
ruling and an evaluation status v of final.

b. If the query is matched by a rule’s guard and its condition evaluates to u, add
rule’s ruling to rp, set the status v to applicable and proceed with the next rule.

3. If the status v is applicable, than return rp as ruling and that status.

4. If the status is still default, no rule has matched and the default ruling is returned
together with the status v default.

The case of incomplete context information resulting in an undefined condition value for a
rule is taken into account by accumulating the ruling of such a rule with a possibly previous
found ruling, i.e. conjunct both the positive obligations and the negative obligations, and
proceeding with the evaluation. Hence, it is ensured that the evaluated ruling is possibly
too restrictive due to the additional obligations, but never too weak.

Combination of policies The extensive dragging along of the evaluation status v with its
distinction of final, applicable or default ruling allows ExPDT the definition combination
operators despite the stub-behavior of the policies. The stub-behavior corresponds to the

49

49

intention of the default ruling is to ensure a safe ruling until another rule matches, there-
fore the refinement of a default ruling with an applicable or final one should be possible in
case of a policy combination. In ExPDT, two combination operators are defined: the con-
junction P1 ∧ P2 thereby evaluates P1 and P2 with equal priority, while the composition
P1||P2 gives P1 higher priority for the evaluation. For more detailed combination tables
of the rulings, generating algorithms, and algebraic laws see [Rau04].

Comparison of policies In related literature, for the comparison of two guidelines one
often finds the equivalence where both guidelines always supply the same results and the
refinement which examines a guideline as to whether it is more restrictive or specific than
another. In practice, these tests are however only suitable to a certain extent for users,
if they can only determine with them whether their preferences are fulfilled by a service.
How should the users behave, however, if the policy of a service does not correspond to
that of their own, therefore being not equivalent or more restrictive? They will not reject a
utilization of the service in each case. It can even be their wish, depending on the current
situation, to lower their data protection demands in favor of the utilization.

In such situations, the users must be able to quickly survey and estimate how far the service
guideline deviates from their own preferences or the service’s previous ruling. In dynamic
environments, in particular, where the users are faced with many different services and
their respective individual policies, this task can no longer be manually accomplished. In
order to alleviate the user’s personal decision for or against service utilization, the differ-
ence operator for two guidelines is defined in the following. This operator reduces the
regulation of the policy to become effective to those rules describing situations that are of
interest to the users for their assessments, namely to those allowing additional actions or
at least actions on weaker conditions or obligations and so supply more generous results.

Difference: Given two policies P1 and P2 over compatible vocabulary, the difference
P2 − P1 is a mapping from P ∈ P to a list of rules R that covers exactly those queries q
and assignments α of conditional variables that result in a less restrictive ruling for P2, so
(ri, vi) = evalα(Pi, q) for i = 1, 2 and r1 r2. For these, the difference rule list results
in the same decisions as P2.

This rule list describes the functional difference of both policies, so they are compared
independent of their possible evaluation status; the stub behavior of the policies is not
taken into consideration. This is particularly significant if policy P1 is to be replaced by a
different policy P2, for example if a customer discards his own preferences P1 and releases
his personal data under the service’s policy P2. Then it is irrelevant whether an action is
forbidden owing to the standard ruling of P1, but this standard ruling is refined with a
permit. It is only important here that this action is subsequently permitted. However, if
policies P1 and P2 are intended to be connected afterwards, the difference should consider
the stub-behavior of P1. For instance, the P1 default ruling can be replaced by an arbitrary
non-default ruling of P2, which would provide a more specific result without the need to
get the users’ attention – as long as they are aware of this stub-behavior. In fact, the former
mentioned equivalence and refinement of two policies can be computed by means of the

50

50

difference: if P2 − P1 results in an empty list, P2 describe less restrictive situations and
P2 is a functional refinement of P1. If the difference of switched policies results in an
empty rule list as well, P1 and P2 are functionally equivalent.

An initial implementation can take place here by way of a brute force approach. The de-
cisions for all possible enquiries and all possible allocations of the environment parameter
must simply be calculated for both P1 and P2 policies. A rule with the scope of the query
(i.e. corresponding guard) and the conditions and ruling of the rule appropriate in each
case of P2 is included in the rule list P2 − P1, if the ruling r1 has other or lesser obliga-
tions than r2. This brute force approach tests all possible combinations of enquiries and
parameter allocations so that its complexity grows exponentially with the vocabulary used.

Algorithm 1 difference(R1, R2): walking through the rule sets R1 and R2

1: PolicyDIFF := ∅
2: for i:= max(R2) downto min(R2) do
3: for j:= max(R1) downto min(R1) do
4: RuleDIFF := rulecomp(R1[j], R2[i])
5: if RuleDIFF = ∅ then
6: for all rd in RuleDIFF do
7: if guardOf(rd) ∧ ¬guardOf(R1[j]) = ∅ then
8: PolicyDIFF += differenz((R1[j − 1] downto R1[max]), rd)
9: else

10: PolicyDIFF += rd
11: end if
12: end for
13: next i
14: end if
15: end for
16: end for
17: return PolicyDIFF

Therefore, a more efficient approach is presented in this paper. As outlined by Algo-
rithm 1, the rules of both policies are looped through according to their priority, so that
each rule of P2 is compared with all rules of P1. According to the guard logic, guards can
contain disjunctions, conjunctions and negations of guards. Therefore, guards cannot be
compared using their top-elements alone, but by the set of hierarchy elements described
by them, defined by the closure. For an element h, the closure h consists of h itself and all
elements lower in the hierarchy. The guard operators ∨, ∧, and ¬ can be mapped accord-
ingly ∪, ∩ and . If such a comparison detects only equal or more restrictive situations
with bigger scope or weaker conditions and obligations, the looping is continued with the
remaining rules of P1. If there are, however, such situations and if they are not captured
by a following P1-rule with lower priority (cf. recursive call), they are formally captured
by a new rule that is appended to the difference result. Then, the looping is discontinued
for the current P2 rule and starts with the next rule anew. If all P2 rules are examined,
the construction of the difference terminates. However, before Algorithm 1 can start, the
policies have to be preprocessed by upgrading the default rulings and normalizing P2.

For the construction of the functional difference, a distinction between normal rules and
default ruling is not necessary. Hence, the standard rulings of both policies are upgraded to

51

51

Algorithm 2 DiffNorm(R): Normalization of rule list
1: RN := ∅
2: for i:= max(R) downto min(R) {rules in order of priority} do
3: (g, c, r) := split i {splitting of a rule in its parts}
4: M := ∅
5: for all f ∈ {0, 1}|lg | do
6: gf :=g
7: cf :=c
8: for n = 1 to |lg | do
9: if f(n) = 0 then

10: cf := cf ∧ lc
11: end if
12: if f(n) = 1 then
13: gf := gf ∧ lg
14: end if
15: M := M ∪ (gf , cf , r)
16: end for
17: end for
18: RN := RN ∪ M
19: lc := lc ∪ ¬c
20: lg := lg ∪ ¬g
21: end for
22: return RN

normal rules by appending rules to the list with the root elements of the guard hierarchies,
without conditions, and with default ruling as rule ruling: (userroot, dataroot, actionroot,
purposeroot), 1, (default ruling). If there is more than one root for a hierarchy, append a
rule for each of them. These rules match all possible queries by design, so that the default
ruling is not triggered anymore and can be disregarded for the difference construction.

Since the evaluation function of ExPDT considers the policy rules as a prioritized list with
dependencies, the rules of P2 cannot be individually compared; P2 has to be normalized
first. Following Algorithm 2, for each rule all the situations matched by rules with higher
priority are explicitly excluded from its guard and conditions. For P1, this normalization
is not necessary because the recursive call already copes with the dependencies.

For the comparison of two rules in Algorithm 3, it has to be determined whether there is an
overlap between the two scopes. If they do not overlap, the comparison stops. Otherwise,
the difference between these two rules is examined by the following case differentiation:

• r1 r2: The ruling of rule2 is less restrictive or different. Independent of the
conditions, rule2 is appended to the rule difference and returned.

• Otherwise: The ruling r2 is stricter or equal. Hence, up to two rules have to be
appended to the rule difference:

– For queries matching guard2 but not guard1, this stricter or other ruling is in
any case new, so that a rule with these queries as guard, conditions of c2, and
ruling r2 is appended.

– For queries also matching guard2 as guard1 (i.e. the disjunction of their clo-
sures), the r1 is less restrictive, but a less restrictive condition c2 can neces-

52

52

Algorithm 3 rulecomp(rule1, rule2): comparison of two rules
1: (g1, c1, r1) := split rule1

2: (g2, c2, r2) := split rule2

3: RuleDIFF := ∅
4: if g2 ∧ g1 = ∅ then
5: if r1 r2 then
6: RuleDIFF += (g2, c2, r2)
7: else
8: if g2 ∧ ¬g1 = ∅ then
9: RuleDIFF += ((g2 ∧ ¬g1), c2, r2)

10: end if
11: if c2 → c1 then
12: RuleDIFF += ((g2 ∧ g1), (c2 ∧ ¬c1), r2)
13: end if
14: end if
15: end if
16: return RuleDIFF

sitate another difference rule. This new rule should only describe the new
situations, so that its condition is c2 ∧ ¬c1.

Example: c1 = (≤ 18), c2 = (≤ 18 ∨ GuardianOK)
c2 ∧ ¬c1 = (18 ∧ GuardianOK)

For the last case, it is essential to not only evaluate conditions but to also compare the
ability to satisfy two given conditions. It must be determined whether one rule restricts
its applicability with more strict or equivalent conditions than another rule or features a
greater application space with additional context situations. This yields in the examination
whether a condition c1 satisfies another c2, i.e. if c1 is satisfied, then c2 is also satisfied,
or if c1 results in the undefined state u, c2 is also undefined or even satisfied. For indepen-
dency of the current situation, this has to hold for all possible variable assignments. This
examination is, however, NP-complete over the number of variables of the vocabulary
considered, so that no efficient algorithm is to be expected for the general case. Neverthe-
less, in order to be able to compare the conditions, the examination is reduced to a satisfy
relation similar to [BKBS04], which is at least correct, i.e. if two conditions c1 and c2 are
contained in the relation, then the above-mentioned satisfaction holds true.

Satisfy relation: Given a conditional vocabulary Voc, the satisfy relation is the relation
→Voc⊆ C(Voc) × C(Voc). The relation is correct if for all conditions c1, c2 ∈ C(Voc)
for all possible assignments α holds (in infix notation):

c1, c2 ∈→Voc :⇒ evalα(c1) = true ⇒ evalα(c2) = true ∨

evalα(c1) = ∅ ⇒ evalα(c2) = true ∨ ∅

If the opposite direction also holds, the satisfy relation is complete. A correct satisfy rela-
tion can often be constructed via the symbolic evaluation by all pairs of atomic formulas

53

53

<owl:Class rdf:about="DATA:shoppingList">
<rdfs:subClassOf rdf:about="DATA"/>

</owl:Class>

<owl:Class rdf:about="DATA:Prescription">
<rdfs:subClassOf

rdf:resource="DATA:shoppingList"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty

rdf:resource="COND:contains"/>
<owl:someValuesFrom

rdf:resource="DATA:drugs"/>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

<Prescription rdf:ID="DATA:shopAtDrugstore"/>

Listing 1: Definition of guard elements

<owl:Class rdf:about="OBL:Delete">
<rdfs:subClassOf

rdf:resource="OBL:ELEOBLIG"/>
<owl:disjointWith>

<owl:Class rdf:about="OBL:keep"/>
</owl:disjointWith>

</owl:Class>

<Obligation rdf:about="OBL:delete_Notify">
<rdfs:subClassOf

rdf:resource="OBL:keep"/>
<rdfs:subClassOf

rdf:resource="OBL:notify"/>
</Obligation>

Listing 2: Definition of obligations

with known semantics satisfy dependency, but also via the comparison on a pure syntac-
tic level of their interpretation functions of the same sort. Such a correct satisfy relation
is mostly adequate for practical application, even if it is not complete. For if two condi-
tions are mutually dependent and this dependency is unknown to the users and therefore
not included in the relation, then such conditions should be independently treated in order
to meet the users’ expectation. At worst, the differential result hereby increases by an
additional rule, however without changing its evaluation.

3.2 Domain layer

Based upon the language layer, the vocabulary is filled up by defining concrete instances of
assets, actuators, conditions, and obligations and by categorizing them accordingly on the
domain layer. These specifications should always be consistent with the current scenario
and, therefore, need to be adapted in case of environmental changes. ExPDT uses an
ontology specified in OWL-DL, as it supports not only for the representing of domain
specific knowledge, but also for the automated interpretation and reasoning.

Listing 1 gives an example of the data hierarchy specification. Here, a shopping list is
a subclass of the root DATA. In turn, a medical prescription is a subclass of a shopping
list, and its instances are dynamically assigned by a property restriction: all shopping lists
that contain at least one drug to buy are considered as a prescription. Hence, customers
can formulate rules for this particular kind of shopping list, taking care not to provide
its contents to normal salespersons, but only to the druggist of the shop. Examples of
obligation are given in Listing 2. The obligation “delete data after usage” is coded as
an elementary obligation that, of course, is incompatible with the obligation to keep the
data afterwards. Obligations used in rulings are either instances of single or multiple
elementary obligations.

54

54

3.3 Policy layer

On the policy layer, instances of policy can be formulized by combining the building
blocks of the domain layer stuck together with the elements of the language layer. List-
ing 3 shows a privacy policy containing only two rules. The first rule allows a druggist
to access a particular prescription for t he purpose of giving further information, e.g. the
compatibleness of some substances. The second rule allows all persons working in sales
to read shopping lists, if the customer has consented, the data is deleted afterwards and
the customer is notified about this event. Queries for all other situations are not matched
by the rules, but by the restrictive default ruling of the policy that prohibits everything not
already covered by the rules. As in the policy instance, the assignment of the conditional
variables to the guard hierarchies – the customer has not given consent for actions involv-
ing his data – is part of the policy layer, but the actual variable values have to be provided
by the monitor.
<POL:Policy rdf:ID="MyPolicy">
<POL:PolicyHasRules>
<rdf:Seq rdf:ID="MyPolicyRules">
<rdf:li>

<POL:Rule rdf:ID="Rule1">
<POL:RuleHasUser rdf:resource="USER:druggist"/>
<POL:RuleHasAction rdf:resource="ACTION:read"/>
<POL:RuleHasData rdf:resource="DATA:shopAtDrugstore"/>
<POL:RuleHasPurpose rdf:resource="PURP:information"/>
<POL:RuleHasPosObligation rdf:resource="OBL:top"/>
<POL:RuleHasNegObligation rdf:resource="OBL:top"/>

</POL:Rule>
</rdf:li>
<rdf:li>

<POL:Rule rdf:ID="Rule2">
<POL:RuleHasUser rdf:resource="USER:sales"/>
<POL:RuleHasAction rdf:resource="ACTION:read"/>
<POL:RuleHasData rdf:resource="DATA:shoppingList"/>
<POL:RuleHasPurpose rdf:resource="PURP:advertisment"/>
<POL:RuleHasCondition rdf:resource="COND:hasConsented"/>
<POL:RuleHasPosObligation rdf:resource="OBL:deleteAndNotify"/>
<POL:RuleHasNegObligation rdf:resource="OBL:top"/>

</POL:Rule>
</rdf:li>

</rdf:Seq>
</POL:PolicyHasRules>
<POL:PolicyHasPosDefaultRuling rdf:resource="OBL:bottom"/>
<POL:PolicyHasNegDefaultRuling rdf:resource="OBL:top"/>

</POL:Policy>

<ASS:Data rdf:about="DATA:Customer">
<ASS:gaveConsent rdf:resource="Consent:no"/>

</ASS:Data>

Listing 3: Example of policy instance with two rules

4 ExPDT – The tools

The previous section described the semantic and syntactic aspects of the policy language
itself. In the following we focus on the tools making the language usable. We will first

55

55

Figure 3: Displaying policies and specifying operations using the ExPDT policy editor

present an editor tool as graphical user interface for users to define their privacy prefer-
ences, followed by the components of a monitor tool for the evaluation and the enforce-
ment of policies on the system layer.

4.1 Editor tool

Basically, any generic OWL editor can be used as graphical user interface for ExPDT, as it
enables the user to handle the various OWL-DL files, such as domain knowledge and pol-
icy instances, to visualize and to edit the contained classes and their properties. However,
the limited usability of those editors prevents its deployment for laymen. Hence, we are
developing a lightweight editor with reduced capabilities that hides the loquaciousness of
OWL-DL. As seen in Figure 3, this editor not only allows for the editing of ExPDT poli-
cies, but can also be used for requesting policy operations, such as comparison or query
evaluation, and subsequently displaying of the results returned by the monitor tool.

4.2 Monitor tool

An access control monitor prevents unacceptable behavior by running alongside an un-
trusted program and intercepting all actions that would lead to undesirable states [HMS06].
Access control rules without obligations and sanctions are always enforceable, as well as
some obligations. Starting from the architecture of the ExPDT monitor in Figure 4, we
present the main components of the monitor and their interplay. Whenever the Policy En-
forcement Point receives a request, it is forwarded to the Policy Decision Point, which
selects the “relevant” rules from the policy and evaluates it by dint of the Policy Informa-
tion Point. The access decision is then returned to the Policy Enforcement Point, which
grants or denies the access.

56

56

Figure 4: Components of ExPDT monitor tool

Policy Decision Point: The guard’s ele-
ments user, action, data, and purpose are
mapped to their corresponding hierarchies
in order to determine the relevant policy
rules for a given query. As the rules are
ordered by priority, only the first match-
ing rule is considered and evaluated. Fur-
ther rules matching the guard only come
into play, if the conditions statement re-
turns the value “undefined”. ExPDT han-
dles an undefined condition values as true,
but imposes on the access further obliga-
tions by accumulating the obligations of
following matching rules.

Policy Information Point: The Policy Information Point assigns the values to the condi-
tions. Conditions either relate to former accesses or events or to the system environment.
Some conditions are static: Once the value of the condition “over 18” is true, it stays true.
In contrast, the value of the condition “has consented” has to be evaluated at each request,
as the user may have in between revoked his consent. To this end, a mapping from the
language ontology onto real system events is required. For example, a message reporting
a click on a button in the GUI has to be interpreted as “user has consented”. The mapping
of the received events onto the ontology is done mainly manually. Approaches to handle
this translation automatically are presented for example in [GMP06].

Policy Enforcement Point: The enforcement component has to impose the access deci-
sion of the evaluation component onto the system. This is easy for policy rules without
obligations or sanctions. They are enforceable, as an access control monitor is able to
evaluate each request and to prohibit policy violating accesses. Enforcement of obliga-
tions and sanctions in general is not possible, as both prescribe actions a subject has to
perform some time in the future. An online monitor has thus no possibility to enforce that
the obliged action is accomplished within the given timeframe. However, the monitor is
able to supervise the events and to report violations or fulfillment after the period allotted.
An online monitor can evaluate the obligation “user has to be informed about data usage
within 2 days” by checking after the two days if the user notification has been sent. How-
ever, obligations expressing a prohibition can be enforced if they can be transferred into
preconditions. Examples are the Chinese Wall policy rules, where a user reading some
confidential data about company A is in future not allowed to read confidential data of
competing company B. This obligation can be expressed as precondition to further access
requests and is thus enforceable.

For the evaluation of ExPDT policies, a prototype was implemented in Java. This tool
provides for the functionality of a policy management point by offering the difference op-
erator for policy comparison and the combination operators. (cf. Section 3.1.2)For acting
as a policy decision point, it can evaluate policy requests given an assignment of environ-
ment variables. The prototype is based on the Jena OWL framework [Hew07] that not
only allows for parsing the OWL files, but also provides an API to reason about the con-

57

57

tained information. As the internal reasoner of Jena is still quite limited for OWL-DL, the
external Pellet reasoner [Cla08] is attached. It evaluates queries in description logic (DL)
on the given knowledge base and relieves ExPDT of the computation of class inheritances
and memberships, and the reconstruction of the full guard hierarchies.

5 Summary and conclusion and further steps

Due to technologies like RFID, personalized services are not longer limited to the e-
commerce world. Motivated by an example of the retailer METRO, we show that en-
terprises can provide personalized services to their clients based on the personal data col-
lected during their shop visits. Customers accept the release of personal data if they are
still able to control the usage of their data. Thus, enterprises have - beside their internal se-
curity requirements - also to respect their customers’ privacy preferences and demonstrate
compliance to their policies. This requires an expressive policy language and a mecha-
nism to prove compliance to the customer and regulatory bodies. This paper focuses on
the policy language. We present the extended privacy definition tool ExPDT expressing
privacy preferences for access and usage of personal data, focusing on the comparison and
merging features of the language. We further describe the implementation of the ExPDT
enforcement monitor describing which ExPDT rules can be enforced, and which cannot.
The proposed tools contribute to the compliance by design approach.

For now, ExPDT enables differences between policies to be detected. How these differ-
ences can be resolved has not yet been considered. The next step, therefore, is a negotiation
protocol. The goal is not a fully automated procedure, but a tool to assist the negotiation
process step by step. Enforcement of obligations is a open research issue. We are currently
investigating how obligations can be enforced by rewriting business process. A second ap-
proach to the enforcement of obligations uses heuristics in order to determine at runtime
process executions that will probably lead to obligation violation.

References

[Acc08] Rafael Accorsi. Privacy Audits to Complement the Notion of Control for Identity
Management. In de Leeuw, Fischer-Hübner, Tseng, and Borking, editors, Policies and
Research in Identity Management, volume 261. Springer, 2008.

[AHK+03] Paul Ashley, Satoshi Hada, Günter Karjoth, Calvin Powers, and Matthias Schunter.
Enterprise Privacy Authorization Language (EPAL 1.2). Submission to W3C, 2003.

[BAKK05] Travis D. Breaux, Annie I. Antón, Clare-Marie Karat, and John Karat. Enforceability
vs. Accountability in Electronic Policies. Technical Report TR-2005-47, North Car-
olina State University Computer Science, 2005.

[BKBS04] Michael Backes, Günter Karjoth, Walid Bagga, and Matthias Schunter. Efficient com-
parison of enterprise privacy policies. In Proc. of 2004 ACM Symposium on Applied
Computing, pages 375 – 382, 2004.

58

58

[Bun83] Bundesverfassungsgericht. Volkszählungsurteil. In Entscheidungen des Bundesverfas-
sungsgerichts, volume 65. 1983. Urteil 15.12.83; Az.: 1 BvR 209/83; NJW 84, 419.

[Cla08] Clark & Parsia. Pellet OWL-Reasoner. http://pellet.owldl.com, 2008.

[CLM05] Lorrie Faith Cranor, Marc Langheinrich, and Massimo Marchiori. A P3P Preference
Exchange Language 1.0 (APPEL). Technical report, W3C, 2005.

[GMP06] Christopher Giblin, Samuel Müller, and Birgit Pfitzmann. From Regulatory Policies to
Event Monitoring Rules: Towards Model-Driven Compliance Automation. Technical
report, IBM Research Zürich, 2006.

[Hew07] Hewlett-Packard Development Company. Jena: A Semantic Web Framework for Java.
http://jena.sourceforge.net/, 2007.

[HMS06] Kevin W. Halmen, Greg Morrisett, and Fred B. Schneider. Computability Classes
for Enforcement Mechanisms. ACM Transactions on Programming Languages and
Systems, 28:1, 2006.

[HPSW06] Manuel Hilty, Alexander Pretschner, Christian Schaefer, and Thomas Walter. Enforce-
ment for Usage Control - A System Model and an Obligation Language for Distributed
Usage Control. Technical Report I-ST-18, DoCoMo Euro-Labs Internal, 2006.

[KA06] Martin Kähmer and Rafael Accorsi. Kundenkarten in hochdynamischen Systemen. In
Proc. of KiVS NETSEC 2007, 2006.

[Mos05] Tim Moses. eXtensible Access Control Markup Language (XACML) Version 2.0.
Technical report, OASIS, 2005.

[MvH04] Deborah L. McGuinness and Frank van Harmelen. OWL Web Ontology
Language – Overview. W3C Recommendation http://www.w3.org/TR/
owl-features/, 2004.

[PHB06] Alexander Pretschner, Manuel Hilty, and David Basin. Distributed Usage Control.
Communications of the ACM, 49(9):39–44, September 2006.

[Rau04] Dominik Raub. Algebraische Spezifikation von Privacy Policies. Master’s thesis, Uni-
versität Karlsruhe (TH), 2004.

[RS06] Dominik Raub and Rainer Steinwandt. An Algebra for Enterprise Privacy Policies
Closed Under Composition and Conjunction. In Proc. of Int. Conf. on Emerging Trends
in Information and Communication Security (ETRICS), pages 132 – 146, 2006.

[SSA06] Stefan Sackmann, Jens Strücker, and Rafael Accorsi. Personalization in Privacy-Aware
Highly Dynamic Systems. Communications of the ACM, 49(9):32–38, 2006.

[W3C06] W3C. Platform for Privacy Preferences (P3P) Project. http://www.w3.org/
P3P/, 2006.

[WKK+07] Daniel Weiß, Jörn Kaack, Stefan Kirn, Maike Gilliot, Lutz Lowis, and Günter Müller
at al. Die SIKOSA-Methodik: Unterstützung der industriellen Softwareproduktion
durch methodische integrierte Softwareentwicklungsprozesse. Wirtschaftsinformatik,
49(3):188 – 198, 2007.

[WSP07] Web Services Policy 1.2 - Framework (WS-Policy). http://www.w3.org/
Submission/WS-Policy/, 2007.

59

59

60

Ontology-enabled Documentation of Service-oriented
Architectures with Ontobrowse Semantic Wiki

Hans-Jörg Happel1, Stefan Seedorf2, and Martin Schader2

1 FZI Research Center for Information Technologies, Karlsruhe
happel@fzi.de

2 University of Mannheim, Chair in Information Systems III
{seedorf|schader}@wifo3.uni-mannheim.de

Abstract: Documenting and maintaining an enterprise-wide service-oriented
architecture (SOA) causes a substantial management effort, which should be
addressed by intelligent, scalable solutions. A particular challenge is that business
experts, developers, and software architects take different perspectives on a SOA,
each favoring various description formats and sources, which leads towards a
scattering of architectural information. Ontobrowse Semantic Wiki specifically
addresses these issues by providing an ontology-based integration and
documentation platform for architectural information. In this paper, we identify
key issues arising from documentation and maintenance of a SOA by introducing
the case of an insurance company. We give a detailed description of the
Ontobrowse approach and its implementation, and explain how ontologies, artifact
mappings, and architectural rules are created to support the Enterprise SOA case.

1 Introduction

The paradigm of service-oriented computing has lifted the development of business
applications to a higher level of abstraction. Instead of thinking in technical categories
like components or objects, software functionality is bundled in services, which
correspond to business operations of the organization. Complex workflows can be
realized by aggregating functionality from simple services. A concrete software
infrastructure implementing this paradigm is called a service-oriented architecture
(SOA) [HS05].

In an organization adopting a SOA, the standard working processes change for the
multiple stakeholders involved, i.e., service developers, business experts, and software
architects. First, service developers have to think in specification terms rather than taking
an implementation view. Since services are black-box specifications, which hide the
details of the internal realization, metadata describing their properties is crucial. In an
enterprise-wide scenario, it therefore has to be documented which services are available,
where the services are being deployed, how they can be invoked, and who is responsible
for them.

Second, business experts are interested in available business functionality and
operational efficiency. Since service-orientation leads to a rising level of alignment

61

61

between business processes and IT implementation, it is important to monitor and guide
the development of the service landscape according to changing business requirements.

Third, software architects are interested in ensuring that services are specified and
composed in such a way that key quality attributes such as performance, reusability, and
modifiability are met. In order to achieve this, architectural patterns, rules, and policies
are defined at the beginning of a SOA project. These are subsequently rolled out in
service design decisions. However, as a SOA grows more complex, architects find it
difficult to continously monitor if the current service definitions comply with the set of
architectural rules.

Since all these perspectives on a SOA are tightly interwoven, it is desirable to provide an
integrated view and access to different aspects of SOA documentation and maintenance,
which allows the different stakeholders to incorporate change requests more rapidly and
thoroughly and to better oversee consequences of their own actions. However, achieving
this is challenging from both a technical and a functional point of view.

Technically, while a considerable number of standards to describe service properties like
interface, behavior, and orchestration is available, this information is scattered in disjoint
information spaces, which makes it hard for stakeholders to get an overview.
Functionally, this is due to the fact that most SOA artifacts emerge “bottom-up” driven
by the requirements of the respective tool suite of each stakeholder.

Thus, to align the different perspectives, a “top-down” layer is required, which serves as
an integration and reference point for previously scattered information. In order to
address the issues, we have developed Ontobrowse, a semantic wiki based on ontologies,
which provides an infrastructure to extract knowledge from external sources [HS07]. In
the case of an enterprise SOA, it can serve as single point of information, which allows
to integrate different information from different stakeholder perspectives, thus covering
both technical and business aspects of a SOA.

The remainder of the paper is structured as follows: In section 2, we present an
Enterprise SOA case and derive the requirements for our documentation tool. We also
address the shortcomings of existing approaches. In section 3, we shortly introduce the
basic elements of our solution, namely ontologies and semantic wikis. In section 4, the
architecture and realization of Ontobrowse is described. Section 5 demonstrates the setup
with a concrete SOA ontology, artifact mapping an architectural rule to support the
requirements. Finally, we summarize our findings in the conclusion.

2 Documenting and Maintaining an Enterprise SOA

In this section, we introduce the case of an enterprise SOA in an insurance company. It
characterizes the systems, actors, and development artifacts in a concrete SOA
environment. This helps us to identify the shortcomings of current SOA documentation
practices and derive requirements for a suitable tool support.

62

62

2.1 Enterprise SOA Case

InsCorp Inc. is an insurance company, which has established itself as a top ten player for
life insurance in its domestic market. The system landscape at InsCorp has continuously
grown over the last decade and become highly heterogeneous. It consists of several
legacy systems as well as databases, enterprise applications, ERP, and CRM systems.
One major challenge is aligning the IT landscape to changing business requirements. In
particular, cooperation with third-party vendors and product diversification has led to a
high number of client systems with similar functionality. The current enterprise
architecture makes managing change more and more difficult. In order to allow for
further growth, InsCorp has commissioned ITCorp Inc. with a new project. The purpose
is to develop a new enterprise-wide SOA, which meets the needs of its agile business
environment.

Client applications

Business processes

Enterprise services

Integration services

System environment

Service
Registry

Servers Mainframes

DataData

Figure 1: Organization of services in architectural layers

The development and evolution of a new architecture involves a number of different
stakeholders who collaborate throughout the SOA lifecycle. The service architecture is
organized in several logical layers as depicted in Figure 1. Different tasks and roles can
be assigned to each layer. The system environment layer is maintained by several groups
in the IT department. In the integration services layer, the functionalities of individual
systems are exposed as Web Services to achieve technology abstraction. Maintainers of
legacy systems and SOA architects have to cooperate in order keep these two layers in
sync. The enterprise services layer aggregates basic services from the integration layer
to support business activities. Business experts, process engineers, and software
architects have to work seamlessly together to specify enterprise services and business
objects. In the business process layer, process engineers realize workflows, which are

63

63

composed from the enterprise layer. Finally, application frontends in the client
application layer execute these business processes to perform a business task. This top
layer drives the evolution of the SOA, since the frontend applications require different
business processes and data formats. Changing end user requirements can thus require
modifications in all further layers.

Such modifications in turn result in considerable coordination overhead, since most of
the layers depicted in Figure 1 are maintained by different stakeholders who stem from
different organizations or at least different departments inside InsCorp.

These stakeholders document their views using different notations and formats. At
InsCorp business analysts, responsible for client applications, use very generic tools
such as Word and Excel for the functional description of services. In contrast, process
engineers and service developers, responsible for the business processes and enterprise
services layer, primarily work with technical specifications. Services are described in
WSDL, the business objects are defined in XML Schema. Process engineers use a visual
editor, which generates executable business processes in BPEL. Runtime information is
captured using a custom-made service registry. At InsCorp, these tasks are completely
managed by employees from ITCorp. Inc. The integration services and system level is
partly maintained by technical departments of InsCorp., while a number of legacy
systems is managed by different external contractors with specialized expertise.

Because various stakeholders contribute to the enterprise architecture, new challenges
concerning architecture documentation and maintenance arise. Various issues stemming
from this complex dependencies are reported by InsCorp. First, propagating changes
across different layers involves considerable coordination effort and time. Different tools
and data formats are used by various stakeholders, which requires many hand-crafted
transformations. This is a frequent source of problems, especially if staff members vary,
since people working at adjacent layers do not maintain any shared conceptualization of
their collaboration beyond the technical artifacts and descriptions they exchange.

Furthermore, SOA artifacts are maintained in separate information spaces, which makes
it difficult for other stakeholders to find relevant information for a task at hand. Also,
much information gets lost at the interfaces between different layers, which leads to
communication gaps– e.g., between business experts and developers– when there is no
representation for the mapping between functional and technical service descriptions.
While for example the response times of certain legacy systems might be important for a
business analyst to cast a decision about some functionality, there is no place in the
current setting, where such information could be stored.

From the perspective of InsCorp, this is highly problematic, since it creates a high
dependency on the staff and work performed by ITCorp. Furthermore, it is neither
possible to easily check the consistency of the overall SOA architecture, nor to estimate
modification efforts in dependent layers, if changes are necessary. This inhibits
InsCorp’s ability to innovate and quickly react on market demands.

Although the original purpose of the SOA project was to reduce complexity and foster
reuse, the large number of services and business processes makes it difficult to get an

64

64

overview of the architecture. Therefore, InsCorp and ITCorp look for a documentation
tool, which integrates the various architectural views and which can be customized to
project-specific needs.

2.2 Requirements

At first glance, the introduction of an enterprise-wide SOA simplifies the task of
architecture documentation and maintenance due to a higher degree of standardization.
However, as multiple stakeholders are involved a SOA also leads to a scattering of
architectural information. Thus, a documentation tool should fit for different stakeholder
viewpoints by creating an integration space.

One possibility for that is to go for a heavyweight, integrated SOA management suite, as
it is offered by several vendors. However, these suites typically require complete
migration of existing solutions and enforcement of a strict process across the whole
architecture. For InsCorp, this is hardly possible, due to the complex organizational and
technical ecosystem, which is already in place. As these stakeholders use dedicated
formats and tools to describe their viewpoint a SOA documentation tool should be able
to integrate various types of architectural information from existing environments, e.g.,
service specifications and their functional descriptions.

Considering this situation, we propose a lightweight, non-invasive solution that
integrates as seamlessly as possible with the methods and tools already in use. Such a
tool should neither replace nor interfere with existing tools and workflows, but provide a
complementary, cohesive point of reference for all stakeholders participating in the
development and maintenance of the SOA.

From the case in the previous section three main functional requirements for such a tool
can be identified. These will be discussed in more detail below (c.f. Figure 2):

Searching and browsing of SOA elements
Checking the consistency of SOA elements
Text documentation of SOA elements

Figure 2: Overview of requirements

Storing information about services,
business objects and domain concepts

Searching and
browsing

Consistency
checking Documentation

Managing information about SOA elements, e.g.
services, business objects and domain concepts

Searching and
browsing

Consistency
checking Documentation

65

65

Searching and browsing of SOA elements is required to allow a better overview of the
SOA for all stakeholders, e.g., architects, developers, and business experts. By
describing the precise relations between services, business objects, and domain concepts,
it is possible to gain a quick overview, e.g., which services require or return a certain
business object. This enables an easy access to explore the list of available services,
which may also promote the reuse of existing services.

Another requirement is consistency checking of SOA elements. What is meant here is
not the syntactic consistency of the SOA, which is checked by the development-level
tools, but consistency on a semantic level. Those are typically expressed as architectural
and design rules, e.g., “Services may not call other services more than one layer apart”
or “Services should not have more than five operations”.

Finally, the approach should enhance service documentation. Normally, there are two
kinds of service documentation: technical descriptions, which are maintained by
developers and business-oriented documentation residing in separate documents. This
situation makes it difficult to get the complete information about a service, since
documentation is distributed across physical storage locations and media types. The
purpose is to create a single point of information for every service and business object.
These elements of a SOA should be accessible by specifying a URL. In addition to
accessing information, it should also be possible to add text documentation directly to a
SOA element.

Besides that, the system has to support the management of SOA elements, such as
services, business objects, domain concepts etc. Since the Enterprise SOA case requires
a flexible solution, which is adaptable to the environment of a particular project, it must
be possible to import arbitrary architectural descriptions that are not maintained
internally but externally using project-specific formats and tools. Further, we need
administrative features for governing this process such as updating and deleting
information that has been acquired from external sources.

2.3 Related Work

Documenting and maintaining complex architectures has been a problem in Software
Engineering for a long time. But as we will see in the following, existing work does not
fulfill all requirements, which we described in the previous section. While there are
systems and approaches, which support either searching and browsing, consistency
checking or documentation for particular application scenarios, it will turn out that they
lack flexibility to deal with both structured and unstructured information as it is required
in a setting with diverse stakeholders.

66

66

Along with the increasing significance of SOA, new enterprise architecture tools have
been emerging. These are usually geared towards managing the entire service life cycle,
from analysis and design to versioning, deployment and monitoring. One shortcoming of
these tools is that they lack openness since they are based on a relatively fixed
metamodel. This may lead to problems when an organization deviates from a standard
scheme, e.g., using other formats than WSDL or BPEL. In contrast, our solution is
geared towards allowing maximum flexibility but at the same time enabling strong
semantics. Since the stakeholders first have to agree upon one or more ontologies, the
upfront investment setting up an environment can be higher. However, the costs can be
reduced if existing ontologies and format mappings are reused.

As a SOA is only one specific instance of a software architecture, there are also more
general approaches for enterprise architecture documentation. In most cases an
enterprise architecture is represented using a number of different views (see [Kr95] for
example). Depending on the particular view, formal or informal notations such as
architecture description language (ADL) are used [MT00]. However, the case in section
2.1 substantially differs from the purpose of ADLs. Whereas ADLs focus on the
specification and verification of a single view, we strive towards an integrated approach
with a first-class representation for integrating all local views. Moreover, we want to
include both formal and informal descriptions in this representation,

Universal modeling languages such as the Unified Modeling Language (UML) are also
useful to describe a number of architectural views. Although the UML can be extended
to cover various aspects, it does not include mechanisms for information integration and
automated reasoning. The UML is also not useful for text documentation, which limits
its applicability as the only representation language in the Enterprise SOA case.

Some researchers have proposed wikis for architecture and software documentation.
Aguiar and David present a wiki-based approach to integrate heterogeneous software
specification resources into a single document [AD05], while Bachmann and Merson
investigate the advantages of wikis compared to other architecture documentation tools
[BM05]. However, the approaches lack a formal model – information is managed in an
unstructured way.

Moreover, formal ontologies have been proposed for architectural documentation
[WF99] and for building “software information systems”, describing the
interrelationships of domain models and source code [We03]. These approaches are
usually bound to a specific tool, which cannot be tailored to individual project needs or
follow a very strict philosophy of software architecture.

To summarize, existing solutions for architectural documentation either impose a very
strict formal model, which lacks the flexibility of documentation required in our case, or
completely lack any formal model, which makes consistency checking and searching
difficult. What is sought is an approach that allows to bridge varying degrees of
structure.

67

67

Knowledge engineering, as a domain with similar problems, has recently bred the
concept of “Semantic Wikis”, which combine Wikis and ontologies [Vö06]. Since first
applications in the domain of Software Engineering appear promising (see e.g. [De05]),
we will investigate its suitability with respect to our requirements in the following
section.

3 Foundations of the Ontobrowse Approach

In this section, we introduce the basic concepts of our solution. Revisiting our
requirements in section 2.2, we regard ontologies and semantic wikis to be perfectly
suited for our approach. Our goal is to model the structure of existing data (e.g., services
defined in a WSDL file) and align these models to a top-level SOA ontology. At the
runtime of our system, facts from existing artifacts can thus be automatically extracted
and imported into our knowledge base. Modeling the information of the SOA domain
and related development artifacts and processes in a SOA ontology will have the
following benefits:

Ontologies enable the integration of different aspects and data sources of the domain
in question. By aligning the individual data source to a top-level ontology, the
complete information can be searched and browsed in a unified way. Semantic links
between different concepts (e.g., a process defined in a WSDL file and a user
defined in an issue tracking system) can be modeled. Previously disjoint information
such as e.g., the operations of a service and information about runtime behavior can
thus be aggregated and presented in a single place (see e.g. Figure 7).

Further, this integrated model of the SOA domain can be automatically checked for
consistency. This can involve basic consistency checks, such as cardinality
constraints (e.g., “a process should only have one owner”) or more complex checks,
which can be formulated using rule-based approaches (cf. section 5).

Finally, the ontologies and a knowledge base serve as backbone for a semantic wiki,
where each entity in the knowledge base can be browsed, queried, documented, and
semantically referenced.

3.1 Ontologies

An ontology in information systems (IS) provides the structure for a commonly agreed
understanding of a problem domain. According to a widespread definition, “an ontology
is an explicit specification of a conceptualization” [Gr93]. Ontology specifications have
varying degrees of formalization; for example a shared vocabulary of terms can be
regarded as lightweight ontology. Usually, ontologies are specified in a knowledge
representation language using sets of concepts, relations, and axioms.

Ontologies qualify for the Enterprise SOA scenario because they serve as a unifying
framework for different viewpoints and aim at reducing conceptual and terminological

68

68

confusion [UG96]. First, different stakeholders have to gain an enterprise-wide
understanding of the problem domain. In our case, it includes an abstract model
(conceptualization) of the concepts and relations together with their intended meaning,
e.g., the meaning of “service” and “business object”. Second, ontologies allow for the
integration of heterogeneous information from various sources [St01]. This way,
formalized knowledge can be more easily transferred and translated into different
perspectives. Third, ontologies can be expressed using a knowledge representation
language, which has a sound formal basis. This enables inference services and automated
consistency checks, which is another requirement of our system. Recently, standards for
ontology representation such as the Resource Description Framework (RDF) and the
Web Ontology Language (OWL) have emerged. RDF is a simple graph-like format for
describing metadata about resources1. OWL2 is defined on top of RDF(S) and provides a
standard ontology vocabulary for describing ontologies based on description logics.

Due to these advantages ontologies have become the leveraging element in many
knowledge management approaches [Ma03, OL98]. With the emerging vision of the
Semantic Web [BHL01], ontologies have also attained increasing attention in the
Software Engineering community. The potential applications in Software Engineering
are manifold since ontologies can be used at development-time as well as runtime
[HS06]. Our approach can be classified as ontology-enabled (cf. [HS06]) because it uses
ontologies as its infrastructure for supporting development activities.

3.2 Semantic Wikis

Due to their low entry barriers and collaborative features, wikis are a lightweight
approach to web-based content management, which allows multiple users to create
documents on a shared subject of interest [LC01]. They have thus become a popular
documentation tool in software processes (see [De05] for an overview). However,
traditional wikis exhibit weaknesses when it comes to structuring the content of a wiki
page. Although the set of “pages” forms a top-level structure, the underlying page
content cannot be structured.

This has led to the idea of “semantic wikis”. If some wiki content was structured and
made machine-interpretable, a site like the Wikipedia could heavily benefit because its
pages contain a lot of useful and potentially machine-processible knowledge [Vö06].
Several projects have thus proposed semantic extensions to the wiki approach. They all
have in common that they allow structured knowledge to be described in a formal
language, instead of processing solely hypermedia-based content. This is either done by
appending metadata to wiki pages or by including knowledge inside the unstructured text
by using extensions to the wiki markup language. The latter approach is used by the
SemanticMediaWiki project [Vö06], which extends the existing wiki markup to enrich
hyperlinks between wiki pages with semantic relations.

1 http://www.w3.org/RDF/
2 http://www.w3.org/TR/owl-features/

69

69

Semantic wikis interpret wiki pages as entities, and hyperlinks between wiki pages as
relations among entities. Due to the additional semantic descriptions the implicit
structure is made explicit, and a machine-processible knowledge model can be derived.
Current semantic wikis differ concerning the creation and maintenance of this explicit
kind of knowledge. While some require upfront knowledge engineering efforts, other
approaches allow for continuous refinement and formalization of knowledge by the
users. As we will line out in the following section, we prefer a dual approach.

Clearly, semantic wikis are a prime candidate for knowledge sharing in our case,
because they provide a user-friendly way for searching and browsing structured
information. Another advantage is that they combine informal with formal descriptions,
thus closing the gap between the business-oriented and technical perspective on an
architecture.

4 Ontobrowse Semantic Wiki

Based on wikis and ontologies as building blocks, we now describe the general
architecture and prototypical implementation of our approach.

4.1 General Architecture

In the previous sections we identified the integration of architectural information from
external sources as one key requirement. In Ontobrowse we thus distinguish two layers.
The first layer is the artifact layer where the stakeholders maintain descriptions of
services using their own tools and formats. In order to integrate the various artifacts into
a mutual knowledge base, they have then to be mapped according to an ontology.
Moreover, we need the semantic wiki as a user interface for presenting, querying and
searching the knowledge base.

The resulting conceptual architecture of Ontobrowse is depicted in Figure 3. The
integration layer includes the following components: a Web interface, a wiki manager,
an ontology API to access the knowledge base, and a plugin manager.

The central part in the integration layer is the knowledge base, which is formed by one
or more ontologies and instance data. It is processed using an ontology API and an
underlying reasoner. While the ontologies define the knowledge structure, i.e., the
boundaries in which instances can be described, instance data refers to the individual
objects and their property descriptions conforming to the ontology. For example, a SOA
ontology may specify the concepts “service” and “business object” together with their
properties and axioms. The instances are represented by actual services and business
objects developed in a SOA project. Each concept, relation, or individual is displayed by
the wiki manager as a “wiki page”. It contains properties that make statements about this
page, e.g., a business object which is semantically described by a domain concept. We
also refer to a wiki page as an “entity”, because it is contained in the knowledge base and
can be requested with a unique identifier (URI).

70

70

Plugin Manager

Ontobrowse Web Interface

Ontobrowse Wiki Manager

Ar
ch

ite
ct
ur
al
K
no

w
le
dg

e
B
as
e

Ontology API & Reasoner

Documents (from file
system, SVN, CVS)

Component / Service
descriptions

Artifact Layer

Integration Layer

Import data

Ontologies Instance data

Web-Browser
(User, Admin)

Storage

Figure 3: Ontobrowse architecture [HS07]

The wiki manager bundles the functions for fulfilling the requirements, such as
processing page requests, editing textual documentation and instance property values,
searching and deductive querying, and user authentication. Entity (page) descriptions are
returned by an ontology API, which wraps the underlying reasoner and ontology
processing tools.

Typically, ontologies are constructed upfront using an ontology editor such as Protégé3

and uploaded by an administrator using the wiki manager. Within the knowledge
structure defined by ontologies, it is possible to add instance data in two different ways:
First, a wiki user can use the interface to describe properties – may it be text-based or
metadata-based – about instances of concepts. Second, external tools can plug into the
wiki application and map architectural description resources to instances in the
knowledge base.

This leads us to the plugin manager. To a great extent, the instance data is embodied in
applications and artifacts, which are managed outside the wiki, e.g., service
specifications in the Enterprise SOA case. This data has to be imported from external
sources, such as configuration management systems. The plugin manager allows
mapping external artifacts to instance data and add this data to the knowledge base. This
component exposes standard interfaces, which allow tools to retrieve artifacts, map them
according to an ontology, and create or update instance data in the knowledge base. As
an example, the operations of a service can be automatically extracted from service
description artifacts.

3 http://protege.stanford.edu

71

71

4.2 Design and Implementation

In this section, we will describe a concrete implementation of the conceptual architecture
according to the layers of the architecture, which were introduced in the previous
section.

Since SOA artifacts tend to be maintained in various heterogeneous systems and data
sources, such as XML descriptions, documents, or databases, the artifact layer deals with
the extraction of facts from these sources,. As a framework for this task, we use the
Open Source framework Aperture4. Aperture comes with a number of physical
connectors, such as for crawling file systems or the web, which we complemented by
crawlers for SVN and CVS repositories, as well as direct connections to JDBC databases
and issues tracking systems such as JIRA.

In Aperture, the objects that are crawled from those sources are directed to so-called
Extractors. These extract metadata in RDF. Besides the built-in extractors for various
common document formats (e.g., Microsoft Office and PDF), we added extractors for
WSDL, JIRA, and Java source code.

The artifact layer is extensible in two ways: additional repositories of supported types
(such as an additional SVN repository to crawl) can be easily configured by XML files.
To include new data sources, Aperture provides a modular infrastructure, which just
requires the implementation of two Java interfaces.

cd Model management

ModelInfo

+ setPhysicalPath(String) : void
+ setURI(String) : void
+ setID(String) : void
+ getURI() : String
+ getPhysicalPath() : String
+ getID() : String
+ isWritable() : boolean
+ setWritable(boolean) : void

ModelManager

+ getSchemaReader() : SchemaReader
+ getDataReader() : DataReader
+ getQueryReader() : QueryReader
+ getDataWriter() : DataWriter
+ getSchemaWriter() : void
+ getAnnotationReader() : void
+ flush() : void
+ close() : void

MultiModelManager

+ setModelInfo() : void

KBase

+ getSchemaReader() : SchemaReader
+ getDataReader() : DataReader
+ getQueryReader() : QueryReader
+ getDataWriter() : DataWriter
+ getSchemaWriter() : void
+ getAnnotationReader() : void
+ flush() : void
+ close() : void
+ addImports() : void
+ addImport() : void
+ setChanged(boolean) : void
+ isChanged() : boolean

KBFactory

+ createKBase(String, int) : KBase
+ createVirtualKBase() : KBase KBaseKAON2ImplKBaseJenaImpl

Figure 4: Ontobrowse Model Manager

The metadata extracted by the Aperture crawlers is written to the Ontobrowse
knowledge base. In order to encapsulate the concrete metadata store used, we developed
an abstraction API called "KOntoR API", which we briefly describe in the following.

4 http:// aperture.sourceforge.net/

72

72

The API consists of two major parts: the model management package and the ontology
API. The model management mainly consists of the ModelManager and ModelInfo
classes (cf. Figure 4). ModelInfo encapsulates a file serialization of an ontology. It
serves as a parameter for ModelManager for dealing with only one ontology or
MultiModelManager, when dealing with a set of ontologies.

The ModelManager uses a KBFactory class to instantiate a KBase using either a
KAON2 reasoner5 or a Jena metadata store6 as a backend. However, the concrete
backend remains hidden to the using classes. After instantiation, the content of the
ontologies can be accessed and modified using the different interfaces provided by
ModelManager.

There are interfaces for reading certain ontology information (e.g., SchemaReader,
DataReader), writing data (e.g., DataWriter), and querying (QueryReader). These
interfaces again have special implementations for each backend (e.g., for KAON2 or
Jena). The methods of the interfaces map to the atomic entities of the data API, which
will be described in the following.

The Ontology API serves as a lightweight, partial representation of a graph structure.
The subsystem consists of the following classes (see Figure 5):

KBEntity: This is the abstract base class of an entity in the knowledge base. An entity is
characterized by a name (label) and a URI.

Concept: This is the representation of a concept (or “class” in OWL terms) in a
knowledge base. It is a lightweight representation, since it does not include information
about individuals, datatypes, or object properties.

RichConcept: This is a heavyweight representation of a concept. In contrast to the
Concept class, it contains information about the datatypes and the properties.

Individual: This is a lightweight representation of an individual (also called “instance”)
in a knowledge base.

RichInvidual: This is a heavyweight representation of an individual. It contains
datatype and object properties with values. Note that values of object properties are
again (lightweight) Individuals, which can be resolved to RichIndividuals.

ObjectProperty/RichObjectProperty: The ObjectProperty classes encapsulate
relations between concepts, which exist in the knowledge base.

DatatypeProperty/RichDatatypeProperty: The DatatypeProperty classes represent
attributes of concepts, which are of base types such as String, numbers, or date values.

5 http://kaon2.semanticweb.org
6 http://jena.sourceforge.net/

73

73

cd Data API

KBEntity

+ getLabel() : String
+ getURI() : String
+ setLabel() : void
+ setURI() : void

Indiv idual

Concept

RichConcept

+ getDatatypeProperties() : List<DatatypeProperty>
+ getIndividuals() : List<Individual>
+ getObjectPropertiesFrom() : List<ObjectProperty>
+ getObjectPropertiesTo() : List<ObjectProperty>
+ setDatatypeProperties() : void
+ setIndividuals() : void
+ setObjectPropertiesFrom() : void
+ setObjectPropertiesTo() : void

RichIndiv idual

+ getDatatypePropertyValues() : Map<DatatypeProperty, Set<Object>>
+ getObjectPropertyValuesFrom() : Map<ObjectProperty, Set<Individual>>
+ getObjectPropertyValuesTo() : Map<ObjectProperty, Set<Individual>>
+ getTypes() : List<Concept>
+ setDatatypePropertyValues() : void
+ setObjectPropertyValuesFrom() : void
+ setObjectPropertyValuesTo() : void
+ setTypes() : void

DatatypeProperty

+ getDataRange() : List<String>
+ setDataRange() : void

ObjectProperty

RichDatatypeProperty

+ getDomainConcepts() : List<Concept>
+ setDomainConcepts() : void

RichObjectProperty

+ getDomainConcepts() : List<Concept>
+ getRangeConcepts() : List<Concept>
+ setDomainConcepts() : void
+ setRangeConcepts() : void

Figure 5: Ontobrowse Ontology API

Existing Java APIs for OWL knowledge bases (e.g., Protégé API7, OWL-API8) are
mostly based on (a) representing the whole ontology graph in memory and (b)
supporting the full set of axioms for the underlying knowledge representation language.

In contrast to this, our design goals are:

Provide a lightweight and stateless API for knowledge base access

Focus on instance retrieval and manipulation, and omit sophisticated schema
manipulation

Provide an abstraction layer for ontology stores/engines

Thus, our API does not replace, but complements the APIs of existing ontology stores.
We rely on the existing implementation e.g., for loading ontologies and executing
reasoning tasks at the low level, and provide a high level representation, which abstracts
from most complexities in ontology handling. Due to the abstraction layer, a further
advantage of our API is that it abstracts from the specifics a concrete knowledge
representation language. Our API is not necessarily limited to Semantic Web languages,
since it could also have an implementation based on relational databases.

Currently, we have implementations of our API for the Jena Semantic Web framework,
as well as for the KAON2 OWL reasoner.

7 http://protege.stanford.edu/plugins/owl/api/
8 http://owl.man.ac.uk/api.shtml

74

74

Besides the ontology API, Ontobrowse offers service interfaces for importing and
updating ontologies and for managing wiki pages as well as user accounts.

While the backend services can be accessed via arbitrary clients, our standard user
interface is a web application implemented with Java Server Faces9. Currently, this web
application includes dialogs to browse the knowledge base (list concepts, view concepts
and instances– see e.g., Figure 5, specify and execute SPARQL queries and for user
management. We are currently extending the user interface to allow for editing property
values and to add relations to link different entities in the knowledge base.

5 Setting Up Ontobrowse in a SOA Environment

In this part, we describe the necessary steps for setting up Ontobrowse in a concrete
SOA environment. Initially, all stakeholders need to agree upon a shared conceptual
structure, a so-called “SOA ontology” (cf. Figure 6). This ontology should capture a
shared understanding of both business experts and technical people. Typically, it
includes concepts like “service”, “interface”, “business object”, and “domain concept”.
On the one hand, “service” defines data types and properties from the technical domain,
such as “version” and “hasInterface”. On the other hand, it includes properties relevant
in the business view, such as “refersToDomainConcept” to reference a project glossary
term. The specification has to be carried out by ontology engineers, creating an ontology
file with an editor such as Protégé. An ontology file is uploaded to Ontobrowse via the
Web interface and subsequently processed by the Ontology API.

9 http://java.sun.com/javaee/javaserverfaces/

75

75

Figure 6: SOA ontology

The stakeholders can also decide whether they reuse existing ontologies. Potentially
useful sources include the foundational ontologies being developed within Semantic
Web Services [Ak05, ES05, OW04] and the Web Services Architecture [W3C04]. Of
course, it is possible to develop several modular ontologies covering various information
needs, e.g., project management and organizational structure. Instance data
corresponding to the SOA ontology may be created either directly in the wiki or
imported from external sources by defining plugins. This ensures high flexibility and
enables to augment SOA elements with additional descriptions.

Plugins perform the actual mapping of instances from an external source into the
knowledge base, e.g., from WSDL service descriptions maintained in a file system to
service descriptions in the wiki. Here, we give an example how the mapping works for
WSDL. However, the process is analogous for other formats, e.g., the Business Process
Execution Language for service composition.

First, a one-way mapping between WSDL service descriptions and the SOA ontology is
defined. In order to accommodate service properties such as version and architectural
layer, we extended the WSDL format. The actual mapping is executed by a Java
program, which conforms to the Ontobrowse plugin interface. It takes a WSDL file as
input and performs a set of actions for adding instances, properties and attributes to the
knowledge base with the Ontology API. A wiki administrator configures the input
sources (CVS, file system) and update types (manual, timer task, update event). Based
on this configuration the plugin manager component is responsible for updating the
knowledge base automatically.

is a

ServiceLayerServiceLayer ArchitectureArchitecture

ServiceService

OperationOperation

InterfaceInterface

PersonPerson Business ObjectBusiness Object

Domain ConceptDomain Concept

EndpointEndpoint

adjacentLayer

refersToDomainConcept

describedBy

hasInput

hasOutput

hasEndpoint

specifiedIn

operatesIn

hasInterface

hasOperationSOA elementSOA element

owns is a

76

76

Once the initial structure and wiki content has been created, it is possible to access the
knowledge base through the Web interface. First, users can quickly gain an overview by
starting with a concept page. For example, the page for the concept “service” shows the
sub-concepts, all instances to that concept as well as the incoming and outgoing
properties (cf. Figure 7). A user can then navigate to a service to read its detailed
description. Second, there is a full text search of all entities in the knowledge base.
Third, there is also the possibility for looking for very specific knowledge. A query
interface enables users to define chained queries consisting of sentences with subject,
predicate and object (e.g., all services “x” defining interface operations with the output
“Customer”). Matching entities are returned for the variables defined by the query.

Figure 7: Concept page for “service“

77

77

A B
executesService

X Y
adjacentLayer ?

Service Service

ServiceLayer

hasLayer hasLayer

ServiceLayer

Architectural rule example:

Figure 8: A service violating an architectural rule

Finally, the SOA ontology can be enhanced by rules, which enable automatic
consistency checking of entities and generation of new knowledge. So far, we have
included experimental support for DL-safe SWRL10 rules in the KAON2 configuration.
One application scenario is the formal definition of architectural rules, which are usually
only informally documented by software architects. The semantic wiki makes the
violation of these rules explicit, thus supporting their enterprise-wide enforcement. For
example, we stated the rule “services may not call other services more than one layer
apart” (see section 2.2) as visualized in Figure 8:

executesService (A, B) hasLayer (A, X) hasLayer (B,Y)
adjacentLayer (X,Y) owl:sameAs (X,Y) InvalidService (A)

Any entity violating this rule is categorized as an “invalid service”. By using ontology
annotations for the concept “invalid service” the Web interface can display a warning to
the user. Alternatively, it is possible to filter for all invalid services using the query
interface. To this end, Ontobrowse not only improves the navigation, documentation,
querying and searching but also contributes to the quality of an Enterprise SOA.

6 Conclusion

In this paper, we described an approach based on ontologies and semantic wikis, which
tackles key issues in the documentation of an Enterprise SOA. The SOA case revealed
the distributed character of the SOA development process, which has been insufficiently
addressed so far. Because an Enterprise SOA not only involves multiple roles, but also

10 http://www.w3.org/Submission/SWRL/

78

78

brings different organizational units and external service providers together, the
responsibilities (and with it architectural information) are inherently distributed.

Although a SOA leads to a higher degree of standardization at first glance, it
nevertheless involves different views, which are either technical or business-oriented.
This results in a high number of heterogeneous, locally maintained SOA artifacts with
varying degrees of formalization. What is sought after is therefore both a “common
language” shared by all stakeholders and a first-class representation for different types of
architectural information. As pointed out in this paper, ontologies can provide the means
for solving the terminological and the information integration problem. Semantic wikis
on the other hand, provide a flexible way for accessing this information, e.g. browsing
searching, and semantic querying. Most importantly, the proposed solution can be
tailored to project-specific needs by defining one or more ontologies to set up the initial
structure of the wiki.

References

[AD05] Aguiar, A.; David, G.: WikiWiki weaving heterogeneous software artifact. In: Proc. of
the 2005 international symposium on Wikis, San Diego, CA, 2005, pp. 67-74.

[Ak05] Akkiraju, R.; et al.: Web Service Semantics - WSDL-S. W3C Member Submission,
2005.

[BM05] Bachmann F.; Merson, P.: Experience Using the Web-Based Tool Wiki for Architecture
Documentation. Technical Note CMU/SEI-2005-TN-041. September 2005.

[BHL01] Berners-Lee, T.; Hendler J.; Lassila, O.: The Semantic Web. Scientific American. May,
2001.

[De05] Decker, B. et.al.: Self-organized Reuse of Software Engineering Knowledge supported
by Semantic Wikis. In: Proc. of Workshop on Semantic Web Enabled Software
Engineering, Nov. 2005.

[ES05] ESSI WSMO: Web Service Modeling Ontology (WSMO). http://www.wsmo.org/, 2005.
[Gr93] Gruber T.R.: A translation approach to portable ontology specifications. Knowl. Acquis.

5, 1993, pp. 199-220.
[HS06] Happel, H.-J.; Seedorf, S.: Applications of Ontologies in Software Engineering. In: Proc.

of Workshop on Sematic Web Enabled Software Engineering" (SWESE) on the ISWC
2006, Athens, Georgia, November 5-9, 2006.

[HS07] Happel, H.-J.; Seedorf, S.: Ontobrowse: A Semantic Wiki for Sharing Knowledge about
Software Architectures. In: Proc. of the 19th Int. Conf. on Software Engineering and
Knowledge Engineering (SEKE), Boston, USA, July 9-11, 2007, pp. 506-512.

[HS05] Huhns, M.H.; Singh, M.P.: Service-Oriented Computing: Key Concepts and Principles.
IEEE Internet Computing, vol. 9, no. 1, 2005, pp. 75-81.

[Kr95] Kruchten, P.: The 4+1 View Model of Architecture. In: IEEE Softw. 12 November, Nr.
6, 1995, pp. 42-50.

[LC01] Leuf, B., Cunningham, W.: The wiki way: Quick collaboration on the web. Addison-
Wesley, 2001.

[Ma03] Maedche, A. et.al.: Ontologies for En-terprise Knowledge Management. IEEE Intelligent
Systems ,18, 2003, pp. 26-33.

[MT00] Medvidovic, N.; Taylor, R. N.: A Classification and Comparison Framework for
Software Architecture Description Languages. In: IEEE Trans. Software Eng. 26(1):
2000, pp. 70-93.

79

79

[OL98] O’Leary; D.E.: Using AI in Knowledge Management: Knowledge Bases and Ontologies.
IEEE Intelligent Systems, 13, 1998, pp. 34-39.

[OW04] OWL Services Coalition: OWL-S Semantic Markup for Web Services. 2004.
[St01] Staab, S. et.al.: Knowledge Processes and Ontologies. IEEE Intelligent Systems, 16,

2001, pp. 26-34.
[UG96] Uschold, M.; Gruninger, M.: Ontologies: principles, methods, and applications.

Knowledge Engineering Review, 11, 1996, pp. 93-155.
[Vö06] Völkel, M. et.al.: Semantic Wikipedia. In: Proceedings of the 15th International

Conference on World Wide Web, WWW 2006, Edinburgh, Scotland, May 23-26, 2006.
[W3C04] W3C: Web Services Architecture. W3C Working Group Note, 11 February, 2004.
[We03] Welty, C.A.: Software Engineering. In: Description Logic Handbook, 2003, pp. 373-387.
[WF99] Welty, C.A.; Ferrucci D.A.: A Formal Ontology for Re-Use of Software Architecture

Documents. ASE, 1999, pp. 259-262.

80

80

Architectural Principles and Components of
Adaptive Process Management Technology

Manfred Reichert1, Peter Dadam1, Stefanie Rinderle-Ma1,
Martin Jurisch2, Ulrich Kreher2, Kevin Göser2

1Institute of Databases and Information Systems, Ulm University, Germany
{peter.dadam, manfred.reichert, stefanie.rinderle}@uni-ulm.de

2AristaFlow GmbH, Germany
{martin.jurisch, ulrich.kreher, kevin.goeser}@aristaflow.com

Abstract. Process-aware information systems (PAIS) must not freeze business
processes, but should enable authorized users to deviate from the implemented
workflows on-the-fly and to dynamically evolve them over time. While there has
been a lot of work on the theoretical foundations of dynamic process changes,
there is still a lack of implemented PAIS providing this dynamics. Designing the
architecture of such adaptive PAIS, however, constitutes a big challenge due to the
high complexity coming with dynamic changes. Besides this, performance,
robustness, security and usability of the PAIS must not be affected by the added
flexibility. In the AristaFlow project we follow a holistic approach to master this
complexity. Based on a conceptual framework for adaptive process management,
we have designed a sophisticated architecture for next generation process
management technology. This paper discusses major design goals and basic
architectural principles, gives insights into selected system components, and shows
how change support features can be realized in an integrated and efficient manner.

1 Introduction

In today's dynamic business world enterprises must be able to quickly and flexibly react
to changes in their environment [Guen06,RRD03a,RRD04a,WRR07]. Therefore, compa-
nies have recognized business agility as a competitive advantage, which is fundamental
for being able to cope with trends like increasing product and service variability, faster
time-to-market, and business-on-demand. Process-aware information systems (PAIS)
offer promising perspectives in this respect and a growing interest in aligning
information systems in a process-oriented way can be observed [BDR03,LeRe07,
Müll06,Wesk07]. As opposed to data- or function-centered information systems, PAIS
are characterized by a strict separation of process logic and application code. In
particular, most PAIS describe process logic explicitly in terms of a process template
providing the schema for process enactment. Usually, the core of the process layer is
built by a process management system, which provides generic functions for modeling,
executing, and monitoring processes [Wesk07]. This allows for a separation of concerns,
which is a well established principle for increasing maintainability and for reducing cost
of change; i.e., changes to one layer can be performed without affecting other layers.

81

81

The ability to deal with process change has been identified as one of the most critical
success factors for PAIS [LRW08,RDB03,ReDa98,RRD04a,WRR07]. Through the des-
cribed separation of concerns PAIS facilitate changes significantly. However, enterprises
are still reluctant to adapt PAIS once they are running properly. High complexity and
cost of change are mentioned as major obstacles for not fully leveraging the potential of
PAIS [MRB08]. To improve this situation more flexible PAIS are needed enabling
companies to capture real-world processes adequately without leading to mismatches
between computerized processes and those running in reality. Instead, users need to be
able to deviate from the predefined processes if required and to evolve process
implementations over time [RRD03a]. Such changes must be possible at a high level of
abstraction and without affecting PAIS consistency and robustness [RRD04a-d].

Basically, process changes may take place at the instance or the type level. Process
instance changes often have to be carried out in an ad-hoc manner to deal with
exceptional situations [ReDa98,DRK00,LeRe07]. Such ad-hoc changes must not affect
system robustness or lead to errors in the sequel. Process type changes, in turn,
correspond to continuous changes of a process schema (also denoted as process schema
evolution) to deal with evolving needs [RRD04a-d]. Regarding long-running processes,
it might also require the migration of already running process instances to the new
schema version. Important challenges in this context are to perform such instance
migrations on-the-fly, to guarantee compliance of the migrated process instances with
the new process schema, and to avoid performance penalties [Rind06,RRD04a-b].

The design of adaptive process management technology constitutes an enormous
challenge. On the one hand such technology should allow for efficient process enactment
as well as for enterprise application integration. On the one hand it has to provide
support for dynamic process changes. When designing such a technology we have to
cope with many trade-offs. For example, complexity of dynamic changes increases the
higher expressiveness of the used process modeling language becomes. Further, complex
interdependencies between the different features of adaptive PAIS exist that must be
carefully understood to avoid implementation gaps. Process schema evolution, for
example, requires integrated support for high-level change patterns, schema versioning,
change logging, on-the-fly instance migrations, and dynamic worklist adaptations.
Finally, even if the conceptual pillars of such a next generation process management
technology are well understood, it will still be a quantum leap to implement advanced
features in an integrated, efficient and robust manner.

In the AristaFlow project we have followed a holistic approach to tackle these challen-
ges. Based on a sophisticated conceptual framework for dynamic process changes, which
we developed in the ADEPT project [ReDa98,RRD04b], we have designed the
architecture of the ADEPT2 process management system and prototypically implemen-
ted it. From the very beginning, one of the primary design goals has been process
flexibility. This paper summarizes major architectural principles, gives insights into
ADEPT2 system components and their interactions, and shows how change support
features can be realized in an integrated and efficient manner within such architecture.

The remainder of this paper is organized as follows: Section 2 presents background

82

82

information needed for understanding this paper. Section 3 summarizes architectural
principles applied during the design of the ADEPT2 system and its components. Section
4 shows how ad-hoc changes and schema evolution are enabled within this architecture.
Section 5 discusses related work and Section 6 concludes with a summary.

2 Conceptual Framework for Dynamic Changes in ADEPT2

We developed a framework for dynamic process changes in previous projects [ReDa98,
RRD04b]. In this paper we use it as conceptual pillar for designing the ADEPT2 system
architecture. ADEPT2 covers changes at both the process instance and the process type
level. This, in turn, allows for ad-hoc flexibility as well as for process schema evolution.

Ad-hoc flexibility. At the instance level the ADEPT2 framework allows for ad-hoc
deviations from the pre-modeled process schema (e.g., to insert, delete, or move
activities). Such ad-hoc changes do not lead to unstable system behavior, i.e., none of the
guarantees (e.g., absence of deadlocks) achieved by formal model checks at buildtime
are violated due to dynamic changes [ReDa98]. ADEPT2 provides a complete set of
high-level change patterns for defining ad-hoc deviations; e.g., authorized users may
dynamically add new activities or jump forward in the flow of control [RDB03,
WRW05]. ADEPT2 defines pre- and post-conditions for all operations to ensure
correctness. Further, all complexity associated with the adaptation of instance states, the
re-mapping of activity inputs/ outputs, the handling of missing input data, or the problem
of deadlocks is hidden to a large degree from users.

Process schema evolution. To cope with business process changes (e.g., due to
reengineering efforts), ADEPT2 allows for quick and efficient adaptations of process
templates (i.e., schema changes at type level) – in the following denoted as process
schema evolution [RRD04b]. When updating a process template, usually, related process
instances are finished according to the old schema version, while future instances are
derived from the new one. However, such rigid approach is not adequate for long-
running processes [LeRe07]. Here, the challenge is to propagate respective schema
changes to already running instances of this process template as well; i.e., to migrate
these process instances to the new schema version of the respective process template .

The on-the-fly migration of a collection of process instances to a modified process
template must not violate correctness and consistency properties of these instances.
Therefore, we need a general principle for arguing whether a process instance is com-
pliant with an updated schema [RRD04a,RRD04b]. The ADEPT2 change framework
uses a well-defined correctness criterion, which is independent of the underlying process
meta model and which is based on a relaxed notion of trace equivalence. This
compliance criterion considers control as well as data flow changes, ensures correctness
of instances after migration, works correctly in connection with loop backs, and does not
needlessly exclude instances from migrations. To enable efficient compliance checks,
precise and easy to implement compliance conditions are defined for each change
operation (see Fig. 1 for an example). Finally, ADEPT2 automatically adapts the states
of compliant instances when migrating them to an updated schema.

83

83

Figure 1: Process Schema Evolution (Conceptual View)

When designing ADEPT2 we have looked at the picture as a whole. In particular, we
have not considered the different kinds of changes in an isolated manner, but have inves-
tigated their complex interdependencies as well. For example, the correct handling of
concurrent process changes is crucial in order to cover all practical cases [RRD04c-d]. In
this context, we have dealt with the question how to propagate process template changes
to related process instances which are in different states and to which various ad-hoc mo-
difications have been previously applied. For such biased instances, current instance
schema differs from the schema of the original template. Therefore, change propagation
must be accomplished while considering certain correctness constraints to avoid incon-
sistencies. In this context, ADEPT2 excludes state-related, structural, and semantical
conflicts between concurrent changes [RRD03a,RRD04c,RRD04d].

As example consider Fig. 1 where a new template version S’ is created from a process
template S based on which three instances are running. Instance I1 can be migrated to
the new process template version. By contrast, instances I2 and I3 cannot migrate. I3
has progressed too far and is therefore not compliant with the updated template schema.
Though there is no state conflict regarding I2 this instance can also not migrate to S’. I2
has been individually modified by an ad-hoc change which is conflicting with the
template change. More precisely, when propagating the process template change to I2 a
deadlock-causing cycle would occur. The ADEPT2 change framework provides efficient
means to detect such structural conflicts [RRD03]. Basic to this are sophisticated conflict
tests. In summary, we restrict propagation of a process template change to those
instances for which the change does not conflict with instance state or previous ad-hoc
changes. – So far, we have focused on our conceptual change framework, which
constitutes the basis for the proper design of the ADEPT2 system architecture.
Following sections illustrate how we have implemented this conceptual framework.

84

84

3 Design Principles and Components of the ADEPT2 Architecture

The design of the ADEPT2 system has been governed by a number of well-defined
principles in order to realize a sustainable and modular system architecture. Considered
design principles include general architectural aspects as well as conceptual issues
concerning the different system features. Our overall goal is to enable ad-hoc flexibility
and process schema evolution (cf. Section 2), together with other process support
features, in an integrated way, while ensuring robustness, correctness, extensibility, per-
formance and usability of the system at the same time. This section summarizes major
design principles of the ADEPT2 architecture and gives an overview of its components.

3.1 General Design Principles and Goals

High-end process management technology has a complexity comparable to database sy-
stems. To master this complexity a proper and modular architecture is needed with clear
separation of concerns and well-defined interfaces. This is fundamental to enable ex-
changeability of implementations, to foster extensibility of the architecture, and to
realize autonomy and independency of system components to a large extent. To meet
these goals the overall architecture should be layered. Thereby, components of lower
layers must hide as much complexity as possible from upper layers. Basic components
must be combinable in a flexible way to realize higher-level services like ad-hoc
flexibility or process schema evolution. To achieve this, ADEPT2 components are reused
in different context making use of sophisticated configuration facilities.

Process management systems should provide sophisticated buildtime and runtime
components to the different user groups (e.g., process participants, process admini-
strators, process designers). This includes buildtime tools for modeling, verifying and
testing processes, runtime components for monitoring and dynamically adapting process
instances, and worklist clients for accessing upcoming tasks. Many applications,
however, require adapted user interfaces and functions to integrate process support
features in the best possible way. On the one hand, provided user components should be
configurable in a flexible manner. On the other hand, all functions offered by the process
management system should be made available via application programming interfaces
(APIs) as well. In particular, advanced system functions (e.g., ad-hoc changes or process
schema evolution) should be accessible via such programming interfaces as well.

Implementation and maintenance of the different system components should be as easy
as possible. Therefore each component is kept as simple as possible and only has access
to the information needed for its proper functioning. Furthermore, communication details
are hidden from component developers and independency from the used middleware
components (e.g., database management systems) is realized.

To enable maintainability, extensibility and usability of the different system components
we need a proper conceptual design for the ADEPT2 system architecture. We do not
give an in-depth discussion of all considered design goals, but illustrate our main
philosophy by means of two examples. Though these basic design principles apply to

85

85

modern software architectures in general, we explicitly list them here to make clear how
they affect the design of adaptive process management technology:

Reuse of code fragments: A major design goal for any complex system architecture
is to avoid code redundancies. For example, components for process modeling, pro-
cess schema evolution, and ad-hoc process changes are more or less based on the
same set of change operations. This suggests to implement these operations by one
separate system component, and to make this component configurable such that it
can be reused in different context. Similar considerations have been made for other
components (e.g., visualization, logging, versioning, and access control). This
design principle does not only reduce code redundancies, but – as a consequence –
results in better maintainability, decreased cost of change and reduced error rates.

Extensibility of system functions. Generally, it must be possible to add new
components to the overall architecture or to adapt existing ones. Ideally, such
extensions or updates do not affect other components; i.e., their implementations
must be robust with respect to changes of other components. As example assume
that the set of supported change operations shall be extended (e.g., to provide higher
level change patterns to users [WRR07]). This change, however, should neither
affect the component realizing process schema evolution nor the one enabling ad-
hoc flexibility. In ADEPT2 we achieve this by internally mapping high-level change
operations to a stable set of low-level primitives (e.g., to add/delete nodes) [Rind06].

3.2 Overview of the ADEPT2 Architecture and its Components

Figure 2 depicts the overall architecture of the ADEPT2 process management system. Its
development has been based on the design principles discussed before and on the
experiences we gathered during implementation of ADEPT1 [RRD03b]. ADEPT2
features a layered and service-oriented architecture. Each layer comprises different
components offering services to upper-layer components. The first layer is a thin
abstraction on SQL, enabling a DBMS independent implementation of persistency. The
second layer is responsible for storing and locking different entities of the process
management system (e.g., process templates and process instances). The third layer
encapsulates essential process support functions including process enactment and change
management. The topmost layer provides different buildtime and runtime tools to users,
including a process editor and a process monitoring component.

Persistence (DBMS)

LogManager

ProcessRepository ProcessManager DataManager

WorklistManager

OrgModelManager ResourceManagerActivityRepository

ExecutionManager RuntimeEnvironmentChangeOperations

ControlCenter

User interaction layer

Execution layer

Basic services layer

Low-level services layer

RT

RT

RT RT RT(BT) RT(BT)BT

BT/RT

BT/RT

BT

ProcessEditor OrgModelEditor Monitor Simulation/Test
BTBT BT RT

RT

Communication

Configuration &
Registry

Framework

Figure 2: Basic Architecture of ADEPT2 (BT: Buildtime; RT: Runtime)

86

86

3.2.1 Layer with Low-level Services

This first layer of the ADEPT2 architecture comprises basic services which accomplish
tasks like logging, persistency management, configuration support and communication.
Idiosyncrasies of the used middleware services are hidden from upper-layer components.
This allows us to use different database management systems or to exchange
communication middleware without need for adapting implementations of upper layers.

Configuration & Registry Framework: This component provides the basic infra-
structure for configuring and managing the different system components of the ADEPT2
architecture, and for enabling inter-component communication. The developed frame-
work allows to start, manage and terminate ADEPT2 components (e.g., Process-
Manager) as well as their services (e.g., managing instance data), and to flexibly confi-
gure them for use in different context. In addition, a generic interface is provided to re-
alize communication between ADEPT2 components. Thereby, communication details
(e.g., concerning transport protocols, interaction styles or message formats) are hidden
from the components using this interface. For example, it remains transparent for these
components whether the services they request are running locally or remotely.

LogManager: ADEPT2 logs all system events occurring at build- and runtime [Rind06,
RJR07]. This includes events like changes in the state of a process instance, structural
changes at type or instance level, or access to process data elements. The LogManager
provides a generic interface based on which upper-layer components can log whatever
events they want. Persistency is handled by a separate sub-component of the
LogManager, which hides details of the underlying storage management component.
This allows us to use different persistency managers (e.g., relational DBMS, XML files,
flat files) without affecting implementation of upper layers.

3.2.2 Layer with Basic Services

Components of this layer provide basic services for managing build- and runtime data of
the process management system and for making it available to upper-layer components.

ActivityRepository: This system component manages the activity templates based on
which processes can be composed and executed. An activity template encapsulates all
information needed for working on a particular task. In particular, it connects the activity
to an application component. Thereby, details of the used component model (e.g.,
Enterprise Java Beans, (D)COM or Web services) are hidden from other ADEPT2
system components. Activity templates comprise additional information needed for
proper activity execution. Based on it, for example, one can figure out whether the
associated application component can be interrupted or aborted during runtime.

ProcessRepository: This component manages process templates and their meta data.
Similar to activity templates, process templates can be used as building blocks when
composing a new process model. Note that this allows for the realization of sub
processes in an easy and intuitive manner. Furthermore, the ProcessRepository
component manages all versions of a process template and the information needed to
derive them from each other; i.e. change logs [RJR07] regarding the process templates.

87

87

ProcessManager: While the above components manage buildtime data, the Process-
Manager component provides exactly those information needed for process enactment.
This includes, for example, schemes of active process templates and running process
instances as well as current instance states. In particular, ProcessManager restores
instance-specific schemes for those process instances that were subject of previous ad-
hoc changes. As opposed to ProcessRepository, ProcessManager has no knowledge
about the evolution of process or activity templates; i.e., it is not aware of different
template versions and their relations. This minimalism allows for efficient process
enactment. As we discuss in Section 4, ProcessManager also deals with the migration of
running process instances to a new process template version. It then has to interact with
the ProcessRepository in order to retrieve the information required in this context; i.e.,
the schemes of the old and the updated process template as well as their difference.

DataManager: For each process instance the DataManager maintains all process
(relevant) data created during process enactment; i.e., all data elements and their values
written by certain activities and read by other ones. Since process relevant data can
become quite extensive and must be accessible by external components as well, they are
not maintained within the ProcessManager, but through a separate component. The
DataManager keeps all versions of a data element and creates a log entry each time the
data element is accessed (in cooperation with the LogManager). Finally, the
DataManager allows for implementing access functions for user-defined data types.

OrgModelManager and ResourceManager To define potential actors for a particular
activity, it can be associated with an actor assignment. Such assignment refers to organi-
zational entities (e.g., organizational units, project teams, roles, actors) or organizational
relations (e.g., “is-manager-of”) as captured in an organizational model. The Org-
ModelManager maintains this organizational model. It further accepts an actor
assignment as input and delivers all actors qualifying for the respective expression as
result. Besides actors, additional resources (e.g. rooms, machines and software licenses)
can be maintained using the ResourceManager component.

3.2.3 Execution Layer

This layer comprises functional components of the ADEPT2 architecture which allow
for the correct enactment and adaptation of process instances and related activities.

ChangeOperations: This component comprises high-level change operations that can be
applied to processes in different context (e.g., to add or delete activities). First, change
operations are required when creating new process templates or when adapting existing
ones. In the latter case respective schema changes can be propagated to already running
process instances as well; i.e., we (logically) apply the operations at instance level. The
same applies with respect to ad-hoc instance changes. Note that in all these cases same
or similar change operations are needed. Our basic design principles (cf. Section 3.1)
therefore suggest to implement these change operations in a separate component to avoid
code redundancies and to improve code maintainability. Each change operation realizes
certain process graph transformations and is based on well-defined pre-/post-conditions
in order to guarantee soundness of a process schema after its change. Note that condi-
tions are varying depending on whether the change is applied at type or instance level.

88

88

ExecutionManager: This component coordinates the execution of process instances in
an efficient and correct way; e.g., it evaluates predicates on instance data to choose bet-
ween alternative branches or to loop back during runtime. As a prerequisite Execution-
Manager needs information about the current schema as well as the state of respective
instances. This information is provided by ProcessManager, i.e., a lower-layer
component. For ExecutionManager it remains transparent whether a process instance is
still running on its original schema or on a modified schema (as result of applied ad-hoc
changes). When an activity is started the ExecutionManager provides the invoked
application component with needed input data; when the activity completes, in turn, the
ExecutionManager takes over its output data and forwards it to the DataManager.

RuntimeEnvironment: This component provides the container for executing arbitrary
applications. It retrieves the input data of the respective application from the
DataManager and prepares it for application invocation; i.e., the invoked application
component does not need any knowledge about the specific process context in which it is
executed. After completing an application execution successfully, in turn, the container
receives the application output data and forwards it to the DataManager. Besides this,
the RuntimeEnvironment allows to start application components and to control their
execution (e.g., to abort or suspend component execution). Finally, the Runtime-
Environment informs the ExecutionManager when the execution of an application fails.

3.2.4 User Interaction Layer

This layer comprises those components of the ADEPT2 architecture with which the
different user groups interact. According to our basic philosophy all functions provided
by these interactive components are made available via application programming inter-
faces (APIs) as well. This allows users to replace standard tools (e.g. for editing process
templates or for managing user worklists) by own tool implementations.

ControlCenter: The ADEPT2 ControlCenter provides advanced buildtime and runtime
components for user interactions. This includes the ProcessEditor, the OrgModelEditor,
Test Clients, and the Runtime Monitor. The ProcessEditor, for example, constitutes the
major component for modeling process templates and for guaranteeing model
correctness (see Section 5). The TestClient, in turn, is a fully-fledged test environment
for process execution. Unlike commonly known simulation tools, it runs on a lightweight
instance of the process management system itself. As such, various execution modes
between pure simulation and production mode are possible.

WorklistManager: This component manages worklists. When an activity becomes
activated WorklistManager dissolves the corresponding actor assignment (in cooperation
with OrgModelManager) and updates the respective worklists. The WorklistManager
also considers deputy arrangements and allows to delegate work items to other users
(even if the respective activity has been already started). Finally, escalation will be
provided if a selected work item is not processed within a specified duration of time.

In summary, all described ADEPT2 system components are loosely coupled enabling the
easy exchange of component implementations. Furthermore, basic infrastructure services

89

89

like storage management or the techniques used for inter-component communication can
be easily exchanged. Additional plug-in interfaces are provided which allow for the
extension of the core architecture, the data model and the user interface.

4 Architectural Support for Dynamic Process Changes in ADEPT2

So far we have introduced the ADEPT2 conceptual framework for dynamic process
changes and we have sketched the different layers of the ADEPT2 system architecture.
In this section we give insights into the realization of the ADEPT2 change framework
within this architecture. Taking process schema evolution as example, we show in which
way the different architectural components contribute to realize this feature and how
they interact with each other to do this in a proper and efficient way.

4.1 A 2-phase procedure for realizing process schema evolution

When considering the ADEPT2 system architecture from Fig. 2 the general procedure
for performing a process schema evolution comprises two phases (note that this
procedure is simplified and does not consider interactions with lower-level services):

Phase I: Preparation Phase

1. Load an existing process template into the ProcessEditor and adapt its schema S using the
change operations provided by ChangeOperations. Exactly the same set of change operations
can be applied as when creating new process templates.

2. Record the modified process template (i.e., its target schema S’), together with the applied
changes (i.e., the difference between S’ and S), in the ProcessRepository.

Phase II: Schema Evolution Phase

3. Suspend (i.e. freeze) all process instances which are running on original process schema S
and which shall be migrated to target schema S’ (if possible).

4. Load target schema S’into ProcessManager. New instances are created based on S’.

5. Select original schema S and target schema S’in the ProcessRepository and transmit
information about the schema difference Delta to the ProcessManager.

6. Based on Delta, for each frozen instance ProcessManager checks whether it is compliant
with target schema S’. For this purpose ProcessManager considers the current instance state
as well as instance-specific deviations from original schema S. The latter is required to detect
conflicts between ad-hoc instance changes and the schema changes as captured by Delta.

7. ProcessManager migrates all compliant instances to target schema S’. Among other things
this is accompanied by state adaptations of the instances to be migrated.

8. Where appropriate, adapted instances whose deviations conflict with process schema changes
are adapted manually. This can be done using the components ProcessEditor and
ChangeOperations. Again the migration is performed by ProcessManager.

90

90

This procedure already demonstrates that multiple system components are needed to
enable process schema evolution in conjunction with other process support features.

4.2 How do architectural components of ADEPT2 support process changes?

For selected components of the ADEPT2 architecture we exemplarily show how they
contribute to process flexibility in terms of schema evolution and ad-hoc changes. We
revisit the described design principles and discuss their benefits in the given context.

LogManager: Ad-hoc changes of single process instances as well as template changes
have to be logged. The interfaces provided by the LogManager are generic; i.e., both
kinds of changes can be logged with this component. Thus, LogManager can be reused
in different context, which improves maintainability of the ADEPT2 architecture.

ProcessRepository: If process schema evolution and instance migrations are supported
we will have to maintain information about the different schema versions and their
differences. This task is accomplished by the ProcessRepository.

ProcessManager: This component is fundamental for the support of ad-hoc changes as
well as of process schema evolution. It is therefore discussed in more detail. First,
ProcessManager maintains the control data needed for proper and efficient execution of
unchanged as well as changed process instances. Second, in the context of schema
evolution, this component migrates compliant process instances to the new schema.

One major challenge is to efficiently represent template and instance objects within
ProcessManager. Unchanged instances, for example, should be represented in a non-
redundant way. The ProcessManager keeps one instance object for each of these
unchanged instances, which captures instance-specific data (i.e., instance states) and
refers to the original template schema (denoted as template object in the following). As
example, consider instances I1, I3, I4, and I6 as depicted in Fig. 3.

Figure 3: Managing Template and Instance Objects in the ProcessManager (Logical View)

For representing process instances with ad-hoc changes a more sophisticated approach is
needed. In ADEPT2 we have developed the delta layer concept [Rind06, RJR07] for this

91

91

purpose. It allows to efficiently represent the difference between template and instance
objects. Simply speaking, the delta layer is represented by an object with same interfaces
as the process template object and therefore the same methods can be applied. However,
a delta layer object does not reflect the whole process schema, but only those parts which
have been adapted due to instance-specific changes. As examples consider instances I2
and I5 as shown in Fig. 3. Together with the template object the delta layer object allows
to restore the instance-specific process schema. The instance objects which belong to
changed process instances do no longer reference the associated template object but the
delta layer object. The delta layer object itself references the original template object and
therefore keeps the link between instance object and original template [Rind06].

The delta layer concept is also useful in the context of process schema evolution. In
particular, it allows to quickly check whether instance-specific adaptations and template
changes are conflicting with each other. Since ProcessManager supports ad-hoc changes
anyway, schema evolution does not cause additional efforts when realizing this
component. Note that we have decided to manage the different template versions and
their deltas through a separate component (i.e., ProcessRepository). This historical
information is only needed in the context of process schema evolution and should
therefore not affect normal process enactment. (Here we assume that template changes
constitute “exceptional cases” in comparison to normal process enactment.)

DataManager: To support instance-specific changes the DataManager must be able to
dynamically add or delete process data elements. In this context, ADEPT2 deletes data
elements and their values only logically in order to ensure traceability in all cases.
Regarding schema evolution no additional functionality is required.

OrgModelManager: The support of template as well as instance changes imposes
security issues as the process management system becomes more vulnerable to misuse.
Therefore, the application of respective changes must be restricted to authorized users.
We have developed an access control framework for (dynamic) process changes
[WRW05] which can be based on the information managed by the OrgModelManager
(see Section 3); i.e., similar to actor assignments specified in the context of process
activities, we can define access control constraints for process changes (see [WRW05]
for details). However, this requires no extensions of the OrgModelManager component.
Currently, we are working on an advanced framework in order to enable evolving
organizational models and the controlled adaptation of related actor assignments
[RiRe07,RiRe08]. This new feature, in turn, will require extensions of OrgModelMan-
ager; e.g., the ability to maintain different versions of an organizational model or to a-
dapt actor assignments on-the-fly when the underlying organizational model is changed.

ChangeOperations: As aforementioned this component allows to use the same change
operations for modeling and adapting process templates as well as for defining instance-
specific ad-hoc changes. As not all change operations might be needed in a given
context, the set of accessible operations can be restricted. Furthermore, this component
allows to add new change operations through well-defined interfaces. Finally, respective
extensions do not influence the implementation of any other ADEPT2 component. This
fundamental property is achieved by internally transforming high-level change
operations into a basic set of stable change primitives (e.g., to add or delete nodes).

92

92

When modeling process templates structural schema changes are enabled by
ChangeOperations. Regarding instance-specific changes, in addition, state adaptations
become possible. Finally, process schema evolution requires the comparison of instance-
specific changes with respective template changes conducted at the process type level. In
our experience the complexity of these comparisons can be significantly reduced when
using the delta layer concept as described before.

Schema evolution and instance-specific ad-hoc changes can be based on similar mecha-
nisms. While for instance-specific adaptations the change operations and the respective
state adaptations are applied in sequence, for schema evolution the structural changes
and the subsequent state adaptations are applied all at once. In case of unchanged instan-
ces this only requires the re-linking of the instance objects to the new template object.

ExecutionManager: This component partially locks execution of running process
instances when applying dynamic changes to them. After such change Execution-
Manager re-evaluates the execution state of the modified instances in order to correctly
proceed in the flow of control.

WorklistManager: ExecutionManager notifies WorklistManager when new activities
become activated or running activities are completed. WorklistManager then updates
user worklists accordingly; i.e., it adds new work items to worklists when enabling acti-
vities and removes items from them when completing activities. Basically, same func-
tions can be used to adapt worklists when applying ad-hoc changes (e.g., for activating
newly inserted activities) or when migrating process instances to an updated template.

RuntimeEnvironment: The RuntimeEnvironment only deals with the execution of single
activities and related application components respectively. Therefore no specific
functions with respect to schema evolution or instance-specific changes are needed.

ProcessEditor: To define template as well as instance-specific changes the
ProcessEditor can be used (see Fig. 4). Among other features this component triggers
the logging of the applied process changes. As aforementioned all functionality provided
by ProcessEditor is made available via programming interfaces (APIs) as well.

Monitor: When changing an instance, which is currently displayed by the ADEPT2
monitor, the respective visualization is adapted automatically.

4.3 Proof-of-concept prototype

Except for the ResourceManager component, which will be added at a later stage of the
project, we have implemented all components of the described architecture (cf. Fig. 2).
In particular, our proof-of-concept prototype allows to demonstrate major flexibility
concepts and their interplay with other process support functions. While core features of
the components from the basic service layer and the execution layer have been
implemented for most parts, we have not yet fully realized the intended tool components
from the user interaction layer. For example, in the current release of the ADEPT2
system, ad-hoc changes of single process instances have to be accomplished using the
ADEPT2 process editor. While the user interface provided by this editor is sufficient for

93

93

expert users, we will have to replace it if ad-hoc changes are to be defined by end users.
Therefore, more sophisticated clients are under implementation. The same applies to
clients enabling user interactions that become necessary to deal with non-decidable cases
in the context of instance migrations. So far, ADEPT2 is able to automatically migrate
all process instances that are compliant with the new schema version according to some
correctness notion (see [RRD04b] for details). Furthermore, we have implemented a web
client version of the WorklistManager. Regarding the low-level services layer, we have
realized all basic functionality as needed by upper-layer components. However, there are
still a lot of things to be done, e.g. concerning communication between system
components and persistency management [Göse07]. Fig. 4 shows a screen of the
ADEPT2 process editor, which constitutes the main system component for modeling and
adapting process templates. This editor allows to quickly compose new process
templates out of pre-defined activity templates, to guarantee schema correctness by
construction and on-the-fly checks, and to integrate application components (e.g., web
services) in a plug-and-play like fashion.

Another user component is the ADEPT2 Test Client. It provides a fully-fledged test
environment for process execution and change. Unlike common test tools, this client
runs on a light-weight variant of the ADEPT2 process management system. As such,
various execution modes between pure simulation to production mode become possible.

Figure 4: Screenshot of ADEPT2 Process Editor

Due to lack of space we cannot give a more detailed description of the provided
functionality. We refer to [Göse07,ReDa98, RRD04b,WRR07] for a detailed overview
of the concepts on which the implemented change features are grounded.

94

94

4.4 Summary

We have discussed how schema evolution and instance-specific changes have been
considered in the ADEPT2 architecture. On the one hand we have shown that this
architecture is able to cope with the different kinds of (dynamic) process changes. On the
other hand, the given illustrations make clear that realization of schema evolution and
ad-hoc changes within one system is far from being trivial. A proper system architecture
with clear separation of concerns constitutes one necessary prerequisite in this context.
Another one is a solid conceptual framework. When designing the ADEPT2 proof-of-
concept prototype we have considered both perspectives. In future work we will evaluate
the implemented concepts based on a series of lab experiments.

5 Related Work

Off-the-shelf process management systems like Staffware, FLOWer and IBM Process
Server do not adequately support dynamic process changes or offer very restricted
change features only [WRR07,WRR08]. Several vendors promise flexible process
support, but are unable to cope with fundamental needs related to process change (e.g.,
correctness). Most systems completely lack support for ad-hoc changes or for migrating
process instances to a changed process schema. Thus, application developers are forced
to "enrich" applications with respective process support functions to cope with these
limitations. This aggravates PAIS development and PAIS maintenance significantly.

The need for flexible and easily adaptable PAIS has been recognized and several com-
peting paradigms for addressing process changes and process flexibility have been deve-
loped. Examples include adaptive processes [MGR04,MSK07,ReDa98,RRD04a+b,
Wesk00], case handling [AWG05,MWR08], data-driven processes [MRH08], decla-
rative workflows [Pesi07,SSO05], process refactoring [WeRe08] and late modeling
[Adam06]. However, there is still a lack of implementations of respective technologies
offering sufficient support to be applied for experimental use. Furthermore, only little
work has been done with respect to the architectural design of respective systems
considering requirements like extensibility, scalability, flexibility and maintainability.

Like ADEPT2, CAKE2 [MSK07] and WASA2 [Wesk00] allow for structural runtime
adaptations at the process instance level. Both approaches only support change primi-
tives (i.e., adding / removing nodes and edges respectively), while ADEPT2 provides
support for a wide range of high-level change operations [WRR07]. ADEPT2 is the only
system which provides common support for both process schema evolution and ad-hoc
changes [WRR07,RRD04a]. Worklets [Adam06] allow for the late binding of sub-pro-
cesses following a rule-based approach. Except for the dynamic replacement of activities
no support for ad-hoc changes is provided. Similar considerations can be made for the
case handling tool FLOWer [AWG05.MWR08], which allows to delete activities, but
does not support other kinds of ad-hoc changes. Neither Worklets nor FLOWer have
considered issues related to process schema evolution. Finally, among all these
approaches ADEPT2 scores best in respect to high-level change operations
[WRR07,WRR08].

95

95

6 Summary

The ADEPT2 technology meets major requirements claimed for next generation
process management technology. It provides advanced functionality to support process
composition by plug & play of arbitrary application components, it enables ad-hoc
flexibility for process instances without losing control, and it supports process schema
evolution in a controlled and efficient manner. As opposed to other approaches all these
aspects work in interplay as well. For example, it is possible to propagate process
schema changes to individually modified process instances or to dynamically compose
processes out of existing application components. All in all such a complex system
requires an adequate conceptual framework and a proper system architecture. ADEPT2
is one of the very few systems which has tried to consider both conceptual and archi-
tectural considerations in the design of a next generation process management system.

References

[Adam06] Adams, M.; ter Hofstede, A.H.M.; Edmond, D.; van der Aalst,W.: A service-oriented
implementation of dynamic flexibility in workflows. Proc. Coopis’06 (2006)

[AWG05] van der Aalst, W.; Weske, M.; Grünbauer, D.: Case handling: a new paradigm for
business process support, Data and Knowledge Engineering. 53 (2) (2005) 129-162.

[BDR03] Bauer, T.; Reichert, M.; Dadam, P.: Intra-subnet load balancing in distributed
workflow management systems. Int'l Journal of Cooperative Information Systems ,
12(3):205-323, 2003

[DRK00] Dadam, P.; Reichert, M.; Kuhn, K.: Clinical workflows – the killer application for
process-oriented information systems? Proc. 4th Int’l Conf. on Business Information
Systems (BIS‘2000), Poznan, Poland, April 2000, pp. 36-59.

[Göse07] Göser, K. et al.: Next-generation process management with ADEPT2. Proc. of the
BPM’07 Demonstration Program, Brisbane, Australia, September 2007, pp. 3-6.

[Guen06] Guenther, C.W.; Rinderle, S.; Reichert, M.; van der Aalst, W.M.P. (2006) Change
mining in adaptive process management systems. In: Proc. 14th Int'l Conf. on Coop.
Information Systems (Coopls'06), 2006, Montpellier. LNCS 4275, pp. 309-326

[LeRe07] Lenz, R.; Reichert, M.: IT support for healthcare processes - premises, challenges,
perspectives, Data and Knowledge Engineering, 61(1):39-58, 2007.

[LRW08] Li, C.; Reichert, M.; Wombacher, A.: Discovering reference process models by mining
process variants. In: Proc. 6th Int'l Conf. on Web Services (ICWS'08), September 2008,
Beijing, China. IEEE Computer Society Press

[MGR04] Müller, R.; Greiner, U.; Rahm, E.: AgentWork: A workflow system supporting rule-
based workflow adaptation, Data and Knowledge Engineering 51 (2) (2004) 223-256.

[MSK07] Minor, M.; Schmalen, D.; Koldeho, A. workflow supported by a suspension. Proc.
WETICE'07, 2007.

[MRB08] Mutschler, B.; Reichert, M.; Bumiller, J.: Unleashing the effectiveness of process-
oriented information systems: problem analysis, critical success factors and impli-
cations. IEEE Transactions on Systems, Man, and Cybernetics, 38 (3):280-291, 2008.

[MRH08] Müller, D.; Reichert, M.; Herbst, J.: A new paradigm for the enactment and dynamic
adaptation of data-driven process structures. Proc. 20th Int’l Conf. on Advanced
Information Systems Engineering (CAiSE'08), Montpellier, LNCS 5074, pp. 48-63

[Müll06] Müller, D.; Herbst, J.; Hammori, M.; Reichert, M.: IT Support for release management
processes in the automotive industry. In: Proc. 4th Int'l Conf. on Business Process
Management (BPM'06), Vienna, Austria. LNCS 4102, pp. 368-377

96

96

[MWR08] Mutschler, B.; Weber, B.; Reichert, M..: Workflow management versus case handling:
results from a controlled software experiment. Proc. 23rd Annual ACM Symposium on
Applied Computing (SAC'08), Fortaleza, Ceará, Brazil, March 2008, pp. 82-89

[Pesi07] Pesic, M.; Schonenberg, M.; Sidorova, N.; van der Aalst, W.M.P.: Constraint-based
workflow models: change made easy, Proc. CoopIS'07 Conf., 2007.

[RDB03] Reichert, M.; Dadam, P.; Bauer, T.: Dealing with forward and backward jumps in
workflow management systems. Int'l Journal Software and Systems Modeling
(SOSYM), 2(1):37-58, 2003

[ReDa98] Reichert, M.; Dadam, P.: ADEPTflex – Supporting dynamic changes of workflows
without losing control. Journal of Intelligent Information Systems, 10(2):93-129, 1998

[Rind06] Rinderle, S.; Reichert, M; Jurisch, M.; Kreher, U.: On representing, purging and
utilizing change logs in process management systems. Proc. 4th Int'l Conf. Business
Process Management (BPM'06), Vienna, LNCS 4102, September 2006, pp. 241-256

[RiRe07] Rinderle, S.; Reichert, M.: A formal framework for adaptive access control models.
Journal on Data Semantics IX, LNCS 4601, Springer 2007, pp. 82-112.

[RiRe08] Rinderle-Ma, S.; Reichert, M.: Managing the Life Cycle of Access Rules in CEOSIS.
Proc. 12th IEEE Int. Enterprise Computing Conference (EDOC'08), September 2008,
Munich, Germany.

[RJR07] Rinderle, S.; Jurisch, M.; Reichert, M.: On Deriving Net Change Information From
Change Logs – The DELTALAYER-Algorithm. Proc. BTW'07, 2007, pp. 364-381

[RRD03a] Reichert, M.; Rinderle, S.; Dadam, P.: On the common support of workflow type and
instance changes under correctness constraints. In: Proc. 11th Int'l Conf. Cooperative
Information Systems (CooplS '03), Catania, Italy. LNCS 2888, pp. 407-425

[RRD03b] Reichert, M.; Rinderle, S.; Dadam, P.: ADEPT Workflow Management System
Flexible Support for Enterprise-Wide Business Processes. Proc. 1st Int'l Conf. on
Business Process Management (BPM '03), Eindhoven, LNCS 2678, pp. 371-379

[RRD04a] Rinderle, S.; Reichert, M.; Dadam, P.: Correctness criteria for dynamic changes in
workflow systems - a survey. Data and Knowledge Engineering, 50(1):9-34 (2004)

[RRD04b] Rinderle, S.; Reichert, M.; Dadam, P.: Flexible support of team processes by adaptive
workflow systems. Distributed and Parallel Databases, 16(1):91-116, 2004

[RRD04c] Rinderle, S.; Reichert, M.; Dadam, P.: On Dealing with structural conflicts between
process type and instance changes. In: Proc. 2nd Int'l Conf. Business Process
Management (BPM'04), Potsdam, Germany. LNCS 3080, 2004, pp. 274-289

[RRD04d] Rinderle, S., Reichert, M.; Dadam, P.: Disjoint and overlapping process changes:
challenges, solutions, applications. In: Proc. 11th Int'l Conf. on Cooperative
Information Systems (CooplS'04), Agia Napa, Cyprus. LNCS 3290, 2004, pp. 101-121

[SSO05] Sadiq, S.; Sadiq, W.; Orlowska, M.: A framework for constraint specification and
validation in flexible workflows. Information Systems 30, 349-378, 2005

[Wesk07] Weske, M.: Business Process Management, Springer, 2007.
[Wesk00] Weske, M.: Workflow Management Systems: Formal foundation, conceptual design,

implementation aspects. Habilitationsschrift, University of Münster, 2000
[WRW05] Weber, B. ; Reichert, M. ; Wild, W. ; Rinderle, S.: Balancing flexibility and security in

adaptive process management systems. Proc. CoopIS'05, LNCS 3760, pp. 59-76
[WRR07] Weber, B.; Rinderle, S.; Reichert, M.: Change patterns and change support features in

process-aware information systems. Proc. 19th Int'l Conf. on Advanced Inform. Sys.
Engineering (CAiSE'07), LNCS 4495, Trondheim, June 2007, pp. 574-588

[WRR08] Weber, B.; Reichert, M.; Rinderle-Ma, S. (2008) Change patterns and change support
features - enhancing flexibility in pocess-aware information systems. Data and
Knowledge Engineering (accepted for publication)

[WeRe08] Weber, B.; Reichert, M.: Refactoring process models in large process repositories.
Proc. 20th Int'l Conf. on Advanced Information Systems Engineering (CAiSE'08), June
2008, Montpellier, France, LNCS 5074, pp. 124-139.

97

97

98

An Environment for
Modeling Workflow Components

Colin Atkinson and Dietmar Stoll

Lehrstuhl für Softwaretechnik
University of Mannheim

68131 Mannheim
{atkinson, stoll}@informatik.uni-mannheim.de

Abstract: An important goal of workflow engines is to simplify the way in which
the interaction of workflows and software components (or services) is described
and implemented. The vision of the AristaFlow project is to support a "plug and
play" approach in which workflow designers can describe interactions with
components simply by "dragging" them from a repository and "dropping" them
into appropriate points of a new workflow. However, to support such an approach
in a practical and dependable way it is necessary to have semantically rich
descriptions of components (or services) which can be used to perform automated
compatibility checks and can be easily understood by human workflow designers.
This, in turn, requires a modeling environment which supports multiple views on
components and allows these to be easily generated and navigated around. In this
paper we describe the Integrated Development Environment (IDE) developed in
the AristaFlow project to support these requirements. After outlining the
characteristics of the "plug and play" workflow development model, the paper
describes one of the main innovations within the IDE –the multi-dimensional
navigation over views.

1 Introduction

An important goal of workflow engines is to simplify the way in which the interaction of
processes and software components (or services) is described and implemented [DR04,
Ac04]. The AristaFlow project’s vision of how to achieve this is based on the "plug and
play" notion popularized on the desktop, in which workflow designers can describe
interactions with components simply by "dragging" them from a repository and
"dropping" them into the desired points of a new workflow [Da05]. However, the ability
to define new workflows in such a simple and straightforward way is only advantageous
if there is a high likelihood that the resulting processes are well-formed, correct and
reliable. In other words, to make the "plug and play" metaphor work in practical
workflow scenarios it is essential that components are used in the "correct way", and the
possibility for run-time errors is significantly reduced at design time. In short, there
should be few if any "surprises" at run-time. If workflows defined by the "plug and play"
metaphor are highly unreliable or unpredictable this approach will not be used in
practice.

99

99

In order to support this goal, components must be described in a way that –

1. has well defined semantics so that their properties are machine-readable and can
be used to automatically check workflow-component compatibility, correctness
and reliability.

2. is easy for humans to understand, so that workflow designers can easily
comprehend components’ properties and decide which components to use
where and in what way.

Only component description approaches that fulfill both of these requirements provide
the required foundation for the "plug and play" development and adaptation of
workflows. In addition, of course, workflow components must be developed using the
best available practices and subject to rigorous validation and quality assurance activities
(e.g. inspection and testing). So called "Semantic" approaches for describing
components/services, such as OWL-S [Ow04] or WSMO [Ws05] score highly on the
first requirement since they utilize a description logic based language such as OWL to
describe component semantics in a rigorous and machine-accessible way. However,
since they are optimized for reasoning efficiency rather than human readability they are
difficult to use.

Model-based representations of components based on languages such as the UML score
much more highly on the second requirement, but score less well on the first
requirement. This is because the semantics of some of the UML diagrams is somewhat
vague, and it is unclear what combination of diagrams should be used to fully document
a component and what information each diagram should contain. Indeed, the views
supported by the current set of UML diagrams do not allow all the necessary information
to be described and/or do not present it in an appropriate way. Moreover, there are no
predefined relationships between the UML diagram types, so there is no built-in way of
determining whether different views of a component are consistent with one another.

Nevertheless, modeling languages such as the UML provide a much more suitable
foundation for describing workflow components in a way that supports the plug and play
paradigm than OWL based approaches. By using OCL to tighten the semantics of
models and adding additional view types optimized for workflows it is possible to
overcome these problems and attain a component/service representation approach which
fulfills both criteria outline above. However, to make this viable in practice it is
necessary to define suitable consistency rules between views and provide a pragmatic
metaphor for creating and navigating around them. In addition, the approach must be
integrated within a practical software engineering environment that allows components
to be designed, implemented and tested using traditional development techniques.

This paper describes the approach to component modeling and development within the
AristaFlow project and the integrated development environment (IDE) created to support
it. Although these are optimized for the description of workflow components (e.g. by
views and editors especially tailored to the requirements of workflow developers and
administrators), they are useful for general component modeling as well. In the next
chapter we describe the overall life-cycle of components, and describe how they fit into

100

100

the workflow definition and execution process. The following two sections then describe
the main innovations in the AristaFlow approach. Chapter 3 describes the AristaFlow
IDE’s strategy for integrating the various kinds of diagrams types and view types needed
to fully describe workflow components and for ensuring that they stay consistent.
Chapter 4 describes the IDE’s innovative strategy for organizing the different views and
supporting navigation around them. Chapter 5 then presents some implementation details
of the IDE, and chapter 6 concludes with some final remarks.

2 Component-Oriented Development of Workflows

The AristaFlow project aims to cover the whole lifecycle of components from their
initial development to their use in workflow management systems (Figure 1). In this
lifecycle there are three main human roles: the component developer, the workflow
administrator and the workflow developer.

Component Developer

Process
Templates
Process
Templates

Process DeveloperAdministrator

Public
Repository

Enterprise
Repository

installation

publishing
composition

import
- role assignment
- installation information
- synonyms

IDEIDE

Figure 1: Workflow Component Lifecycle

The component developer models and implements components and then publishes them
in a public repository. A workflow administrator of an enterprise then browses the
repository or searches it by using various criteria as defined in the component
description. Once they have been found, suitable components can be imported into a
private enterprise repository – the so called deployment store – where they are installed
and ready to be executed. The administrator can then add information like role
assignments and deployment information. In addition, taxonomical information can be
adjusted or added, e.g. synonyms and (enterprise wide) unique identifiers for parameters,

101

101

and these can later be automatically "wired" to data elements by the workflow
management system.

A process developer then uses a process template editor to combine components and
process templates into executable processes. Figure 2 shows a screenshot of the
ADEPT2 editor developed in the AristaFlow project [Ar07]. In this example, an
application function ("Amazon Item Search") has been chosen from the activity
repository and dragged into the process graph. As the input parameter is not yet assigned
to another node in the process graph, the problem window shows an error message. A
process template can only be released to the ADEPT2 runtime system (for later
instantiation) if it contains no errors. Similar checks take place at runtime, when ad-hoc
changes or process schema evolutions are made [RD03, Ri04]. The system only allows
changes if they do not lead to inconsistencies. An extensive description of the issues and
requirements involved in modern workflow process modeling tools and workflow
management systems such as ADEPT2 is given in [Da05].

Figure 2: AristaFlow Workflow Editor

2.1 Integrated Development Environment

Since components/services are software applications in their own right, a component
development IDE needs to support the full range of development activities including
code development, testing and debugging. However, when building a component IDE it
is clearly undesirable and impractical to redesign or redevelop the rich range of
capabilities that modern IDEs provide. The AristaFlow IDE is therefore built upon an
existing, well known and extensible development environment - namely the Eclipse
environment.

102

102

Taking this goal into account, the component modeling approach and IDE were
developed to fulfill the following main requirements –

1. to fit seamlessly and with minimum impact on top of the Eclipse environment,
giving developers access to the full range of native Eclipse functionality and
existing Eclipse plug-ins,

2. to provide a concise, well-defined and human friendly representation of
components which workflow designers can easily understand and use to select
and employ components in their workflows,

3. to provide suitable, machine readable descriptions of component properties
which automated checkers (e.g. the workflow editor, the workflow execution
engine) can use to verify the suitable use of components within workflows, and

4. to support the packaging (exporting) of components in a way that can easily be
imported by the repository and the workflow tools.

Given requirements (1) and (3), it makes sense for the AristaFlow IDE to exploit as
much of the information in regular software development artifacts as possible and
translate it automatically into formats that can be understood by workflow management
systems. For example, activity templates, which are required for process modeling, can
to a large extent be automatically generated from source code. If the parameters of
operations of different vendors are related (e.g. by two parameters that represent an
account number), a mapping between parameters and unique identifiers is defined to
enable the automatic association of data elements to parameters. It is also possible to
associate a component or single operation with one or more taxonomies. The taxonomy
editor of the IDE allows custom taxonomies to be imported or created.

When a component developer specifies the behaviour of a component, for example, as a
state chart whose transitions correspond to operation calls or as regular expressions,
protocol checkers can be employed. These make sure that a process modeler can plug
operations into a workflow schema only in a way that obeys the constraints specified by
the component modeler. Similarly, constraints (i.e. invariants and pre- and post
conditions on operations) can be used for runtime checks, for example, by arranging for
the workflow execution engine to check preconditions before an operation is actually
invoked. The code for checking the preconditions can be generated by the IDE and
delivered with the component. This makes it possible to catch violated preconditions that
could lead to expensive and difficult-to-trace runtime errors and to generate a response
understandable to a workflow administrator.

The more information that is available to the execution environment, the more checks
can be made. Many of the checks are done at modeling time on the process schemata,
ensuring incorrect schemata are not allowed to be executed. In cases where modeling
time checks are impossible or too complex, checks at runtime are applied. These can
prevent unwanted behaviour of components, for example, by checking whether the
preconditions of an operation have been fulfilled by the component developer before it is
called.

103

103

3 View-Based Component Modeling

Although the basic idea of capturing software artifacts from numerous inter-related
viewpoints has been around for some time (e.g. [NKF03]), there are no widely used tools
that provide clean and inherent support for this approach. With the success of the agile
development movement most applications are still developed using source code as the
single view of software objects, and although the use of multi-view notations such as the
UML has grown in popularity, the selection of which views to use and how views should
be related is invariably left to the user. In particular, there are no widely used component
modeling tools that provide users with the flexibility to define new view types and
generate/access new view instances on demand while at the same time systematically
enforcing and checking consistency rules.

The problem is that during the development of a component, users need to generate and
work on all kinds of views ranging from UML diagrams to code fragments, and as the
number of views increases, navigation becomes more tedious and maintaining
consistency between them becomes increasingly difficult. This is particular so when the
relationships and consistency rules between different types of views are defined and
checked on a pairwise basis as is usually the case today.

An ideal solution to this problem would be for every view of the IDE to be generated
from, and to work on, a single underlying model and for changes made to individual
views to be synchronized directly with this model [AS07]. In this way, the consistency
between the editors and the model is automatically ensured, as long as each individual
change to a view is checked for validity against this model. This "on demand" generation
of views is schematically depicted in Figure 3. The single underlying model should be an
instance of a metamodel which contains the minimum set of concepts necessary to store
the required information.

However, building the whole IDE in this way, although possible in the long term, is
incompatible with requirement (1) in the short term. Thus, in the AristaFlow project a
hybrid solution was developed in which several underlying model formats coexist. In the
long term these will be merged into one representation and all views will be generated
(by model transformation) from this single representation.

Java sourceJava sourceUML classesUML classes

Figure 3: On demand View Generation

104

104

3.1 View Types

Although advanced users need to have the ability to define their own view types and to
describe how they relate to the existing views, most users will be content with using the
existing view types defined by the recommended modeling approach. A key question,
therefore, is what set of basic views users should employ to describe components.
AristaFlow's basic approach to component modeling is based on the KobrA approach
[At02], which defines a systematic approach to the UML based representation of
components. This is organized around the notion of projections, which define the kind
of information conveyed in a view, and abstraction levels, which define the level of
platform independence represented by a view and whether the information conveyed is
black box or white box.

There are currently three levels of abstraction supported in the IDE: specification,
realization and implementation. The most abstract level is the specification which
provides a black box view of the component. It describes all externally visible properties
of a component and thus serves as its requirements specification. The realization of a
component describes the design of the component and provides a white box view of its
internal algorithms and subcomponents. Source code and test cases are the most platform
specific representation, and capture the implementation of the component using the
chosen programming language.

Figure 4: Structural view of a Component Specification

KobrA also defines three fundamental projections: the structural, functional and
behavioural projection [At02]. The structural projection includes classes and associations
manipulated by the component as well as other structural information like taxonomical
information and source code. Operations of a component and their interaction with other
artifacts are modeled in the functional projection, e.g. by means of operation
specifications and UML interaction diagrams. Finally, the behavioural projection focuses

105

105

on the behaviour of the component and its operations, as manifest by UML state charts
and UML activity diagrams.

The basic principle behind KobrA is that a component should be viewable and
describable at both the specification and realization levels of abstraction from all three
"projection" perspectives. Thus, the specification of a component can be viewed from a
structural, functional and behavioural viewpoint, and the realization of a component can
be viewed from a structural, functional and behavioural viewpoint. Figure 4, for
example, is a screenshot from the IDE which shows the structural view of the
specification of a Bank component. This takes the form of a UML class diagram which
shows only externally visible properties of the component and its environment.

Figure 5, on the other hand, is a screenshot of the IDE which shows an element of the
functional view of the Bank specification. This is a so called "operation specification"
for an operation of the Bank (the withdraw operation), and defines the effects of the
operation in terms of OCL pre and post conditions. It is only one element of the

AristaFlow-Projekt, 2007

Figure 5: Functional View of a Component Specification

functional view of the Bank specification, because such a specification is needed for
each operation. Similarly, the behavioural view of a component specification consists of
a UML state diagram depicting the externally visible state and transitions of the
component. However, this is not shown here for space reasons.

106

106

These views are general views on components defined in the KobrA method. With one
exception they all employ a UML diagram. The exception is the operation specification
which is a form based view that uses the OCL. However, to support requirement (3)
above, additional views are supported in the IDE in order to provide information directly
needed for workflow compatibility checking. For example, Figure 6 below shows a view
which is used to define the classification of a component within a standardized business
taxonomy (like UNSPSC [Un07] or NAICS [Na07]). This provides information which is
directly used by the repository to support the cataloguing and organized browsing of
components.

Figure 6: Component Classification View

Figure 7 shows an even more detailed view which allows users to add extra information
needed explicitly by the ADEPT workflow editor and execution system.

Additional views can also obviously be added for different purposes. For example, it
would be easily possible to add higher-level business oriented views such as those
defined by [Tu02].

Of course, to support the integration of legacy components and not overwhelm
developers with features they are not familiar with, a developer is not forced to use all
the possibilities of the development environment. Only the use of a minimal set of
artifacts for the component repository is mandatory, e.g. information about the
executable operations of a component.

107

107

Figure 7: Component Descriptor

4 Dimension-based Navigation

Supporting a fundamentally view-based way of creating and manipulating components
of the form described in the previous section can greatly simplify the task of developing
components and assessing whether they are suitable for use in workflows. Different
stakeholders can view a component using diagram types and notations which best meet
their needs and expertise, and specialized views can be generated for specific purposes.
However, the downside to a view-based approach is that the number of views can
quickly explode. As a result, the benefit gained by the simplicity and clarity of individual
views can be outweighed by the extra complexity and overhead involved in organizing
and navigating around a large number of different views. This problem is particularly
acute in environments which use different, third party editors to generate and manage
views, since a user must then become acquainted with and navigate around different,
heterogeneous artifact trees.

An effective view-based IDE should therefore provide a simple, integrated approach for
managing and navigating around the various views supported by the system. To meet
this need the AristaFlow IDE employs a new navigation metaphor based on the notion of
independent, orthogonal development dimensions. This is motivated by the
“orthographic projection” paradigm used in mechanical and physical engineering to
create detailed drawings of physical objects, and exploits the fact that the different
projections and abstract levels used in KobrA to define the different views are essentially

108

108

orthogonal and hence can be selected independently. This is no accident, since the
KobrA method explicitly recognizes the existence of three fundamental and orthogonal
development dimensions. However, the use of these as a navigation metaphor is original
in the AristaFlow IDE. This is why we use the name “orthographic modeling” to
characterize the representation approach supported by the IDE.

In principle, there is no limit to the number of dimensions that can be supported.
However, in the current version of the IDE there are three dimensions: an abstraction
level dimension which represents the abstraction level discussed in the previous section
and has three distinct choices (specification, realization and implementation), a
projection dimension which represents the projection type discussed in the previous
section and also has three distinct choices (structural, functional and behavioural), and a
component dimension, which represents the component which is being worked on or
viewed. This has as many choices as there are components in the system – one for each
component.

The organization of the views around the notion of three orthogonal dimensions can be
visualized in terms of a cube, as illustrated in Figure 8. Each view corresponds to a cell
in the cube, which represents a particular choice for each of the independent dimensions.
Users are thus able select particular views by navigating around the cube and selecting
specific cells corresponding to specific choices of component, abstraction level and
projection.

Component

Ab
st
ra
ct
io
n

Pro
jec
tio
n

Cell

Component-based Software System

...

...

Component

Ab
st
ra
ct
io
n

Pro
jec
tio
n

Component

Ab
st
ra
ct
io
n

Pro
jec
tio
n

Cell

Component-based Software System

...

...

CellCell

Component-based Software System

...

...

Component-based Software System

...

...

Figure 8: Cube metaphor

Figure 4 to 7 show how this dimension-based navigation is actually supported in the
current IDE. The left hand side of each of these diagrams shows the navigation area
which contains a selection panel for each of the three dimensions, each showing the
currently selected option for each dimension. Thus, the navigation area on the left hand
side of Figure 4 shows that the displayed UML diagram actually occupies the cell
corresponding to the Bank option of the component dimension, the specification option
of the abstraction-level dimension and the structural option of the projection dimension.

109

109

In other words, it shows a structural view of the specification of the Bank component.
Similarly, the navigation area on the left hand side of Figure 5 shows that the displayed
operation specification occupies the cell corresponding to the Bank option of the
component dimension, the specification option of the abstraction level dimension and the
functional option of the projection dimension. In other words, it shows a functional view
of the specification of the Bank component. Obviously, by selecting different
combinations of choices from each dimension, users can navigate to different views.

Usually, one cell is associated with exactly one editor, e.g. a UML class diagram is
associated with the UML tool MagicDraw. However, if greater flexibility is desired, a
cell can be mapped to multiple editors, for example, when there are alternative tools
available for UML class diagrams. This is the role of the bottom selection panel. It
identifies which specific representation or rendering of a view is desired.

5 Configuration of the IDE

As mentioned above, to create a practical prototype IDE within the original AristaFlow
project a number of existing editors and tools were integrated under the view-based
metaphor just described. In this section we briefly explain what tools were integrated and
what role they play.

5.1 Editor overview

Projection

Abstraction

Structural Functional Behavioural

Specification UML Class Diagram
Taxonomy
Component Descript.

Operation Specification
Activity Template

UML State Chart
Regular Expression

Realization UML Class Diagram UML Communication
Diagram

UML Activity
Diagram

Implementation Source Code - -

Figure 9: Overview of editors for workflow component modeling

As an elegant and widely available UML diagramming tool, MagicDraw was chosen for
the following Perspectives: Class Diagram, State Chart, Communication Diagram, and
Activity Diagram. The Class Diagram editor is used for both the black box view
(Structural – Specification) and the white box view (Structural – Realization) of a
component. The behaviour of a component is modeled with a UML State Chart. In the
Structural Realization, the UML class diagram from the Structural Specification is
refined. The Functional Realization shows by the means of a UML communication

110

110

diagram with which components the function interacts. The Behavioural Realization
focuses on the decomposition of functions by exposing the internal logic with a UML
activity diagram.
The Operation Specification Editor focuses on pre- and post conditions of single
operations and their syntactical correctness. Especially suited for the component
repository are the Component Description Editor, the Taxonomy Editor, the Activity
Template Editor and the Regular Expression Editor (whose description can be used for
checks of allowable method call sequences at run-time).

After implementing a component, all artifacts can be packaged and saved in a single file
in the Reusable Asset Specification (RAS) format. The RAS is an OMG standard
specifying the structure, contents and description for reusable software
components/assets [Ras05]. Thus, a RAS can be populated with all the artifacts
generated during the component development process including models, requirement
specifications and tests as well as the final source code. This allows the component to be
imported into arbitrary development environments (i.e. any IDE that supports the RAS)
for further development and maintenance when the need arises.

6 Conclusion

The goal of the AristaFlow project was to develop and prototypically implement a
platform to support the whole lifecycle of flexible, process-aware information systems -
from the modeling and implementation of suitable components through process
composition in a plug and play like fashion up to flexible and adaptive process
enactment. An important part of this goal was to minimize errors at runtime by using
advanced component development and process composition methods. The IDE and
component repository described in this paper were developed to support the component
modeling element of this concept.

The developed IDE makes two major contributions to the state of the art – the first is a
novel approach for the dynamic generation of views on demand, and the second is a
novel approach for allowing users to organize and navigate around the different views.
While the IDE was specifically developed for the AristaFlow project, its view,
navigation and component representation concepts are useful for other software
development approaches as well.

Acknowledgements: This work was largely performed as part of the AristaFlow project
under the support of the State of Baden-Württemberg.

References

[Ac04] H. Acker, C. Atkinson, P. Dadam, S. Rinderle, M. Reichert: Aspekte der
komponentenorientierten Entwicklung adaptiver prozessorientierter
Unternehmenssoftware. In: K. Turowski (Hrsg.): Architekturen, Komponenten,

111

111

Anwendungen - Proc. 1. Verbundtagung AKA 2004, Augsburg, Dezember 2004. LNI P-
57, 2004, S. 7-24

[At02] C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O. Laitenberger, R. Laqua, D. Muthig, B.
Paech, J. Wüst, J. Zettel: Component-Based Product Line Engineering with UML.
Addison-Wesley Publishing Company, 2002

[Ar07] The AristaFlow project, http://www.aristaflow.de, visited Nov 2007
[AS07] C. Atkinson, D. Stoll: Orthographic Modelling Environment, Fundamental Approaches

to Software Engineering (FASE'08), Budapest (Hungary), 29 March - 6 April, 2008,
submitted

[Da05] P. Dadam, M. Reichert, S. Rinderle, C. Atkinson: Auf dem Weg zu prozessorientierten
Informationssystemen der nächsten Generation - Herausforderungen und
Lösungskonzepte. In: D. Spath, K. Haasis, D. Klumpp (Hrsg.): Aktuelle Trends in der
Softwareforschung - Tagungsband zum doIT Software-Forschungstag 2005, Karlsruhe,
Juni 2005. Schriftenreihe zum doIT Software-Forschungstag, Band 3, MFG Stiftung,
2005, S. 47-67

[DR04] P. Dadam, M. Reichert: ADEPT - Prozess-Management-Technologie der nächsten
Generation. In: D. Spath, K. Haasis (Eds.): Aktuelle Trends in der Softwareforschung -
Tagungsband zum doIT Software-Forschungstag 2003, IRB Verlag Stuttgart 2004, S.
27-43

[Na07] The North American Industry Classification System (NAICS),
http://www.census.gov/epcd/www/naics.html, visited May 2007

[NKF03] B. Nuseibeh, A. Finkelstein and J. Kramer, "ViewPoints: meaningful relationships are
difficult," International Conference on Software Engineering (ICSE 2003), Portland,
Oregon, 2003

[Ow04] The OWL Services Coalition, OWL-S 1.1 Release,
http://www.daml.org/services/owl-s/1.1/, visited Nov 2007

[Ri05] S. Rinderle: Schema Evolution in Process Management Systems. Dissertation,
Universität Ulm, Fakultät für Informatik, Dezember 2004

[RD03] S. Rinderle, P. Dadam: Schemaevolution in Workflow-Management-Systemen
("Aktuelles Schlagwort"). Informatik-Spektrum, Band 26, Heft 1, Februar 2003, S. 17-19

[Ras05] Object Management Group, Reusable Asset Specification, version 2.2.
http://www.omg.org/technology/documents/formal/ras.htm, Nov 2005, visited May 2007

[Tu02] K. Turowski (Editor) et al., Standardized Specification of Business Components,
Memorandum of the working group 5.10.3 Component Oriented Business Application
System, February 2002, http://www.wi2.info/downl/gi-files/MEMO/Memorandum-
english-final-included.pdf, visited Nov 2007

[Un07] The United Nations Standard Products and Services Code (UNSPSC),
http://www.unspsc.org/, visited May 2007

[Ws05] Web Service Modeling Ontology (WSMO), W3C Member Submission,
http://www.w3.org/Submission/2005/SUBM-WSMO-20050603/, visited Nov 2007

112

112

A Pragmatic Approach to Traceability in Model-Driven
Development

Markus Aleksy, Tobias Hildenbrand, Claudia Obergfell, Martin Schader, Michael Schwind
University of Mannheim, Schloss, D-68131 Mannheim, Germany

{aleksy, hildenbrand, schader, schwind}@uni-mannheim.de, claudia.obergfell@arcor.de

Abstract:
A common problem in model-driven software development (MDSD) processes is

the tracing of requirements across different phases of the software development life
cycle and multiple levels of abstraction down to the code level. Because debugging
at the model level is not feasible yet, unwanted or unexpected behavior of the exe-
cutable system needs to be analyzed at the code level at run-time and in a feedback
loop must be traced back to and handled at the model level. Thus, traceability is a
very important success factor and quality criterion in software engineering and main-
tenance and especially when developing high-quality model-driven infrastructures. In
this paper, we present the conceptual design and prototypical implementation of a
lightweight traceability approach which supports tracing requirements across different
models and levels of abstraction. While providing support for representing different
types of traceability links between design models and implementation details, our ap-
proach can easily be integrated into existing MDSD projects without increasing their
complexity.

1 Introduction

Model-driven software development aims at raising the level of abstraction of develop-
ment processes by describing software systems using formal models on different levels of
abstraction, which are ultimately used as a basis for automatic code generation (cf. [31],
[12]). Ideally, all changes to an existing system are applied to the model level and prop-
agated to the code level by performing transformations and code generation procedures.
Software development efforts benefit from this approach in several ways: according to
Mellor and Balcer [34], Bézivin [10] as well as Booch et al. [11], the two main goals of
MDSD are to improve the robustness of software artifacts to changes applied to a software
system [9] and, more important in this context, to increase the level of abstraction, allow-
ing to better deal with the problem of complexity. It is argued that any approach addressing
these problems will ultimately result in a reduction of cost and time to market, which are
the main selling arguments given by MDSD advocates. However, the optimistic outlook
of the MDSD proponents [35] is not shared by all experts in the software engineering
discipline (e.g., [25]).

Despite automatic model transformations, establishing traceability is not a trivial in MDSD
projects. Due to the large number of artifacts and their interdependecies, this task is time

113

113

consuming, tedious and error-prone [20]. A few basic preconditions for effective and
efficient traceability management have been identified in theory and practice, most impor-
tantly:

• automatic recovery, validation, and update of traceability links [5] and

• tool integration (in particular with respect to widely used and possibly heteroge-
neous development environments) [16].

Therefore, we propose an approach that enables and supports traceability in a model-driven
context by allowing the creation and management of three types of explicit traceability
links: (1) between requirements and model elements, (2) between model elements at dif-
ferent levels of abstraction, and (3) between model elements and code sections. Based on
these three types of explicit traceability links, implicit links between requirements and code
sections realizing them can be derived—and thus horizontal and bi-directional traceability,
as required by many industry standards (e.g., [14]), can be achieved even in complex dis-
tributed development projects. For instance, this traceability information can be exploited
to verify that all specified requirements are reified in code.

The approach we suggest has been designed to satisfy both of the previously mentioned
requirements, i.e., automation and tool integration. Due to the fact that many publications
neglect the importance of tool support for end-to-end traceability (cf. section 6), we have
chosen a pragmatic approach, that can be integrated with existing MDSD tool chains and
is suitable to interoperate with widely accepted collaboration platforms. Following a fun-
damental design science research methodology [26], we have implemented a prototypical
tool support and integration with existing development environments. The software pro-
totype is used to demonstrate that our approach is applicable in distributed settings, can
easily be integrated (in our case with the Eclipse and CodeBeamer development platforms
[17, 29]), and can be applied in practice. The prototype also shows that our approach
can be automated and does not necessarily require extensive and time-consuming manual
trace capturing. To evaluate the novelty and utility of our approach we have conducted an
informed comparison with related research (see [26, pp. 85]).

The remainder of this paper is structured as follows: after a fundamental discussion on
the role of traceability, in particular in the context of MDSD (section 2), the conceptual
design of our prototype is presented in section 3. The main part of this paper (cf. section
4) contains a description of the prototype that has been implemented to demonstrate the
applicability of the traceability concept described. This is followed by a discussion of
related research efforts as compared to our approach. The paper concludes with a summary
of our findings and an outlook on future developments.

2 The Role of Traceability in Model-driven Development

MDSD approaches rely on two basic assumptions: first, that all requirements to a sys-
tem are fully and precisely reflected by the models, and second, that each model element

114

114

is ultimately transformed accurately into executable application code. The first require-
ment is relaxed by some interpretations of MDSD, such as architecture-centric MDSD
approaches [39], that rely on manual completion of the generated code and concepts, i.e.,
by defining protected code regions. Common to all MDSD approaches is the raised level
of abstraction and the problem of tracing requirements and other artifacts from the model
level to the source code level, sometimes across several intermediate model representa-
tions [1]. To support traceability in MDSD, it is necessary that the relation between each
requirement, its representation in the models (e.g., as model elements, such as classes or
associations) and the resulting code sections can be captured, managed, and analyzed [16].
Thus, traceability is generally a critical success factor and quality criterion in model-driven
development projects.

Model transformation is one of the key features of MDSD: abstract models are transformed
into more and more concrete models and ultimately into source code. In the terminology
of the Model-Driven Architecture (MDA), a Platform-Independent Model (PIM) is succes-
sively transformed into a Platform-Specific Model (PSM), which is then transformed into
code. While the idea of a stepwise reduction of the level of abstraction through repeated
model transformations is an integral part of the OMG’s MDA initiative, other approaches
pursue a model-to-code transformation-based strategy, where either no intermediate mod-
els are used or where they are not intended to be manipulated by the modeler.

Either way, traceability plays a central role throughout the MDSD process, because it
enables developers to maintain an insight on the relationships between various artifacts,
on different levels of abstraction, and, in the case of multiple successive transformations,
even between individual transformations. For example, traceability between elements of
one model can help to identify both dependencies and commonalities (e.g., two model
elements based on a given requirement, cf. [1]). In locally distributed MDSD projects,
where people at various sites collaborate on different parts of the models, establishing and
maintaining traceability becomes even more difficult [37]. When traceability relations are
managed correctly and efficiently, however, traceability can substantially support coordi-
nation in both distributed and collocated software projects [36].

As already mentioned before, traceability between requirements and their representation
in the models is crucial to ensure that the relevant set of requirements is accurately elicited
and eventually implemented in the code. Additionally, traceability information constitutes
a suitable basis for further transformations and code generation [33]. Moreover, trace-
ability between a model element and the code generated from this element is important
for debugging generated code and for program comprehension in general. While syntac-
tic correctness of both input and output artifacts, i.e., models, source code files, or XML
configuration data, as well as adherence to a particular metamodel can be verified, it is dif-
ficult to trace unexpected behavior of the resulting system back to one of the more abstract
model levels.

Finally, traceability between individual transformations is a necessary pre-condition in or-
der to decompose complex model transformations into modular steps. An example can
be found in [40], where information about preceding transformations is used in order to
determine which transformation steps should be performed later on in the process. MDSD
development processes are well-suited to be (locally) distributed, either by partitioning

115

115

application development into sub-tasks, or by assigning application and infrastructure de-
velopment tasks to different teams (cf. [39]).

3 The TRACES Approach

In this section we provide an overview on the concepts our approach is based on and the
different kinds of traceability links that are supported.

3.1 Assumptions

We assume that requirements are represented by a textual description (free text) and a
unique identifier. This notion also includes requirements captured in collaboration tools,
such as CodeBeamer [29]. We also assume that each model element, such as a class or
an association, has a unique identifier. This way, requirements and model elements can be
referenced unambiguously. No assumptions about the format of these identifiers are made,
however, as long as their uniqueness is guaranteed.

Since the field of model-to-model transformations is still an emerging one, our initial pro-
totype is based on a development process where code is directly generated from the mod-
els. Nevertheless, these models are both platform-independent and technology-independent.
As a basis for our prototype we have used the OMEGA modeling and code generation
infrastructure [22, 23], which will be described briefly in section 4 in conjunction with
CodeBeamer.

With regard to code generation, it is assumed that the source code is generated in its en-
tirety, i.e., no manual completion of the generated source code is required. As a conse-
quence, each individual code section is based on one ore more specific model elements.
Additionally, all relevant model elements, i.e., classes, associations, etc., including their
identifiers need to be available at generation time.

3.2 Explicit Traceability Links

Based on the assumptions described in the previous section, traceability between require-
ments and model elements is achieved by creating detailed design models where each
model element references all requirements it represents. Since all requirements have
unique identifiers (cf. section 3.1), these references are unambiguous.

Traceability between model elements and code sections is achieved by creating appropri-
ate references during code generation.These references can be introduced into the code
and can contain the identifier of the model element a section is based on. That way, un-
ambiguous references to model elements are created in the code. These can be exploited
to trace run-time problems back to specific elements in the original model, which means

116

116

that changes necessary to solve these problems can be applied at the model level and, thus,
debugging in MDSD environments is facilitated.

The creation of explicit traceability links is the responsibility of the modeler, and to some
degree of the MDSD infrastructure provider. While the former is responsible for introduc-
ing references from requirements to model elements manually when modeling a system,
the latter must make sure that the resources used in the MDSD process, such as source code
templates and code generators, are prepared to propagate these references across abstrac-
tion levels and to introduce them into the generated output. Explicit traceability links rep-
resent the developers knowledge about requirements and their realization in the developed
system. They consist of references between model elements and requirements descrip-
tions that cannot be introduced automatically. Additionally the introduction of traceability
links requires an object model that contains the information on how a particular traceabil-
ity link is represented throughout the model transformation and code generation process.
While the former must be created for each individual model, the latter is part of a reusable
infrastructure and only needs to be created once.

3.3 Implicit Traceability Links

In addition to the retrieval of explicit traceability information as described in the previous
section, implicit traceability links between requirements and code sections can be automat-
ically derived using explicit links (cf. requirements in section 1). The creation of implicit
traceability links can help to gain a more complete insight into a system by showing rela-
tionships between artifacts that the developer may not have been aware of.

For example, from the knowledge that model element A is involved in realizing require-
ments R1 and R2 and that code section C is based on model element A, we can conclude
that code section C is involved in realizing requirements R1 and R2, as well. Thus, we can
use the available information, for instance, to check if all requirements are implemented
in the application code. Similarly, the knowledge that any two model elements reference
the same requirement could be used to derive a traceability relationship between these two
model elements.

The creation of implicit or inferred (cf. [1]) traceability links requires an automatic anal-
ysis of existing explicit links in order to identify relationships that the developer has not
explicitly modeled, but that are of importance, e.g., when performing change impact anal-
yses to existing systems. Our approach supports this kind of analysis because each re-
quirement and each model element is given a unique identifier (cf. section 3.1). Based
on these identifiers, implicit links between requirements and code sections and between
model elements can be retrieved by parsing models and code.

117

117

4 OMEGA TRACES Prototype

We have implemented a prototype to demonstrate the utility and the practical applicability
of our approach. The prototype is fully integrated into the OMEGA modeling and code
generation infrastructure. Due to the fact that our approach does not rely on being used
in conjunction with OMEGA, but can be used with other MDSD tool chains, only a short
introduction is provided. For a more comprehensive discussion, the reader is referred to
[22] and [24].

4.1 The OMEGA Approach and Architecture

OMEGA (Ontological Metamodel Extension For Generative Architectures) is an approach
to model-driven development that is targeted at facilitating the rapid development of do-
main-specific modeling and code generation tools. The approach draws from Executable
UML (cf. [34]), i.e., it uses class and state chart models to describe software systems
at an abstract level. It strongly promotes the reuse of code generation artifacts, such
as model transformation scripts and source code templates. Instead of using a general-
purpose modeling language, OMEGA relies on domain-specific languages, represented
using hierarchies of domain metamodels, e.g., for the domain of web applications. The
use of metamodel hierarchies has been suggested by Atkinson and Kühne [9]. OMEGA
draws from this idea of describing problem domains on various levels of abstraction.

Based on the theoretical concepts outlined here, a prototype has been implemented as an
extension to the Eclipse development environment. Even though OMEGA relies on some
assumptions that clearly distinguish it from other model-driven software development ap-
proaches, our traceability framework does not depend on these assumptions or any other
specifics of OMEGA. Therefore, its use is not restricted to the OMEGA environment.
Rather, it can be adapted to be utilized in other code generation environments as well (cf.
[22]).

The current OMEGA prototype consists of three Eclipse plugins; the core is a generic mod-
eling tool which is supplemented by a metamodel implementation and a simple, template-
based code generator. Figure 1 shows an overview of the components that constitute the
OMEGA infrastructure; a detailed description can be found in [22].

Based on (1) the OMEGA modeling environment (section 4.2), the following subsections
relate the requirements outlined in the previous section to existing tool support, also for
ensuing process steps of (2) code generation (section 4.3), (3) explicit and implicit trace
capturing and validation (section 4.4) as well as (4) traceability information management
and visualization (section 4.5).

118

118

Figure 1: Basic structure of the prototype as described in ([22], p. 142)

4.2 Modeling

The modeling tool consists of a model editor and a number of views which allow a user
to edit models viewing specific aspects of them. It supports both static (class diagrams)
and dynamic (state chart) models. Additionally, easy to use requirements management,
allowing a user to add, edit, or delete project-specific requirements using a graphical user
interface (GUI) is supported.

To help automating traceability management, the software handles identifiers for require-
ments and model elements automatically: whenever a new requirement or model element
is created, a unique identifier for that artifact is automatically created. All identifiers are
displayed in the GUI. The identifiers of requirements are used when registering or unreg-
istering references to an arbitrary selection of requirements to a model element—which
can also be accomplished using the GUI. These references are then stored with the model
element in the serialized model.

Models are written to files in a special XML format using the XStream [13] library or,
alternatively to XMI, using the Eclipse ECore API ([18]). This way, all model data includ-
ing model elements as well as references to requirements and information on potential
submodels are stored in a single XML file, allowing external tools to retrieve traceability
information by parsing the model files.

4.3 Code Generation

The code generator takes a model from the modeling tool as input and transforms it to a
format more suitable for code generation than the original one. Based on this “genera-
tor model”, application code is generated automatically, using a template-based approach
[15]. During this transformation, all references to requirements are preserved.

For the purpose of generating executable systems from the generator model, the Velocity
Template Engine [8] is used. The template engine has access to all model data using

119

119

a context object, which also includes the identifiers of the model elements. Thus, the
inclusion of appropriate statements in the templates allows the creation of comments in
the source code referencing the model elements each code section is based on.

4.4 Trace Capturing

When using the TRACES tool for capturing traces among requirements and models, the
two types of traceability links described in section 3 need to be distinguished. In the
following sections, we describe the ways in which explicit and implicit traceability links
are handled in our prototype.

4.4.1 Explicit Traceability Links

Traceability links between requirements and model elements are created using the mod-
eling tool. This is done by adding references to all relevant requirements to the model
elements. Figure 2 shows a screenshot of the user interface for associating textually repre-
sented requirements with model elements in the development environment. The attribute
DateOfBirth, selected in the lower section of the screen is needed to realize the re-
quirement of storing the date of birth of every customer.

The relationship between model elements and requirements usually is a many-to-many
relationship, meaning that several model elements can reference the same requirement, and
that one requirement can be realized by one or more model elements. OMEGA supports
this kind of relationship by allowing references to an arbitrary number of requirements for
each model element. As figure 2 shows, the list of requirements uses check boxes allowing
a modeler to select and add references to an arbitrary number of requirements.

Traceability links between model elements and code sections are created automatically
during the code generation process. The associations between model elements and output
artifacts are preserved in all internally used intermediate model representations and thus
can be introduced into the generated output resources, such as Java source code files.
No additional user input is necessary to do this, as the generator model contains all the
information needed and the format of the links is defined by the generator templates. While
this procedure increases ease of use, it also has a disadvantage: the templates defined
for the output artifacts must contain variables that the code generator can replace with
references to the model level. Therefore, an initial adjustment of the templates to being
used in conjunction with the traceability module is required.

4.4.2 Implicit Traceability Links

OMEGA TRACES supports the extraction of implicit traceability links as described in
section 3.3 by serializing the models in a special XML format, which also contains the
explicit links between model elements and requirements.

Currently, the prototype relies on external tools for the extraction of implicit traceability

120

120

Figure 2: Creating traces between model elements and requirements

links from serialized models and source code artifacts. We have used our prototype in
conjunction with the TraVis trace management and visualization tool (cf. [27]) and in the
following sections will provide an overview on our findings.

4.4.3 Validation of Traceability Links

Our approach supports validation of traceability information in various ways. On a most
basic level, links between model elements and related requirements can be validated au-
tomatically. Thus, using each requirement’s unique identifier, requirements that no longer
exist can be identified and references to these requirements can be deleted. Due to per-
formance issues, a lazy validation and update policy was chosen for this kind of trace
validation in our prototype. Therefore, references to requirements are validated each time
a model element is accessed. Invalid references are then deleted automatically.

The correctness of links between model elements and related requirements has to be val-
idated manually, however, since the modeller ist responsible for introducing references
from requirements to model elements (cf. section 3.2). Consequently, the modeler also
must make sure that the references that have been introduced remain valid. To facilitate
the discovery of broken traceability links, trace visualization and management facilities
can be employed as described in the following section.

121

121

4.5 Trace Management and Visualization

In order to support model-driven development efforts in locally distributed scenarios, we
suggest the use of a collaborative software development platform (CSDP), that supports
the management of all artifacts of a development project and provides controlled access to
these resources to the stakeholders involved.

Additionally, the CSDP contains different synchronous and asynchronous communication
means as well as an embedded wiki engine to facilitate collaborative documentation and
information sharing. In our approach, requirements, in the form of issue tracker items,
models of different levels of abstraction as well as the source code of an application are
managed within a CSDP. Every artifact is supplied with a unique identifier, which also
enables the built-in wiki engine to refer to these, e.g., when writing the documentation for
future maintenance (see [27] and [29] for concrete features of the CodeBeamer CSDP).

Thus, the associations among elements can be managed as CSDP hyperlinks. Moreover,
we have developed a complementary tool for trace visualization (TraVis) that is tailored
at supporting traceability management even in distributed MDSD settings (see figure 3).
Commonly used requirements management tools, on the other hand, do not provide full
end-to-end traceability, whereas commonly available collaboration platforms lack inte-
grated support for collaborative requirements elicitation, specification, and management
processes (cf. [27] for a more detailed demarcation of existing traceability management
tools).

Figure 3: Visualizing traces between models, requirements, and tracker items

Traces among requirements and different models can be extracted from the CSDP and
project managers or developers are enabled to manage the traceability information visually,
i.e., discover and repair inconsistencies. In addition, TraVis provides functionality for

122

122

conducting impact analyses starting from one particular artifact, e.g., a requirement or
model, and exploring those artifacts affected when changing something at the point of
origin. This in turn allows for detailed calculations on the estimated entailing costs of a
particular change and thus its economic feasibility [37].

5 Contributions and Limitations

In the previous sections we have described the set of tools that support our approach to
tracing requirements across different stages of artifact elaboration in model-driven de-
velopment processes. The main contribution of our approach consists in revealing and
proposing a prototypical solution for maintaining end-to-end traceability in distributed
model-driven development processes. In doing so, a continuous and integrated tool chain
for supporting software modeling and code generation (OMEGA), trace capturing and val-
idation (CodeBeamer), well as trace information management and visualization (TraVis)
is presented.

Moreover, the basic applicability of the approach has been shown by implementing the tool
chain mentioned above based on both existing development tools and integrated custom-
built prototypes that have already been evaluated in other related contexts (see [27]).

Future extensions to the prototype will include tools for parsing models and code. These
will provide the means to perform a number of tasks, such as automatically deriving im-
plicit traceability links from the explicit links (cf. section 3.3), the validation of these links,
and the interpretation and visualization of the traceability information. TraVis is currently
evaluated and further adapted to the TRACES approach for visualization of traces among
model elements stored in a CSDP [37].

6 Discussion and Related Work

The general use of identifiers and references is a basic technique utilized in a wide range
of application domains, so it will not be discussed further, here. In this section, we will
provide an overview of related research efforts in the field of requirements traceability
in order to justify the TRACES approach and highlight its unique features as opposed to
existing solutions. This way, an evaluation of the approach’s unique utility is conducted
descriptively and based on the current body of knowledge in software engineering and
information systems research [26].

There are many instances in literature describing automatic or semi-automatic approaches
to trace capturing and management. For example, Antoniol et al. have developed a num-
ber of approaches based on information retrieval (IR) techniques [4, 2, 6, 3] and on the
observation of test scenarios [7] that are largely supported by tools automating the pro-
cess. Similar research on applying IR for candidate link generation has been conducted
by Huffman-Hayes et al. [28]. However, these approaches inherently do neither support

123

123

MDSD processes nor distributed collaboration processes. TRACES, on the other hand,
was purposefully designed to support this class of software engineering problems.

Egyed also suggests the use of test scenarios in order to obtain traceability information
[19, 20, 21]. This approach can only be partly automated, though, due to the fact that
traces need to be established and managed mainly manually. Spanoudakis et al., on the
other hand, describe a rule-based approach which can almost completely be automated
[38]. So do Jirapanthong and Zisman, who develop another rule-based approach to the
automatic generation of traceability links [30]. Since model-to-model and model-to-code
transformations also contain rules, these approaches are somewhat comparable to ours.
However, as it is the case with the IR approaches, none of the rule-based approaches can
be smoothly integrated with existing MDSD and CSDP tools in order to support distributed
MDSD.

There are only a few authors emphasizing the importance of tool integration with respect to
traceability. Even though some tool support for traceability, i.e., trace capturing, manage-
ment, and analysis exists, Aizenbud-Reshef et al. conclude that there is a lack of integrated
solutions [1]. Complementarily, Kowalczykiewicz and Weiss stress the importance of tool
integration [32]. They present a first prototype for an integrated tool platform with support
for traceability and change management whereas there are no particular capabilities for
MDSD yet.

Therefore, the unique utility of the OMEGA TRACES approach consists of allowing a
relatively high degree of automation with respect to trace generation and capturing traces
among requirements and model elements at different levels of abstraction due to a broad
information basis stored centrally within the collaboration platform. Moreover, TRACES
is designed to integrate with existing development environments and collaboration plat-
forms in order to support collaboration in distributed model-driven development processes
commonly found in outsourced and offshore software projects (cp. [37]). In addition, the
integration with TraVis accounts for visual traceability and change management in dis-
tributed projects (see section 4.5). As has been shown, both analytically and empirically,
in [27], collaborative and visual traceability management accounts for superior produc-
tivity as compared to commonly available solutions. Therefore, this custom-developed
solution is chosen here in combination with the TRACES prototype.

7 Conclusion

We have presented an easy to use, yet inherently powerful approach to traceability and
a prototypical implementation, which allows a high level of automation, tool integration,
and distributed collaboration. By integrating our prototype with the Eclipse and Code-
Beamer platforms, we have demonstrated that the approach can easily be used in con-
junction with widely accepted development environments for realizing locally distributed
MDSD projects. Moreover, our prototype supports automated generation, validation, and
update of traceability information.

A main advantage of our approach is the ease of use and therefore easy adoption for devel-

124

124

opers, since little additional effort is necessary to create a reasonable amount of traceabil-
ity information that can be retrieved from models and code using external tools, such as
TraVis. Due to the fact that all information needed to link requirements to model elements
and source code and other textual resources is stored in XML/XMI-serialized models, our
approach can easily be adapted to other modeling and code generation environments that
use these standards.

There are, however, a few minor issues that will be addressed in the near future. Most
significantly, the current strategy of validating and updating traceability links allows “in-
valid” model states where model elements reference requirements that no longer exist.
This is because a lazy validation and update policy was chosen for the prototype to im-
prove its performance. However, a more efficient solution for this particular problem will
be developed and evaluated empirically in case study and/or experimental settings.

References

[1] Aizenbud-Reshef, N., Nolan, B. T., Rubin, J. and Shaham-Gafni, Y.: Model Traceability. IBM
Systems Journal, 45 (2006) 515-526

[2] Antoniol, G., Canfora, G., Casazza, G., De Lucia, A. and Merlo, E.: Tracing Object-Oriented
Code into Functional Requirements. Proceedings of the IEEE International Workshop on Pro-
gram Comprehension (IWPC), Limerick (June 2000)

[3] Antoniol, G., Canfora, G., Casazza, G. and De Lucia, A.: Information Retrieval Models for
Recovering Traceability Links between Code and Documentation. Proceedings of the IEEE
International Conference on Software Maintenance (ICSM), San Jose (October 2000)

[4] Antoniol, G., Canfora, G., De Lucia, A. and Merlo, E.: Recovering Code to Documentation
Links in OO Systems. Proceedings of the IEEE Working Conference on Reverse Engineering
(WCRE), Atlanta, Georgia (October 1999)

[5] Antoniol, G., Caprile, B., Potrich, A., and Tonella, P.: Design-code Traceability Recovery:
Selecting the Basic Linkage Properties. Science of Computer Programming, 40 2001, 213-234

[6] Antoniol, G., Casazza, C. and Cimitile, A. Traceability Recovery by Modeling Programmer
Behavior. Proceedings of the IEEE Working Conference on Reverse Engineering (WCRE),
Brisbane (November 2000)

[7] Antoniol, G., Merlo, E., Gueheneuc, Y.-G. and Sahraoui, H.: On Feature Traceability in Object
Oriented Programs. Proceedings of the International Workshop on Traceability in Emerging
Forms of Software Engineering (TEFSE), Long Beach (November 2005)

[8] Apache Software Foundation: The Apache Velocity Project. http://velocity.
apache.org (2007)

[9] Atkinson, C., Kühne, T.: The Role of Metamodeling in Model-Driven Development. Interna-
tional Workshop in Software Model Engineering (held in conjunction with UML ’02), Dresden
(October 2002)

[10] Bézivin, J.: MDA: From Hype to Hope, and Reality. Invited Talk at UML 2003, San Francisco
(October 2003)

125

125

[11] Booch, G., Brown, A., Iyengar, S., Selic, B.: An MDA Manifesto. MDA Journal, 2004

[12] Brown, A.: Model driven architecture: Principles and practice, Software and Systems Model-
ing, Volume 3, Number 4 (December 2004), pp. 314-327, Springer, Berlin, Heidelberg, 2004

[13] Codehaus: XStream. http://xstream.codehaus.org(2007)

[14] CMMI Product Team: CMMI for Systems Engineering/Software Engineering/Integrated Prod-
uct and Process Development/Supplier Sourcing, Version 1.1 Carnegie Mellon Software Engi-
neering Institute, 2002

[15] Czarnecki, K. and Helsen, S.: Classification of Model Trans-formation Approaches. 2nd OOP-
SLA Workshop on Generative Techniques in the Context of Model-Driven Architecture, Ana-
heim, CA, 2003.

[16] Domges, R. and Pohl, K.: Adapting Traceability Environments to Project-Specific Needs Com-
munications of the ACM, 41 (1998) 12, pp. 54-62

[17] Eclipse Foundation: Eclipse Development Platform. http://www.eclipse.org (2007)

[18] Eclipse Foundation: Eclipse Modeling Framework. http://www.eclipse.org/
modeling/emf/ (2007)

[19] Egyed, A.: A Scenario-Driven Approach to Traceability. Proceedings of the International Con-
ference on Software Engineering (ICSE), Toronto (May 2001)

[20] Egyed, A.: A Scenario-Driven Approach to Trace Dependency Analysis. IEEE Transactions
on Software Engineering (TSE), 29 (2003) 2, pp. 116–132

[21] Egyed, A.: Resolving Uncertainties during Trace Analysis. Proceedings of the 12th ACM
SIGSOFT Symposium on Foundations of Software Engineering (FSE), Irvine, CA (November
2004)

[22] Gitzel, R.: Model-Driven Software Development Using a Metamodel Based Extension Mech-
anism for UML. Peter Lang Europäischer Verlag der Wissenschaften, Frankfurt (2006)

[23] Gitzel, R., Ott, I., Schader, M.: Ontological Extension to the MOF Metamodel as a Basis for
Code Generation, in: The Computer Journal, 50 (2007) 1, pp. 93–115

[24] Gitzel, R., Schwind, M.: Using Non-linear Metamodel Hierarchies for the Rapid Development
of Domain-Specific MDD Tools. Proceedings of Software Engineering Applications (SEA),
Dallas, Texas (November 2006)

[25] Glass, R.L.: The Generalization of an Application Domain. IEEE Software, 17 (2000) 5, pp.
127–128

[26] Hevner, A. R., March, S. T., Park, J., Ram, S.: Design Science Information Systems Research
MIS Quarterly, MISQ Discovery, 28 (2004) 1, pp. 75–105

[27] Hildenbrand, T.: Improving Traceability in Distributed Collaborative Software Development –
A Design Science Approach. Dissertation Thesis, University of Mannheim, Germany (2008)

[28] Huffman Hayes, J., Dekhtyar, A., Sundaram, S. K.: Advancing Candidate Link Generation for
Requirements Tracing: The Study of Methods. IEEE Transactions on Software Engineering,
32 (2006) 1, pp. 4–19

[29] Intland Software: Collaborative Software Development Solution. http://www.intland.
com/products/codebeamer.html (2007)

126

126

[30] Jirapanthong, W. and Zisman, A.: Supporting Product Line Development through Traceability.
Proceedings of the Asia-Pacific Software Engineering Conference (APSEC), Taipei (December
2005)

[31] Kleppe, A., Warmer, J. and Bast, W.: MDA Explained - The Model Driven Architecture :
Practice and Promise. Addison-Wesley, 2003.

[32] Kowalczykiewicz, K. and Weiss, D.: Traceability: Taming uncontrolled change in software
development. Proceedings of the National Conference on Software Engineering, Tarnowo
Podgórne, Poland (2002)

[33] Lindvall, M., Sandahl, K.: Practical Implications of Traceability. Software – Practice & Ex-
pererience, 26 (1996) 10, pp. 1161-1180

[34] Mellor, S., Balcer, M.: Executable UML - A Foundation for Model-Driven Architecture.
Addison-Wesley, Hoboken, 2000.

[35] Miller, J., Mukerji, J.: MDA Guide Version 1.0.1, OMG Document Number: omg/2003-06-01,
OMG, http://www.omg.org/cgibin/doc?omg/2003-06-01

[36] Redmiles, D., van der Hoek, A., Al-Ani, B., Hildenbrand, T., Quirk, S., Sarma, A., Filho, R.
S. S., de Souza, C.R.B. and Trainer, E.: Continuous Coordination: A New Paradigm to Sup-
port Globally Distributed Software Development Projects WIRTSCHAFTSINFORMATIK, 49
(2007) Special Issue, pp. S28-S38

[37] de Souza, C.R.B., Hildenbrand, T. and Redmiles, D.: Towards Visualization and Analysis of
Traceability Relationships in Distributed and Offshore Software Development Projects. Pro-
ceedings of the First International Conference on Software Engineering Approaches For Off-
shore and Outsourced Development (SEAFOOD’07), Springer Lecture Notes in Computer
Science (LNCS), Zurich, Switzerland (February 2007).

[38] Spanoudakis, G., Zisman, A., Perez-Minana, E. and Krause, P.: Rule-based generation of
requirements traceability relations. Journal of Systems and Software, 72 (2004) 2, pp. 105–
127

[39] Stahl, T., Voelter, M.: Model-Driven Development: Technology, Engineering, Development.
Wiley, 2006

[40] Vanhooff, B. and Berbers, Y.: Breaking Up the Transformation Chain. 20th Annual ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA’05), Workshop on Best Practices for Model Driven Software Development, San
Diego (October 2005)

127

127

128

On the Role of Communication, Documentation and
Experience during Testing - An Exploratory Study

Timea Illes-Seifert, Barbara Paech
University of Heidelberg,

Institute of Computer Science, Im Neuenheimer Feld 326
Germany-69120 Heidelberg

{illes-seifert, paech}@informatik.uni-heidelberg.de

Abstract: Nowadays, the quality of software is becoming more and more a competitive factor.
As complete testing is impossible, testers have to make decisions, e.g. to choose which parts of the
software have to be tested in which way. For this purpose, testers need a lot of information, such as
input documentation which serves as a basis for the derivation of test cases or information on the
project status which serves as a basis for planning the testing process. Thus, testers rely on up-to-
date and complete information in order to make sound decisions. Consequently, the quality of the
testing process depends on the quality of the information sources available for the testers. This
paper presents the results of an exploratory study conducted during the SIKOSA research project
with expert testers of our industry partners in order to identify the most valuable sources of
information during testing. Particularly, we conducted interviews in order to investigate which
documents are often used by testers, as well as the role of communication and experience. Our
results show that defect reports are very valuable. User manuals and problem reports are equally
important, because they represent real usage of the software and serve testers as an input for
realistic test cases. In addition, our results show the influence of an independent testing team on
test process characteristics.

1. Introduction

Spectacular software failures like the crash of the Ariane 5 rocket [Do97], but also
software failures which occur daily in business software show that testing activities are
essential in order to detect defects before release. However, complete testing is
impossible, and as a consequence, testers have to make a lot of decisions during the
testing process in order to constrain the set of potentially infinite number of test cases to
a set which can possibly detect the most critical defects. Thus, testers make decisions,
e.g. on the test design technique to be used in order to derive test cases or on the test data
which serve as input for test cases. In order to conduct all these decisions thoroughly,
testers need complete and up-to-date information, e.g. about requirements, project status,
etc. The main assumption of our work is that the better the information and the
information flow between testers and other project members (e.g. requirements
engineers or project manager) is, the better will be the quality of the decisions made
during testing. The knowledge of testers’ information needs allows to provide testers
with the right information at the right time and to define the best way of providing it
(e.g. documented, verbal). Based on this knowledge, test process improvements can be
designed and implemented.

129

129

In this paper, we present the results of an exploratory study, performed during the
SIKOSA research project with expert testers, the aim of which is to analyze information
flow within the testing processes. Particularly, we analyze which documents are
frequently used and which roles are consulted when making decisions during testing. In
addition, we investigate the role of experience needed to make sound decisions. The
results of the study serve as a basis for recommendations regarding the optimization of a
testing process.

The remainder of this paper is organized as follows. Section 2 introduces a conceptual
decision framework, containing decisions to be made during the testing process. We
used this framework as the basis for our study during data collection and analysis. In
Section 3, related work is presented. Section 4 describes the design of the study. We
conduct expert interviews for exploring information flow patterns in testing. Section 5
presents the findings whereas Section 6 deals with the threats to validity of our study.
Finally, Section 7 concludes the paper.

2. Decisions within the Testing Process

This section introduces some basic concepts and the decision framework which
served as a basis for the exploratory study. In previous research work, we analyzed the
testing process [IHPR05], [BIL07a], [BIL07b] and developed a decision framework,
which identifies the decisions to be made during the testing process and assigns them to
decision levels.

Test planning and control (TP&C). Since testing is a complex process, thorough
planning and monitoring is needed. Consequently, during TP&C activities testers decide
on schedules, resources, and efforts estimated for testing activities, as well as on risks
(which threaten the successful completion of the testing).

Test strategy definition (TSD). The main goal of TSD is to define which parts of the
software should be tested in which way (e.g. how intensively or with which test design
techniques) in order to find the most critical defects fast. Correspondingly, testers decide
on test end criteria, defining conditions which have to be fulfilled to finish testing
activities. In addition, decisions on the test design techniques used to develop test cases
(to find the most critical defects) have to be made and a test model can be selected. A
test model, e.g. a state model facilitates the derivation of test cases. Closely related to the
selected model, the decision on the representation for the model, as well as coverage
criteria, e.g. transition coverage or state coverage in case of a state model can also be
decided during TSD. In the case of automation, testers also have to decide on the degree
of automation.

130

130

Test analysis and design (TA&D). During test analysis and design activities, testers
decide on test cases including test steps, test data and test sequences. In addition, testers
review the documentation to be used as input for testing activities and decide on their
quality, e.g. testers make decisions about the testability of the requirements specification
document. If the requirements specification does not fulfil the required quality from the
testers’ point of view some rework is needed.

Test execution (TE). During test execution, decisions on the evaluation of the
executed test cases (called test runs) have to be made. Consequently, testers have to
decide, whether a test run revealed a defect or not.

Test cycle evaluation (TCE). During test cycle evaluation, the results of the test runs
have to be analyzed. Thus, testers check if the test end criteria have been fulfilled and
decide whether testing activities can be finished or not.

3. Related Work

Similar work, analysing information gathering strategies of maintainers is described
in [S202] and in [TL01]. Most related work focuses on the description of the test
process, e.g. the fundamental test process presented in [SLS06] addresses phases and
activities to be passed through when testing a software system. The IEEE standard for
software test documentation [IEEE98] specifies all artefacts to be created during the
testing process, e.g. the test plan; the information flow, as well as the information
sources needed are not part of the standard. Another group of related work represents
test process improvement models like TPI (Test Process Improvement) [KP02] or test
maturity assessment models, e.g. TMM (Testing Maturity Model) [BSC96]. The focus of
these models is not the information flow within the testing process, but the steps for its
improvement, respectively on criteria to assess the maturity of the organizational testing
process. None of the presented references contains empirical studies. The work which is
most related to our work is [Da05]. The authors present guidelines for requirements
engineering practices which facilitate testing. In contrast to the work in [Da05] which
addresses requirements engineering processes and artefacts, this study has a larger focus
including other information sources of the software development project. In addition, we
analyze communication, as well as the role of experience during testing. To our
knowledge, this is the first study exploring the information flow during the testing
process in detail. Empirical studies are essential in understanding the nature of
information processes. This is also the case with the testing process. By this study,
previously formulated advices in literature which are not supported by empirical studies
could be confirmed. For example, the outstanding role of the requirements specification
and of previously found defects for the testing process could be confirmed. This study,
however, also allows insights which have not been yet considered in literature, e.g. the
role of the user for testers. Knowing that information from customer is so valuable for
testers, processes can be adapted appropriately in order to facilitate the information flow
from customers to testers.

131

131

4. Study Design

In this chapter, we present the research questions; we introduce the characteristics of
the participants of the exploratory study and provide an overview of the data collection
and data analysis methods used to gather and to investigate the data.

4.1. Research Questions

Subsequently, we will outline the research questions addressed in this study and the
rationales behind. The respective questions and rationales are listed in Table 1.

Table 1: Research Questions

Questions Rationale

Q1: Which documents
are frequently used by
testers when making
which testing decisions?

The main assumption of this research question is that documents are
an important information source for all participants of the software
engineering process, including testers. To know which documents
are frequently used by testers is important, because quality assurance
activities concerning information sources often consulted by testers
can be intensified purposefully.

Q2: What role does
communication play as
an information source?

The main assumption of this question is that documentation is never
completely sufficient as input to the testing process, so that details
have to be clarified in face-to-face discussions. And even if
documentation was complete, up-to-date and unambiguous,
communication is often preferred to reading documents.

Q3: What is the role of
experience in testing?

This is an important question to be analysed, because it is important
to know to what extent and for which decisions testers rely on their
experience instead of documentation. Knowing this enables to
decide: Which activities are suited for test automation? Which
decisions are suited to be executed by novice testers?

4.2. Participants

The main criterion for the selection of the participants was their experience in the
testing area. As a consequence, all participants out of five organizations had at least three
years of experience, and most of the participants had five to ten years of experience.
Three participants had even more than ten years of experience. Table 2 summarizes the
characteristics of the participants. Organisation A and E develop standard software,
whereas the other organisations develop individual software. Only organisation C
develops software for in-house use. The testers in organisation A work on the same
project, whereas the testers in the organisations C and D work on different projects.

132

132

Table 2: Participants’ Characteristics

Experience
(in years)

Role(s) Main Tasks Organisation

>10 Test designer Test planning
Test case design
Manual test execution

D

>10 Test designer Test planning
Manual test execution

D

>10 Test manager Establishment of a standard testing process
including supporting tools

B

>10 Tester, Test manager Test planning
Manual test execution

E

10 Test manager,
Quality engineer

Test planning
Test case design
Monitoring system operation

D

10 Test manager, test
designer

Test management and control
Test case prioritization
Human resources management and
motivation

A

5 Test manager Product development,
Manual test execution and protocol
Coordination of testing activities
Product roll-out (= deployment in the
productive environment)

C

5 Test designer Supports test manager in planning
activities
Test case design
Manual test execution and protocol

A

5 Test designer Test case design
Execution of test cases
Fault localisation
Regression testing

D

3 Test automation
engineer

Manual test execution and protocol
Test automation: implementation of the
test automation framework

A

3 Test manager Test planning
Manual test execution

C

4.3. Study Process

The study was performed as a qualitative study. Qualitative studies use data in form
of text, images and sound drawn from observations, interviews and documentary
evidence, and analyse it using methods that do not rely on precise measurement to yield
their conclusions [Se99]. We used this research method because it helps to gain more
experienced with the analysed phenomenon. In our case, our goal was to get a deep
understanding of the information flow during the testing processes.

133

133

The study was conducted in the form of seven face-to-face interviews and one
telephone interview. Three interviewees completed the questionnaire “offline”. The
interviews were semi-structured, based on a questionnaire sent in advance to the
participants. The interviews took three hours on average.

The questionnaire itself consists of three parts. The first part contains questions
regarding the testers’ experience and role in the organization, as well as questions on the
organizational testing process. Particularly, the interviewees were asked about the testing
decisions to be made during the testing process in their particular organisation. The
second part of the questionnaire addresses communication and documentation sources
during testing, whereas the third part contains questions regarding the role of experience
within particular activities. In the second part of the questionnaire, the interviewees got a
list of documents that could theoretically be used during testing decisions, e.g.
requirements specification or design specification. Then we asked the interviewees
which documents are needed when making particular decisions. The interviewees were
also asked to indicate documents not contained in the list, as well as a “wish list”
containing documents currently not available to them. Similarly, we asked the
interviewees which specific roles are consulted when making particular decisions. In the
third part of the questionnaire, we asked the interviewees to rate the experience needed
to make particular decisions. The questionnaire can be found in [IP08].

Data Collection. In the data collection phase, field notes taken during the interviews
were coded and stored in a study data base. Coding [Se99] is a procedure which
transforms qualitative data into quantitative data by assigning values to qualitative
statements. This allows the combination of qualitative and quantitative methods for data
analysis. During the coding, interviewees were contacted when ambiguities in the data
occurred.

To assure the validity of our results, we used multiple information sources for
evidence as recommended in [Yi03]. Thus, beside interviews, document analyses have
been performed. We analyzed test case specification templates and test case
specifications, test protocols and test process descriptions, as well as input
documentation, e.g. requirements in the organization, the testers belong to. Furthermore,
we got insight into other information sources like discussion forums. Another aspect
considered to assure validity was the representativeness of the interviewees with regard
to their qualification, experience and testing tasks. All interviewees are experienced
testers, four of them with more than ten years of testing experience.

Data Analysis. For the data analysis, we used different qualitative and quantitative
analysis methods. Quantitative methods were used in order to determine patterns and
tendencies in the data, e.g. by counting which role is consulted most of all during the
testing process. Qualitative methods were used to search for an explanation for these
particular tendencies. Thus, we performed cross-case analysis [Se99] and partitioned the
data into different categories by using different criteria, e.g. we partitioned the data
depending on the testing group’s organization as an independent team or not.

134

134

5. Findings

In this section, the analysis of the results of the study is presented. First, we detail the
test process characteristics, including the roles and decisions mentioned by the
interviewees. Then, we discuss the documentation, communication and experience
characteristics. Finally, we present the problems during the testing process as mentioned
by the interviewees.

5.1. Test Process Characteristics

Test planning and control. With the exception of risk analysis, all decisions to be
made during TP&C (as described in section 2) are equally often mentioned to be
performed. 9 out of 11 interviewees mention that a particular decision is made during the
testing process in their organization. Only about half of the interviewees (6 cases of
evidence) cited that a risk analysis is performed when deciding on relevant risks
influencing the testing project. Only 4 of the interviewees report that all TP&C related
decisions are in the testing team’s field of responsibility. Three interviewees even
indicate that all TP&C related decisions are performed by persons not belonging to the
testing team, mostly by the project manager. In all other cases, TP&C related decisions
are partially made by the testing team.

Test strategy definition is a task not well established within the testing processes we
analyzed. Only few decisions are indicated to be made, where the definition of test end
criteria is a decision mentioned most by the interviewees (9) followed by the selection of
the test design technique (5). All other activities are rarely cited.

Test analysis and test design. Decisions on test steps, on test data and on test
sequences are indicated to be made by nearly all interviewees, whereas the assessment of
the testability, as well as the assessment of the quality of the input documentation is
indicated only by about half of the interviewees. These decisions are mostly made by the
testing team. Within organizations not having an independent testing team, these
decisions are performed by developers (where the “tester” is not the developer of that
particular part of the software). Since most organizations do not automate tests, the
realization of test cases and consequently all decisions related to test automation are
confirmed only by a small part of the interviewees.

Test execution and test cycle evaluation. All interviewees report to make decisions
concerning the success or failure of particular test runs. The decision on the test run
evaluation is mostly made by testers, in some cases by the whole testing team. The
evaluation of a test cycle is only performed by fewer than half of the interviewees.

135

135

To sum up, it is not surprising that decisions indicated to be made by almost all
interviewees concern test decisions in the narrow sense (test case definition and test
execution). However, TP&C, as well as TA&D related decisions are each indicated to be
performed on average by 9 out of 11 interviewees. Decisions concerning the TCE, as
well as the TSD are made on average by fewer than half of the interviewees. Figure 1
shows the test process characteristics as mentioned by the participants.

5.2. Documentation Characteristics

TP&C related decisions, particularly decisions on effort and schedule, require the
most documentation, followed by TA&D decisions, especially decisions on test data and
test steps, as well as on the definition of test sequences. The interviewees report a high
need of documentation during TCE, especially the requirements and design
specification. Decisions during TSD and TE require little documentation.

The role of the requirements specification. The requirements specification is by far
the most important document for testers (46% of all decisions need the requirements
specification as input, see also Figure 2.). During TP&C, the requirements specification
is especially used for decisions concerning effort estimation and scheduling, whereas
during TA&D the requirements specification is especially used to decide on test cases
(including test steps, test data and test sequences). In addition, the requirements
specification is also used during TE in two contexts. First, when testers are pressed for
time, they report to use the requirements specification as test specification. In this case,
decisions on the test design are made concurrently to the test execution. Second, in case
of a failure or of an unexpected behaviour, testers consult the requirements specification
in order to analyze if it is a real failure. All testers emphasize the importance of the
requirements specification to be up-to-date and complete.

Learning from defects. Previously found defects are a very valuable information
source for testers, whereas both defects found by the test team, as well as defects
reported by customers are almost equally important (25%, respectively 24% of all
decisions require customer problem report respectively bug reports as input, see also
Figure 2). Testers report that previously found defects are good indicators for defects in
the software because of following reasons:

(1) Many defects persist across different versions. Two categories of persisting
defects are reported by testers: permanent defects, which occur across all
versions and “jumping” defects, which regularly “jump” over a constant
number of versions.

(2) The correction of a defect introduces more defects.

136

136

F
igure

1:T
estP

rocess
C

haracteristics

TP&C

11
11

10
10

9
9

9
9

6
6

6

5
5

5

4

3
3

1

0 2 4 6 8 10 12Test steps

Test dataTest sequences

Comparing expected and actual results

Scheduling
Resource planningEffort estimationTest end criteria

Risk analysis

Review
of the input documentation

Testability of the input documentation

Test design technique

Evaluation of the test cycleOther activities
Test model

Coverage criteria for the selected test models
Degree of automation

Representation for a test model

Decisions

Interviewees making the corresponding decision

TA&D

TA&D

TA&D

TE

TP&C

TP&C

TP&C

TSD

TP&C

TA&D

TA&D

TSD

TCE

TSD

TSD

TSD

TSD

Other decisions

137

137

Knowing potential defects, testers can decide on the test effort to be spent to test
particular areas of the software. Defects also serve as input for TA&D. On the one hand,
testers select test cases to be re-executed if they revealed a defect. On the other hand,
testers develop new test cases on the basis of known defects using different strategies,
which we refer to as intensifying, expansion and transferring.

(1) Intensifying: Testers investigate the functionality more intensively and usually
vary the test data, for example, or the preconditions of the test case.

(2) Expansion: Testers search for functionality used by the functionality which
revealed the defect or using this functionality.

(3) Transferring: Testers search for similar functionality (which could contain the
same defect).

Figure 2 illustrates the documents needed as input during testing as mentioned by the
interviewees.

25 24 22 19
14 13 11

3 2 2

46

0
5
10
15
20
25
30
35
40
45
50

Re
qu
ire
me
nts
sp
ec
ific
ati
on

Cu
sto
me
r p
rob
lem

rep
ort
s

Bu
g r
ep
ort
s

Pr
ev
iou
s v
ers
ion
s o
f th
e s
oft
wa
re

De
sig
n s
pe
cif
ica
tio
n

No
tes
, e
ma
ils

Re
vie
w
pr
oto
co
ls

Us
er
ma
nu
al

Pu
bli
sh
ed
bu
g l
ist
s

Co
de

Sim
ila
r S
oft
wa
re

Document

Pe
rc
en
ta
ge

of
de
ci
si
on

re
qu

ir
in
g
a
pa
rt
ic
ul
a

do
cu
m
en
ta

s
in
pu
t

Figure 2: Documentation needs during testing

The role of the user within the testing process. Even though only few of the testers
are in direct contact with users, the users play an important role during testing. Using
documentation produced for and by users, testers can develop more realistic and more
relevant test cases. Thus, testers bridge the gap to the customer by using customer
problem reports and user manuals in order to develop realistic test scenarios and in order
to define test environments and configurations close to the real productive environments.
Consequently, this documentation is very valuable when deciding on test data and test
steps. One interviewee also mentioned to use the user manual to get familiar with the
software system.

138

138

Wish lists. When asked for information sources, which are not available but which
were useful for testing, 4 interviewees emphasize that up-to-date and complete
requirements are crucial and more important than other documented information sources.
Interviewees cite following reasons why requirements specifications are usually not up-
to-date and complete: time pressure at creation time, as well as the fact that requirements
engineers are not aware of the tester’s information needs.

5.3. Communication Characteristics

During the testing process, most communication occurs among the requirements
engineer and the project manager followed by the developer. Testers have direct contact
with the customer only when the customer is “in-house”. Apart from this, there is no
direct communication between testers and customers, in spite of their request for this
type of communication. Figure 3 shows the percentage of decisions in which a role is
involved.

Most communication is reported to take place during TA&D, where the main
communication partners mentioned by the interviewees are requirements engineers and
project managers. However, during TE, there is also a great need for communication.
The main contact persons are requirements engineers and developers mostly in the
presence of a failure. Communication during TP&C occurs mostly with the project
manager. However, little communication takes place during TSD and TCE.

Figure 3: Communication Characteristics

Communication characteristics

0
5
10
15
20
25
30
35
40

Re
qu
ire
me
nts
En
gin
ee
r

Pr
oje
ct
Ma
na
ge
r

Ot
he
rs

De
ve
lop
er

Cu
sto
me
r

Pr
od
uc
t M
an
ag
er

Ar
ch
ite
ct

Ma
rke
tin
g

Roles

co
nt
ac
te
d

% of decisions
made by a role

139

139

5.4. Experience Characteristics

The interviewees report that most experience is required during TP&C and during
TCE. In addition, a lot of experience is required for TA&D. In contrast, little experience
is required for decisions related to TSD and to TE.

Among the decisions made during the testing process, the definition of test data is
stated to be the decision which requires the system specific experience at most. All
interviewees indicate that this decision requires very much experience. In addition, this
is the only decision which solely requires system specific experience. Effort estimation
and risk analysis, as well as the evaluation of the test cycle are also indicated by the
interviewees to require high system specific experience. In general, almost all decisions
require more system specific than general experience. Managerial activities, e.g.
scheduling, resource planning and effort estimation require the most general experience.
As expected, test case execution and evaluation require the least system specific and
general experience.

5.5 Problems

In the following, the main problems as mentioned by the interviewees are presented.

Poor quality of the documents used as input, especially poor quality of the
requirements specification is one of the major issues during testing. We asked the
interviewees to indicate the most severe problems occurring during testing. One of the
most frequently mentioned problem concerns the quality of the input documents,
particularly the lack of quality of the requirements specification. Only two participants
do not indicate poor requirements (e.g. incomplete, unambiguous) as one of the most
difficult problems during testing. Three participants especially require more detailed
descriptions, particularly concerning pre- and post conditions of a requirement, as well
as dependencies between requirements and between the software and its environment
(including the software and hardware environment). One of the main reasons for the
poor quality of the requirements from the testers’ point of view is the lack of
involvement in the review process. Only half of the interviewees report that testers are
involved in the review process. In one special case, the requirements specification is not
reviewed at all.

Testing decisions require system specific experience. Almost all decisions require
more system specific than general experience. In addition, testers indicate to rely on their
own experience, rather than on experience made by others, as they do not frequently
consult published defect lists.

140

140

Testers rely on their own experience more than on test design techniques when
deciding on test data and test steps. Testers rely more on their own experience than on
test design techniques which generate a high amount of test cases and prefer an
exploratory-oriented approach. In addition, in the case of time pressure, testers deviate
from systematic approaches and reduce the set of test cases according to their own
experience. For example, the testers apply equivalence partitioning results in 6
equivalence classes and rate 4 of them as unrealistic and with low potential to detect
defects. In this case, they decide to specify and execute only these two test cases which
they appraise to be well suited to reveal a defect.

High documentation and communication needs during test execution suggest
incomplete descriptions of the expected outcome in test case specifications. Reasons for
this are either quality deficiencies in the documentation which served as input for
decisions on test cases or shortage of time when testers decided on test cases, leading to
incomplete descriptions of the expected outcome.

The results of a test cycle can not be objectively assessed. Surprisingly, testers
point out the role of experience in the evaluation a test cycle. One would expect that the
evaluation of the test results requires “only” a decision on the efficiency of the test
strategy, i.e. “Have the test design techniques been applied and have the test end criteria
been met?” But since the test strategy definition is not well established in testing
processes, the decisions related to TSD have to be taken later, namely during the test
evaluation. In addition, one participant criticizes the lack of a systematic learning
process across test cycles.

6. Threats to Validity

One threat to validity of our study is the fact that the results may be specific to the
particular interviewees. We addressed this problem by selecting very experienced testers
for the interviews. Another threat is the ability to generalize the results due to the fact
that we selected a small population. We addressed this problem by using techniques
which assure validity of qualitative studies [Se99], [Yi03]: 1) Diversification: Diversity
with respect to the focus of the activities performed by the interviewees was a key
criterion when selecting the participants of the study. 2) Methodological triangulation:
We used different methods to analyse the data (quantitative and qualitative techniques,
as described in Section 3.3). 3) Explanatory triangulation: by trying out several
explanations for all results in Section 4. For example, the result, that the requirements
specification document is a key information source for testers can be confirmed by
several facts. First, asked for main problems in the testing process, almost all
interviewees indicate the poor quality of the requirements specification. In addition,
asked for required input for different decisions, the interviewees indicate the
requirements specification as an important input for almost all decisions. Finally, asked
for a “wish list”, the testers indicate that the quality of the requirements specification is
more important than other sources of information. Based on these three facts, we
conclude that the requirements specification is an important information source for

141

141

testers. Nevertheless, organisations with a higher degree of test automation or which use
more formal models (e.g. embedded area) may show different results.

7. Conclusions and Future Work

In this research work, we presented the results of an exploratory study performed
during the SIKOSA project with experienced testers with the aim to analyze the
information flow during testing as the starting point for test process improvements. This
work served as basis for the definition of the PAT3-Approach [IP06] as part of the whole
SIKOSA methodology. The PAT3 Approach captures testing experience and
knowledge in form of patterns. PAT3 defines five pattern categories (process patterns,
automation patterns, transformation patterns, testability patterns, traceability patterns)
which improve the interface between requirements engineering and testing.

The main results of our study regarding the research questions formulated in Section
3.1 can be summarized as follows:

The requirements specification is, not surprisingly, the document used most
frequently during testing (Question 1). This document is used as input for all decisions to
be made. However, there is another information source which is almost equally valuable:
previously found defects. In addition, the requirements engineer and the project manager
are roles consulted most frequently by testers (Question 2). Surprisingly, testers mention
a high communication overhead during test execution. This fact is an indicator for poor
quality of the requirements specification, confirmed as a major problem during testing
by almost all interviewees. Experience plays an important role, and the definition of test
data requires by far the most experience (Question 3). Moreover, decisions related to
TP&C and TCE require much experience. At first glance, the latter is unexpected, but
since most organizations do not define a test strategy, evaluation is not easy in the
absence of operational goals. As expected, test execution requires little experience and is
consequently well suited to be automated.

This exploratory study gives first indications for hypotheses we aim to verify in
subsequent empirical studies. Based on our results, we can formulate the following
hypotheses. H1: Previously found defects are good indicators and predictors for future
defects. H2: Embedding the user into the testing process (particularly into the
prioritization and reviewing the test cases) increases the efficiency of the testing process.
H3: Testing decisions and activities require more system specific than general
experience. H4: Combined approaches integrating experience into traditional test design
techniques lead to better test cases.

Acknowledgements

We would like to thank all the interviewees for their cooperation and help by
providing information and insight into documents.

142

142

8. References

[BIP07a] Borner, L.; Illes-Seifert, T.; Paech, B.: Entscheidungen im Testprozess, Software
Engineering Konferenz (SE 2007), Hamburg, March 27 - 30, 2OO7.

[BIP07b] Borner, L.; Illes-Seifert, T.; Paech, B.: The Testing Process - A Decision Based
Approach, In: in: Proceedings of the The Second International Conference on
Software Engineering Advances (ICSEA 2007), IEEE Computer Society, Cap Esterel,
France, 25.-31. August, 2007. Cap Esterel, French Riviera, France, August 25 - 31,
2OO7

[BSC96] Burnstein, I.; Suwannasart, T.; C. R Carlson: Developing a Testing Maturity Model
for Software Test Process Evaluation and Improvement, Proceedings of the IEEE
International Test Conference on Test and Design Validity, 1996.

[Da05] Dahlstedt, A.: Guidelines Regarding Requirements Engineering Practices in order to
Facilitate System Testing, the Proceeding of the 11th International Workshop on
Requirements Engineering: Foundation for Software Quality, Porto, Portugal, 13-14
June 2005.

[Do97] Dowson, M.: The Ariane 5 software failure. SIGSOFT Softw. Eng. Notes, ACM
Press, Mar. 1997, 22, 2, pp. 84.

[IEEE98] IEEE Std. 829-1998, IEEE standard for software test documentation, Software
Engineering Technical Committee of the IEEE Computer Society, USA, 1998.

[IHPR05] Illes, T.; Herrmann, A.; Paech, B; Rückert, J.: Criteria for Software Testing Tool
Evaluation. A Task Oriented View. Proceedings of the 3rd World Congress for
Software Quality, 2005

[IP08] Illes, T.; Paech, B.: On the Role of Communication, Documentation and Experience
during Testing - Results of an Interview Study, SWEHD-TR-2008-02, http://www-
swe.informatik.uni-heidelberg.de/research/publications/reports.htm, 2008.

[IP06] Illes, T.; Paech, B.: From "V" to "U" or: How Can We Bridge the V-Gap Between
Requirements and Test?, Software & Systems Quality Conferences 2006, on May
10th 2006 in Düsseldorf.

[ISTQB05] International Software Testing Qualifications Board, ISTQB Standard Glossary of
Terms used in Software Testing V1.1, September 2005.

[KP02] Koomen, T.; Pol, M.: Test Process Improvement: A step-by-step guide to structured
testing. Addison-Wesley, 1999.

[KP03] Kitchenham, B; Pfleeger, S. L.: Principles of survey research part 6: data analysis,
SIGSOFT Softw. Eng. Notes 28, 2, Mar. 2003, pp 24-27.

[MP02] Mosley, D. J.; Posey, D. J.: Just Enough Software Test Automation, Prentice Hall,
July 2002.

[Se99] Seaman, C.B.: Qualitative Methods in Empirical Studies of Software Engineering,
IEEE Transactions on Software Engineering, 25(4), July/August 1999, pp. 557-572.

[Se02] Seaman, C.B.: The Information Gathering Strategies of Software Maintainers, In
Proceedings of the international Conference on Software Maintenance ICSM. IEEE
Computer Society, Washington, DC.

[SLS06] Spillner, A.; Linz, T.; Schaefer, H.: Software Testing Foundations - A Study Guide for
the Certified Tester Exam - Foundation Level - ISTQB compliant, Dpunkt Verlag,
2006.

[TL01] Tjortjis, C.; Layzell, P.: Expert Maintainers' Strategies and Needs when
Understanding Software: A Case Study Approach. In Proceedings of the Eighth Asia-
Pacific on Software Engineering Conference (APSEC). IEEE Computer Society,
Washington, DC, 2001.

[Yi03] R.K. Yin, “Case Study Research, Design and Methods”, SAGE Publications, USA,
2003.

143

143

144

New Applications for Wikis in Software Engineering

Michael Geisser1, Hans-Jörg Happel2, Tobias Hildenbrand1,
Axel Korthaus3, and Stefan Seedorf3

1: University of Mannheim, Department of Information Systems I
{geisser|hildenbrand}@wi.uni-mannheim.de

2: Research Center for Information Technologies, Information Process Engineering
happel@fzi.de

3: University of Mannheim, Chair in Information Systems III
{korthaus|seedorf}@uni-mannheim.de

Abstract: Within software development, wikis are currently mainly used for
brainstorming and documentation purposes or error management and project coor-
dination. This article describes four advanced application scenarios for wiki sup-
port in software development processes: Requirements Engineering, Traceability
and Rationale Management, Architectural Knowledge Sharing, and Lessons
Learned Management in a distributed knowledge infrastructure. Finally, we will
give a conclusion by summarizing the main advantages and drawbacks of the pre-
sented innovative uses of wikis in software engineering.

1 Introduction

Wikis are easy to use but powerful tools for collaborative knowledge formation and
knowledge sharing. Due to their widespread adoption in Web communities, wikis are
being increasingly employed in enterprise settings [MaWY06], especially in software
development projects. Their current uses in software development range from brain-
storming and documentation to error management and project coordination. However,
there is still potential for a more extensive support of software processes, which has not
been fully tapped yet. The question is therefore how other core and supporting activities
in Software Engineering (SE) can benefit from innovative uses of wikis.

This article describes new applications of wikis to support various SE activities. First,
we give an outline of wikis in general and the more recent “semantic wikis”, which en-
hance traditional wikis to allow machine-interpretable content marking and contribute to
an integrated process support. After a short overview of wiki applications in SE, we
describe four concrete application scenarios and corresponding prototype implementa-
tions: Requirements Engineering (RE), Traceability and Rationale Management (TRM),
Architectural Knowledge Sharing, and Lessons Learned Management in a distributed
knowledge infrastructure.

The process of RE, the initial phase of a software development project, comprises re-
quirements elicitation, analysis, specification, and validation for the planned system. For
this purpose, wikis are a lightweight and agile alternative to many commercial and par-

145

145

tially very complex solutions. In RE and the following phases of software design, inter-
dependencies of requirements and between requirements and the resulting artifacts, as
well as the rationale they are based on, should be made accessible (TRM). For the col-
lection and cross-linking of such information, a systematic TRM-process is necessary
and Wiki-systems can be appropriate implementation tools due to their usability and
hypertext capabilities. They can also serve for architectural knowledge sharing by ena-
bling multi-perspective, collaborative documentation and exchange of different views of
software architectures. By leveraging the semantic power of semantic wikis, additional
value can be achieved, e.g. with regard to advanced browsing, querying, and searching
of the knowledge base. The Ontobrowse semantic wiki, which is described in section
3.4, is an example of a semantic wiki tool supporting this application scenario. Finally,
we present ToMaWiki, a semantic wiki that can be used as a front end to a distributed,
topic map-based knowledge infrastructure and can be employed, for example, to imple-
ment a Lessons Learned Management System (LLMS) for storing, synthesizing, and
reusing software project knowledge according to the Experience Factory organizational
concept [BaCR94]. We conclude by summarizing the main advantages and drawbacks of
the presented innovative uses of wikis in software engineering.

The methods and tools introduced in this paper have mainly been developed in the con-
text of the CollaBaWue research project1. The first two examples are based on the wiki
system of CodeBeamer2, a collaborative software development platform from Intland,
but can be transferred to most other wiki systems. The Ontobrowse semantic wiki has
been developed from scratch, and ToMaWiki uses the open source semantic wiki
Ikewiki3 as its foundation.

2 Wikis

Wiki (Hawaiian for “fast”) is a term used to denote software programs that provide an
easy method for multi-user web-based cooperation. It is important to distinguish between
the software required to operate a wiki (“wiki engine”) and a wiki instance (“wiki”,
“wiki installation”). The well-known online encyclopaedia Wikipedia, for example, uses
the MediaWiki software as its wiki-engine. Although most wiki engines are available as
open source, the number of commercial products and hosting/ASP vendors in the market
(e.g. SocialText, JotSpot) has been rising lately.

1 http://www.collabawue.de
2 http://www.codebeamer.com
3 http://sourceforge.net/projects/ikewiki/

146

146

A wiki is basically made up of several distinct pages, which are interconnected via hy-
perlinks – comparable to a “small version” of the World Wide Web, which is also made
up of linked documents. As in web content management systems (WCMS), wiki pages
can be directly created and modified using a Web browser. However, they do not have
fixed content categories or limited user rights. Generally, all users can edit the contents
of a wiki by using a simple wiki language or a WYSIWYG editor. When a user edits a
page, a revision history is saved so that previous versions can always be restored. Thus,
social control replaces complicated rights management in WCMS [EbGl05].

Since the basic functions of wikis are as simple as those of common web-based email
services, they allow an easy start. Although this leads to fast results and user satisfaction
in editing text-based knowledge, it provides only little help in structuring this knowl-
edge. Thus, with increasing use of the wikis, they tend towards complexity and content
sprawling [MaWY06]. This leads us to the main drawback of wikis: Although the con-
tent of a wiki page might provide structure and meaning to a human reader, it does not
possess any machine-interpretable semantics. Advanced knowledge management fea-
tures such as semantic search and metadata-based filtering are thus not available in tradi-
tional wikis. However, a site like Wikipedia could heavily benefit from structuring con-
tent with additional metadata, which can be used to derive a knowledge model
[VöKr06]. In that way, explicit but informal knowledge embedded in a page could be
transferred into machine-processible knowledge, which can then be used for semantic
queries.

This extension towards so-called “semantic wikis” has been realized in several projects,
either by implementing a completely new wiki engine or by extending an existing one.
Although the core idea of all semantic wikis is to provide a machine-processible knowl-
edge model described in the wiki pages, they vastly differ in terms of required user ex-
perience and knowledge representation languages. For example, the Semantic Me-
diaWiki adds some extra syntax for the semantic annotations to the wiki markup lan-
guage [VöKr06]. It therefore realizes a very open approach where a user can optionally
add semantic markup. Our Ontobrowse semantic wiki, on the other hand, interprets
every page as an entity, which may be a concept, object property, datatype property, or
individual object [HaSe07]. Thus, its semantics are defined in a more rigorous style,
which enables us to acquire semantic data from external knowledge bases. In sections
3.4 and 3.5, two applications are described and the added value of semantic wikis is
demonstrated.

3 Selected Applications of Wikis in Software Engineering

The wiki technology was invented and originally used by software developers. The first
wiki, initiated by Ward Cunningham4 in 1995, has served as a knowledge repository for
design patterns. Since then, software development has been remaining one of the most
important application areas of the wiki technology [Lour06]. Frequently, a small group
of users sets up a wiki, which is subsequently used by an ever-growing number of em-

4 http://www.c2.com/

147

147

ployees. The simple availability and installation of wiki engines is especially helpful in
this respect.

Aside from open source development communities such as the Apache Foundation and
smaller enterprises, large software enterprises such as SAP, Novell or Yahoo have
adopted wikis as well (cp. [HGN06]). General applications in SE comprise knowledge
transfer, technical documentation, quality and process management, release planning,
and error tracing [BaMe05, MaWY06, TWIK06]. However, for specific, well-structured
content, traditional wikis often reach their limits with their core functionality. Thus, add-
ons with specific functionalities are already available for problems such as source code
documentation [AgDa05, JoSW05] or error tracing [Edge06].

Subsequently, we describe two advanced application domains of standard wikis in soft-
ware development processes: Requirements Engineering as well as Traceability and
Rationale Management.

3.1 Requirements Engineering

RE, the systematic elicitation, analysis, specification, validation, and management of
software requirements, is usually being performed either with heavyweight RE tools or
even with common office software. Traditional RE tools like RequisitePro and DOORS
as well as office products are widely spread, but were originally not designed for an
internet-based environment. This causes, for instance, performance problems and ineffi-
cient processes (cp. [IHGH07]). For larger software projects, distributed RE via office
software can only be regarded as a makeshift solution. Documents often are only distrib-
uted via email but do not get assigned centralized version numbers.

There are no integrated methods for distributed RE so far. Therefore, we present DisIRE
(Distributed Internet Based Requirements Engineering), a wiki-supported method for
distributed, internet-based RE with specific tool support, which can be integrated in
existing development platforms. DisIRE combines successful RE approaches and ex-
tends them to create a solid theoretical and empirically valid methodical framework5.
Moreover, DisIRE offers the first integrated RE method for a distributed environment
where requirements are explicitly taken into account. This method allows a system ven-
dor to perform a largely distributed and at the same time systematically RE process. A
moderator accompanies all parties through the process as described below.

3.1.1 Requirement Elicitation and Analysis

DisIRE follows immediately after the feasibility study. At this point, aside from a vision
of the planned system, there is also the certainty that the project has realistic goals. Usu-
ally the first step includes the requirements elicitation and analysis, which is described in
this section.

5 Such approaches are: EasyWinWin [Grün03], QuantitativeWinWin [RuEP03] and the Cost-Value-Approach
[KaRy97]. A detailed description of the DisIRE method can be found in [GHHR07].

148

148

As face-to-face meetings of all parties involved lead to better results in distributed work
contexts as well (compare [GeHi06]), an initial meeting takes place with as many par-
ticipants as possible, but no less than one representative from each location and organ-
izational unit involved. The goal is to make sure that all attendants get a uniform picture
of the planned system.

After the initial meeting, the requirements are elicited asynchronously and then ana-
lyzed. An overview of the different roles with their corresponding tasks is shown in
Table 1. When all requirements are commented, consolidated and verified, and it seems
like no further comments or requirements will be communicated, the moderator can
freeze these requirements.

Roles Task

Representative of
the customers

Transmission of requirements
Commenting on requirements
Identifying unclear technical terminology
Definition of unclear technical terminology
Extending and specifying vision

Moderator

Force specification
Consolidation and categorization of requirements
Identification of unclear technical terminology
Extending and specifying vision

Software Engineer
Commenting on requirements
Feasibility testing
Identification of unclear technical terminology

Table 1: Roles with their corresponding tasks in
requirement elicitation and analysis with DisIRE

A wiki is especially suitable for the process described above: for each initial requirement
a distinct wiki page is created where related comments follow that are consolidated di-
rectly in the description of the requirement. An integrated versioning system guarantees
that all changes can be traced on each page. Furthermore, articles or particular domains
are locked during editing to avoid conflicts. Another advantage of wiki systems is the
possibility to use an integrative glossary: Technical terminology, which is used for the
description of the requirements and which needs further explanation, can be marked
through wiki-links and be defined in a glossary. All other asynchronous activities can
also be thoroughly supported by wiki technology. CodeBeamer, a collaborative software
development platform from Intland Software6 [RBGH07], has an integrated wiki module
and was used within the CollaBaWue project for an integral support of the DisIRE proc-
ess [GHHR07].

6 http://www.intland.com/

149

149

3.1.2 Requirements Selection

Requirements elicitation and analysis produces a consolidated list of requirements,
whose full implementation, however, is not always economically rational. The list may
contain requirements that cause an elaborate implementation but bring little gain. Hence,
those requirements should be selected whose implementation appears to be rational un-
der economic criteria. Since no wiki technology is used in this step within DisIRE, this
activity will not be presented here (see [GHHR07]).

3.1.3 Requirements Specification and Validation

Subsequent to requirements selection, in order to achieve a certain degree of specifica-
tion for the later steps, the selected requirements have to be specified. If, as in DisIRE,
stakeholders on the customers' side are asked directly about their requirements, generally
functional requirements are concerned. Use cases are particularly suitable for the specifi-
cation of this type of requirements. Hence, for an internet-based specification, templates
for such use cases are made available directly in CodeBeamer's requirements tracker. As
a result, software engineers can use these templates on every workstation connected to
the Internet to specify the requirements. Finally, the specified requirements have to be
validated by the stakeholders on the customers' side to make sure that during the specifi-
cation no information has been lost and no misunderstandings have occurred. This is
done with the help of an integrated comments function of CodeBeamer’s Requirements
Tracker.

To enable versioning of specifications and respective comments as well as parallel edit-
ing, a wiki was directly integrated into CodeBeamer’s requirements tracker and its
comments function. In this way, wiki content and other tracker items and artifacts from
CodeBeamer projects can be referenced very easily and quickly.

3.2 Traceability and Rationale Management

In the next phases of software design, interdependencies of requirements and between
requirements and the resulting artifacts, as well as the rationale they are based on, should
be made available. This entails, above all, the administration of different interdependen-
cies and the exact reasons and alternatives for each decision, such as modifications, in
every step of the process [DMMP06]. The more distributed stakeholders are, the more
complicated this task becomes [RaJa01]. Thus, based on the requirements specifications
in RE, “Wiki-TRaM” will now be introduced, a Wiki-based TRM-process for informa-
tion acquisition, management, visualization, and analysis. Wiki-TRaM is made up of two
disciplines, “Collection and Management” and “Visualization and Analysis“, at which
we will take a closer look below.

150

150

3.2.1 Collection and Management of Traceability and Rationale Information

Although DisIRE allows systematic requirements elicitation, analysis, and selection, the
specification is in most cases not yet complete and stable. Therefore, an equally system-
atic change management is also necessary. That is only possible if traceability of the
development process of the requirements (source traceability), of the dependencies of
requirements among each other (requirements traceability) and of the resulting artifacts
(design traceability) is given [Somm04]. The dependencies of pre-specification artifacts
are vitally important for the requirements and change management within the framework
of RE. These consist of the requirements descriptions and comments, which are linked
with the specified requirements from an issue tracker through a corresponding wiki page.
Issue trackers are used for managing task descriptions and status. These in turn are de-
posited together with the dependencies among the specified requirements, the cost and
value ratios, as well as the reasons for the selection of the decisions in CodeBeamer’s
issue tracker. Thus, apart from the traceability and rationale information, the implemen-
tation status of the individual requirements can also be managed and the respective arti-
facts versioned.

In the next step of the software project, the post-specification phase, relationships be-
tween the specified requirements and the resulting artifacts, e.g. design models, source
code, and test cases, as well as all essential decisions and their rationale are recorded.
For this, wikis offer the necessary functionality for content linking and commenting.

This allows for easier customization, maintenance, and reuse of the system and faster
training of new project staff. To this end, different trackers for each task field (RE, archi-
tecture design, development, etc.) are used on the CodeBeamer platform and the respec-
tive tasks are linked through their association mechanism or through wiki links. Stan-
dardized relationships between tracker items themselves, artifacts, and external URLs
are recorded using associations. Besides CodeBeamer’s own document management
system, artifacts, e.g. source code, from external repositories like Subversion can also be
referenced. All changes to an artifact require the posting of a comment, or in the case of
SVN a commented “commit”. Due to the use of wiki comments, relationships to all
CodeBeamer artifacts and external resources can be established. With the help of these
mechanisms (associations and wiki links), traceability and rationale information can be
documented and linked during the entire project.

3.2.2 Visualization and Analysis of Traceability and Rationale Information

Based on detailed recording of the information above, a heterogeneous “trace network”
emerges, which contains relationships between process steps (i.e. tracker items), arti-
facts, and persons involved. For a clearer visualization and a more effective analysis of
this traceability information, the tool “TraVis” was developed (TraVis = Trace Visuali-
zation). It is a Java-application, which extracts the respective basic information using
CodeBeamer’s interface and displays it according to role-based filters. These filters
allow different views for developers, consultants, project managers, etc. The displayed
artifact categories and relationships can vary. Additionally, individual artifacts, tracker

151

151

items, or users with their direct and indirect traceability network can be extracted. Fur-
ther details of this tool will be left out here, since it only processes data from a wiki.

In comparison to traditional SE tools, wikis allow for a more collaborative and agile
approach to certain tasks such as requirements elicitation and trace capturing. However,
in order to achieve increased overall SE productivity, they need to be fully integrated in
to existing development environments such as source code versioning, issue tracking,
and document management [Hild08].

4 Selected Applications of Semantic Wikis in Software Engineering

As described in section 2, semantic wikis provide new ways of structuring and process-
ing knowledge. Here, we introduce two semantic wikis and their respective applications
in software engineering: First, Ontobrowse semantic wiki enables the sharing of archi-
tectural knowledge. Second, ToMaWiki supports Lessons Learned Management in a
distributed knowledge infrastructure.

4.1 Architectural Knowledge Sharing

The bridge between requirements engineering and concrete design is software architec-
ture. Many stakeholders are involved in the development and maintenance of architec-
ture. Hence, integrated tool support is difficult, because various knowledge needs have
to be catered for. On the one hand, developers want technical support and guidance for
their implementation task at hand. On the other hand, architects and business analysts
demand tools for analysis and documentation. Thus, the actual representation of an ar-
chitecture instance is usually split up into several “views”, such as functional, physical
or logical [Kruc95]. Most of these views can be assigned a certain purpose, such as qual-
ity, communication, analysis, or reuse [BaCK03, Bosc00]. Software architecture docu-
mentation should include all these views. However, existing tools are often not flexible
enough to support the requirements of both groups appropriately, which leads to scatter-
ing of architectural knowledge into different information spaces.

What is sought after is a solution that offers both flexibility in documentation and col-
laboration and a formal basis for leveraging machine-interpretable semantics. Although
this requirement sounds contradictory at first glance, semantic wikis are a promising
candidate for solving this trade-off. From our point of view, semantic wikis are well-
suited to bridge the gap between technical and business documentation. First, they en-
courage collaborative documentation and information exchange. Second, they provide
the means for processing machine-interpretable knowledge, which is required for han-
dling technical descriptions. Within the CollaBaWue project, the Ontobrowse semantic
wiki has been specifically developed for the sharing of architectural knowledge. It pro-
vides the following main features [HaSe07]:

Defining a knowledge structure using ontologies
Browsing, querying and searching of a knowledge base

152

152

Combining informal and formal documentation
Integrating asserted knowledge from external sources
Consistency checking with rules

The semantic wiki has been implemented employing the Web Ontology Language
(OWL) as its knowledge representation format. The knowledge base can be configured
to use either Jena7 or KAON28 as reasoner. There is also experimental support for en-
forcing architectural rules using the Semantic Web Rule Language (SWRL).

An application scenario is the documentation of a service-oriented architecture (SOA).
SOA is an architectural style, which propagates the orchestration of business processes
from independent, loosely-coupled services. Service-orientation leads to a rising level of
alignment between business processes and IT implementation. Therefore, it becomes
more important to monitor and guide the development of the services landscape
[HaSe07]. Because the black-box specification of a service encourages a higher decoup-
ling of software systems, responsibilities are shared by different service providers –
together with the associated business and technical knowledge.

In order to integrate architectural descriptions of a SOA into the wiki, one has to perform
two distinct steps: First, the users of the wiki need to agree upon a unifying SOA ontol-
ogy. The ontology defines the terminology of the architecture together with relations and
constraints. The terminology can usually be displayed as a concept hierarchy, with a
generic concept such as “SOAElement” subsuming more specific concepts such as “Ser-
vice” and “BusinessObject” (see Figure 1).

Figure 1: A generic concept in Ontobrowse

7 http://jena.sourceforge.net/
8 http://kaon2.semanticweb.org

153

153

The ontology reduces conceptual ambiguity and enables information integration. Sec-
ond, a plug-in has to be defined, which performs a mapping of architectural knowledge
in a given format to the SOA ontology. The plugin can then be configured to crawl for
matching specification files in one or more directories. As a result, a service specifica-
tion mapped from a WSDL file is displayed on a page together with a property descrip-
tion (see Figure 2). Once an entity has been imported into the knowledge base, it can be
augmented with textual descriptions and additional metadata. The same pattern can be
repeated for other types of knowledge, such as requirements or business process specifi-
cations.

Ontobrowse addresses key issues in the documentation and maintenance of software
architectures. Previously, the different views of an architectural instance were main-
tained in separate information spaces. The semantic wiki enables the integration of both
business-oriented and technical knowledge, thus serving as a single point of information
for all stakeholders. Due to the underlying formal representation based on ontologies,
searching and querying can be significantly improved. At the same time, the plugin in-
frastructure makes it possible to integrate knowledge from external sources. Architec-
tural descriptions such as service specifications in two different formats can be mapped
to the same ontology. Finally, the conceptual structure is modular so that additional
ontologies can be added at any time, e.g. to describe the organizational structure. These
extension features are particularly important in distributed development settings (cf.
[Cock96]), where the participants have to share their knowledge with other developers.

Figure 2: An individual object in Ontobrowse

154

154

4.2 Software Engineering Lessons Learned Management

Enterprise software development today is most often organized in a distributed way,
involving different sites and organizations in a potentially globally distributed “software
eco system”. Generally, it will be impracticable to standardize a comprehensive, overall
ontology on which knowledge management is based for all players and collaboration
partners in the software eco system. On the contrary, local ontologies will have to be
used in loosely coupled systems, which, however, must be matched in order to reuse
knowledge across single sites. To support this scenario, we have implemented the back-
bone infrastructure component for a distributed software development knowledge man-
agement system, which we call a “Topic Grid”. It provides the functionality required to
be able to exchange knowledge structures between various applications.

In [KoHi03], the basic idea of the Topic Grid is described as being a network of nodes
each of which provides its own knowledge base in the form of one or more Topic Maps
(see Figure 3). It can be seen as a superimposed semantic network over a multitude of
heterogeneous electronic documents and information resources (maintained inside and
outside the company) providing relevant information to software developers. The Topic
Maps are made available for queries from other nodes by means of a standardized proto-
col. In the Topic Grid, a client is capable of querying all knowledge bases belonging to
a certain group in parallel, so that a single, transparent view on the knowledge bases and
knowledge structures is created. The Topic Grid aims at providing applications with a
homogeneous view of distributed Topic Maps pretending that the user works with one
big, connected Topic Map. This is evocative of a typical notion of grid computing,
namely the virtualization of a multitude of physically separated computer systems. In

The Grid

Resources

Figure 3: Sketch of the Topic Grid Interconnecting Different Semantic Networks of Resources

155

155

[KAHS06] and [KoAH08], we describe the design and implementation of a Java-based
Topic Grid prototype using an access protocol stack for distributed Topic Maps in a
network to realize the idea of the Topic Grid.

To use the Topic Grid infrastructure in a real-world context, we have implemented a
knowledge management system based on this infrastructure, which will be used to sup-
port software developers collaboratively working together at different locations to per-
form distributed software engineering activities. As Topic Map-aware applications to be
integrated via the Topic Grid in that setting, we envision, among others, semantic wikis.
A first prototype of a semantic wiki (“ToMaWiki”) as front end to the Topic Grid has
already been built. ToMaWiki not only provides typical semantic wiki functionality but
also a graph-based navigation feature for displaying fragments of the complete Topic
Grid (cf. Figure 4; [KoSc06]). With the help of this feature, users can quickly jump to
relevant knowledge topics whose details are then displayed as regular wiki pages. Soft-
ware developers can use this kind of Topic Grid-aware semantic wikis in an ad hoc way
to document software engineering knowledge or project experience on the fly, which can
subsequently be accessed from other wikis or applications on the Topic Grid. Software
developers can use the wikis, for example, to exchange ideas on domain and technical
issues, to store decisions made and their rationales, to share social information, to iden-
tify and locate experts, to self-coordinate collaborative work tasks, and to track pro-
gresses on project tasks (cf. [ChMa05]).

Figure 4: Screenshot of the Graphical Navigation Feature of the Prototypical
Semantic Wiki Front End to the Topic Grid

156

156

By combining the Topic Grid and the ToMaWiki semantic wiki using Topic Map tech-
nology in the background to provide an ontology that helps to annotate wiki pages and
links with machine-interpretable metadata, we were able to achieve some important
goals. First, by sticking to the well-known wiki technology, we provide a very light-
weight approach to knowledge provisioning that does not significantly hinder the core
software development process. By using wikis with semantic enhancements, we achieve
the benefits leveraged by ontology-based semantic technologies, like improved semantic
searches. Based on the Topic Grid infrastructure in the background and the Topic Map
technology’s concept of merging and identity, which allows automated integration of
topic maps from diverse sources into a coherent new topic map, we enable distributed
teams at different sites to use at least partially different ontologies while remaining able
to search the complete Topic Map information space.

As a first concrete application scenario, we think of developers documenting their cur-
rent development tasks and “lessons learned” using the semantic wiki to implement a
kind of “self-organized experience factory unit” (cf. [ChMa05]). A suitable ontology for
annotating their information serves as an entry point into the Topic Grid. New pages
edited in the wiki can then automatically be added in a semantically structured way to
the local Topic Map managed at the developer’s site and thus become part of the body of
information in the Topic Grid. This body of information, however, will also be increased
by many other Topic Map-aware applications. We have already implemented several
prototypical applications for this purpose, e.g. a tool to generate a Topic Map semi-
automatically from a conventional document index provided by the Lucene tool
[KoKS04] or a Topic Map-based web application modelling knowledge about refactor-
ing tasks.

The semantic search functionality offered by the semantic wiki is not limited to local
wiki contents, but accesses the whole Topic Grid, hence tapping a very comprehensive
knowledge base in order to satisfy the developer’s information needs that had arisen for
him to successfully perform his current development activity. For example, questions
like “What issues are involved when combining EJBs and JDBC?” can lead to the sys-
tem providing links to information resources containing the relevant information or even
contact information of experienced colleagues, lesson learned stories, relevant design
patterns, newsgroup postings etc.

157

157

5 Conclusion and Outlook

New Web-based collaboration technologies, such as wikis, which let users easily publish
and share content, are thriving recently not only in the context of Web 2.0 and the Social
Web, but also in various business contexts, and especially in the domain of software
development. Although they lack sophistication, the strength of traditional wikis as a
platform for collaborative authoring and sharing of contents lies in their simplicity and
efficiency. As has been demonstrated in this paper, the “social software” wiki (cf.
[Bäch06]) can be of great use for software engineering, not only in traditional applica-
tion areas such as distributed documentation. With the continuing evolution of wiki
technology and the development of new methodological approaches, other usage scenar-
ios in software engineering can be opened up. We have presented Requirements Engi-
neering as well as Traceability and Rationale Management as two concrete examples of
software development activities that can benefit from the methodical employment of
wiki technology.

Both application cases and their wiki-based implementations make it clear that wikis are
in no way limited to open-source development, but are also an interesting and flexible
approach for the support of enterprise processes. In the open-source domain, wikis have
so far been employed as an “agile” tool for knowledge management and asynchronous
collaboration. Aside from RE and TRM, other application areas of software development
should be entered in the future, since—with the increasing specialization of roles in the
development process—an ever growing amount of information requires distributed stor-
ing and automatic processing. Moreover, an integration of the different wiki application
areas in SE, e.g. on the basis of a collaboration platform, needs to be achieved in order to
provide full productivity caused by different wiki-based solutions. Integrated platforms
such as CodeBeamer (cp. section 3) provide one central wiki engine for different SE
tasks an need to be further enhanced with respect to semantic annotation and reasoning.

To this end, however, an alleviation of the weak points of traditional wikis regarding
machine-interpretable structuring of contained knowledge is necessary. In traditional
wikis, a metadata infrastructure is absent, and information is usually handled in an ad
hoc fashion. Semantic wikis represent an innovation that aims at expressing content in
machine-processible forms that enhance search precision and logical reasoning. Based
on two examples of prototypical semantic wiki implementations for architectural knowl-
edge sharing and software lessons learned management, we have demonstrated the po-
tential advantageousness of semantic wiki technology for distributed software develop-
ment scenarios. Although the added value that can be gained from semantic approaches
in software development is not generally contested, their long-term success will depend
considerably on the question how seamlessly they can be integrated in the core business
processes without being perceived as causing too much undesired work overhead.

158

158

References

[AgDa05] Aguiar, A.; David, G.: WikiWiki weaving heterogeneous software artifacts. In: Proc.
of the 2005 International Symposium on Wikis, San Diego, CA, 2005, pp. 67-74.

[BaMe05] Bachmann, F.; Merson, P.: Experience Using the Web-Based Tool Wiki for Architec-
ture Documentation. Technical Note CMU/SEI-2005-TN-041. September 2005.

[Bäch06] Bächle, M.: Social Software. In: Informatik Spektrum, 2006, 29, pp. 121-124.
[BaCR94] Basili, V.R.; Caldiera, G.; Rombach, D.: Experience Factory. In: Marciniak, J.J. (ed.),

Encyclopedia of Software Engineering, vol. 1, 1994, John Wiley & Sons, pp. 469-476.
[BaCK03] Bass, L.; Clements, P.; Kazman, R.: Software Architecture in Practice. 2. Addison

Wesley, 2003.
[BeHL01] Berners-Lee, T.; Hendler J.; Lassila, O.: The Semantic Web. In: Scientific American,

284, 5, 2001.
[Bosc00] Bosch, J.: Design and use of software architectures: adopting and evolving a product-

line approach. ACM Press/Addison-Wesley Publishing Co., 2000.
[ChMa05] Chau, T. and Maurer, F.: A Case Study of Wiki-based Experience Repository at a

Medium-sized Software Company. In: Proc. of 3rd Int. Conf. on Knowledge Capture
(K-CAP ’05), Oct. 2-5, 2005, Banff, Alberta, Canada, pp. 185-186.

[Cock96] Cockburn, A.: The interaction of social issues and software architecture. In: Commun.
ACM 39, October, Nr. 10, 1996, pp. 40-46.

[DeRe05] Decker, B.; Rech, J.; Ras, E.; Klein, B.; Hoecht, C.: Self-organized Reuse of Software
Engineering Knowledge supported by Semantic Wikis. In: Proceedings of the Work-
shop on Semantic Web Enabled Software Engineering (SWESE). November 2005.

[DMMP06]Dutoit, A.H.; McCall, R.; Mistrik, I.; Paech, B. (Hrsg.) Rationale Management in
Software Engineering, Springer Verlag, 2006.

[EbGl05] Ebersbach, A.; Glaser, M.: Wiki. In: Informatik Spektrum, (28), 2005, pp. 131-135.
[Edge06] Edgewell.org: The Trac User and Administration Guide, URL:

http://trac.edgewall.org/wiki/TracGuide (26.09.2006), 2006.
[GeHi06] Geisser, M.; Hildenbrand, T.: A Method for Collaborative Requirements Elicitation

and Decision-Supported Requirements Analysis. In: Ochoa, S.F. und Roman, G.-C.
(eds): IFIP Int. Federation for Information Processing, Advanced Software Engineer-
ing: Expanding the Frontiers of Software Technology, 2006, pp. 108-122.

[GHHR07] Geisser, M.; Heinzl, A.; Hildenbrand, T.; Rothlauf, F.: Verteiltes, internetbasiertes
Requirements-Engineering. In: WIRTSCHAFTSINFORMATIK, Volume 49 (3),
2007, pp 199-207.

[Grün03] Grünbacher, P.: EasyWinWin: Eine groupware-unterstützte Methode zur Erhebung
und Verhandlung von Anforderungen. In: Softwaretechnik-Trends der Gesellschaft für
Informatik, 23, 2003.

[HaSe07] Happel, H.-J. and Seedorf, S.: Ontobrowse: A Semantic Wiki for Sharing Knowledge
about Software Architectures. In: Proc. of the 19th Int. Conf. on Software Engineering
and Knowledge Engineering (SEKE), Boston, USA, July 9-11, 2007, pp. 506-512.

[HGN06] Hildenbrand, T.; Geisser, M.; Nospers, M.: Die Übertragbarkeit der Open Source-
Entwicklungsmethodik in die Unternehmenspraxis". In: Softwaretechnik-Trends, Vol-
ume 26 (1), 2006, pp. 37-42.

[Hild08] Hildenbrand, T.: Improving Traceability in Distributed Collaborative Software Devel-
opment - A Design Science Approach. Dissertation Thesis, University of Mannheim,
Germany, 2008.

159

159

[IHGH07] Illes-Seifert, T.; Herrmann, A.; Geisser, M.; Hildenbrand, T.: The Challenges of Dis-
tributed Software Engineering and Requirements Engineering: Results of an Online
Survey". In: Proc. of the 1st Int. Global Requirements Engineering Workshop
(GREW´07), 2007, pp. 55-65, Munich, Germany.

[JoSW05] John, M.; Jugel, M.; Schmidt, S.; Wloka, J.: Wikis in der Softwareentwicklung helfen.
In: Java Magazin, 7, 2005, pp. 88-91.

[KaRy97] Karlsson, J.; Ryan, K.: A Cost-Value Approach for Prioritizing Requirements. In:
IEEE Software, 14, 5, 1997, pp. 67-74.

[KoAH08] Korthaus, A., Aleksy, M., and Henke, S.: A Distributed Knowledge Management
Infrastructure Based on a Topic Map Grid. In: Int. Journal of High Performance Com-
puting and Networking (IJHPCN), Interscience Publishers, vol. 6, issue 2/3, 2008.

[KAHS06]Korthaus, A., Aleksy, M., Henke, S., and Schader, M.: A Distributed Topic Map Ar-
chitecture for Enterprise Knowledge Management. In: Proc. of the 1st IEEE/ACIS
Workshop on Component-Based Software Engineering, Software Architecture and
Reuse (COMSAR ’06), July 10-12, Honolulu, Hawaii, USA, 2006.

[KoHi03] Korthaus, A., Hildenbrand, T.,: Creating a Java- and CORBA-Based Enterprise
Knowledge Grid Using Topic Maps. In: Cheung, W.K., and Ye, Y. (eds.), Proc. Work-
shop on Knowledge Grid and Grid Intelligence”, Halifax, Canada, 2003, pp. 207-218.

[KoKS04] Korthaus, A., Köhler, C. and Schader, M.: (Semi-) Automatic Topic Map Generation
from a Conventional Document Index. In: Proc. IASTED Int. Conf. on Knowledge
Sharing and Collaborative Engineering (KSCE 2004), St. Thomas, US Virgin Islands,
Nov. 22-24, 2004, pp. 101-108.

[KoSc06] Korthaus, A. and Schader, M.: Using a Topic Grid and Semantic Wikis for Ontology-
Based Distributed Knowledge Management in Enterprise Software Development Proc-
esses. In: Proc. of the IEEE Int. Vocabularies, Ontologies and Rules for the Enterprise
Workshop (VORTE 2006) / Tenth IEEE Int. EDOC Conference, 16. October, Hong
Kong, China, 2006.

[Kruc95] Kruchten, P.: The 4+1 View Model of Architecture. In: IEEE Softw. 12 November,
Nr. 6, 1995, pp. 42-50.

[Lour06] Louridas, P.: Using Wikis in Software Development. IEEE Software, 23, 2, 2006,
pp. 88-91.

[MaWY06] Majchrzak, A.; Wagner, C.; Yates, D. 2006. Corporate wiki users: results of a survey.
In: Proceedings of the 2006 International Symposium on Wikis, Odense, Denmark,
ACM Press, New York, NY, 2006, pp. 99-104.

[Onto06] Ontoworld: Semantic Wikis. URL: http://ontoworld.org/wiki/Semantic_wiki, 2006.
[RBGH07] Rodriguez, F.; Berkling, K.; Geisser, M.; Hildenbrand, T.: Evaluating Collaboration

Platforms for Offshore Software Development Scenarios. In: Meyer, Bertrand (eds):
Proc. of the First Int. Conference on Software Engineering Approaches For Offshore
and Outsourced Development (SEAFOOD'07), 2007, pp. 96-108.

[RaJa01] Ramesh, B.; Jarke, M.: Toward Reference Models for Requirements Traceability. In:
IEEE Transactions on Software Engineering, IEEE Press, 2001, 27, pp. 58-93.

[RuEP03] Ruhe, G.; Eberlein, A.; Pfahl, D.: Trade-Off Analysis For Requirements Selection. In:
Int. J. of Software Engineering and Knowledge Engineering, 13, 2003, pp. 345-366.

[SaVa01] Saaty, T. L.; Vargas, L.G.: Models, methods, concepts & applications of the analytic
hierarchy process. Kluwer, 2001.

[Somm04] Sommerville, I.: Software Engineering. Addison-Wesley, 2004.
[TWIK06] TWiki.org: TWiki Success Stories. URL: http://twiki.org/cgi-bin/view/Main/

TWikiSuccessStories (26.09.2006), 2006.
[VöKr06] Völkel, M.; Krötzsch M.; Vrandecic D.; Haller, H.; Studer, R.: Semantic Wikipedia.

In: Proc. of the 15th Int. Conf. on World Wide Web, Edinburgh, May 23-26, 2006.
[W3C04] W3C 2004: The Web Ontology Language (OWL) Specification. URL:

http://www.w3.org/TR/owl-features/ (16.09.2006), 2004.

160

160

A Visual Approach to Traceability and Rationale
Management in Distributed Collaborative Software

Development

T. Hildenbrand and A. Heinzl and M. Geisser and L. Klimpke and T. Acker
Department of Information Systems I

University of Mannheim, 68131 Mannheim, Germany
{thildenb; aheinzl; mgeisser; lklimpke; tacker}@rumms.uni-mannheim.de

Abstract: Traceability and rationale management are utmost critical, especially in
distributed collaborative software development projects, due to a lack of mutual work-
place awareness and informal coordination among the participating stakeholders. There-
fore, this paper presents the rationale behind and implementation of a conceptional
design for a novel approach to traceability and rationale management in distributed
settings. In doing so, an innovative solution for extracting, visualizing, and analyzing
the relationships between requirements and other key artifacts as well as responsible
stakeholders is designed based on business needs within the software industry. Thus,
the main objective of this paper is to instantiate the underlying conceptual considera-
tions and methodological guidelines with the help of a comprehensive tool infrastruc-
ture particularly adapted to distributed settings.

1 Introduction

Traceability and rationale management represent utmost important tasks with respect to
the governance of geographically distributed software projects [HGK07, dSHR07]. Trace-
ability, in particular, denotes the ability to follow the relations between artifacts, such as
requirements, design documents, or source code and responsible stakeholders [GF94].
Traceability management (TM) therefore involves activities including the identification,
analysis, and maintenance of these relationships [KS98]. Rationale management, on the
other hand, addresses the documentation and usage of rationale information regarding
design and change decisions within software development projects [DP01]. In combi-
nation with the concept of value-based software engineering (VBSE), denoting that not
all software artifacts can be attributed identical (customer) value and thus should be rep-
resented accordingly [EBHG05], enhancements to software project decision support can
be achieved through the application of value-based and integrated end-to-end traceability
and rationale management (TRM) covering the entire software development life cycle.
Therefore, especially within spatially and temporally distributed projects, an increase of
development efficiency and effectiveness can be achieved by providing (bi-directional)
traceability information [dSHR07]. Moreover, an intuitive representation of the data by
means of graphical visualization can be especially helpful and effective [dS05]. This qual-
ity feature is also required by the Capability Maturity Model Integration (CMMI) process

161

161

standard, for instance, as well as most other important (software) industry standards.

Therefore, the main goal of this paper is to document the design and implementation of a
novel trace visualization approach called “TraVis”, which extracts data related to different
artifacts, activities, and users from collaborative software development environments in
order to support visual analysis and collaborative management of the relations between
these entities, while enhancing the platform’s functionality by graphical visualization and
analytic filtering mechanisms.

The following section 2 will, at first, briefly introduce the design and implementation
methodology that was chosen for the design of the solution approach. After that, the main
functional requirements for the novel solution will be outlined in section 3 before section
4 addresses the implementation platform and basic technologies used for realizing TraVis
as part of a larger solution architecture. According to section 2, implementation details
regarding the tool and application examples are given in section 5 to provide an initial
evaluation in terms of feasibility of the proposed solution. The last section 6 provides a
summary of findings and gives an outlook on future work.

2 Methodology

To eventually implement a comprehensive TRM solution, an object-oriented design method-
ology is chosen [Kru04], since trace relation models represent complex interrelated real-
world objects such stakeholders and artifacts with different attributes such as descriptions,
version numbers, and change rationale (see underlying information model in figure 1). The
concurrent requirements management process is mainly driven by common TRM process
activities and fields of application which in turn can be regarded as functional requirements
or “use cases”1 in the figurative sense guiding the further development process (see also
table 1).

Moreover, this object-oriented approach aims at an architecture consisting of indepen-
dent application components, thus, abiding by the main software engineering (SE) best
practices formulated by [Kru04], i.e. (1) iterative development in combination with dif-
ferent evaluation steps and feedback loops to gain utmost utility of the novel approach
[HMPR04], (2) use case-driven and collaborative requirements management involving
several research groups and other stakeholders, as well as (3) designing a component-based
solution architecture while separating three independent system components, namely (a)
data model and persistence layer, (b) collaboration platform to support the overall TRM
method, and (c) specialized tool support for traceability capturing, representation, and
analysis (TraVis).

Before introducing the actual solution design and implementation, the following section
summarizes the major functional requirements that have been gathered by means of several
preceding studies.

1In this paper, the requirements will not be represented in the form of actual use cases as, for instance, defined
by [Kru04] and [BME+07].

162

162

3 Functional Requirements and Related Work

In the following paragraphs, requirements for the novel solution elicited in preceding stud-
ies are presented in the form of distinct application areas—including a procedural descrip-
tion with respect to TRM process steps, actors, requirements rationale and origin [Kru04]
as well as related work (see also [SZ04] and [Hil08]). Origins and rationale behind these
fields of application are based on a broad analysis of literature review data [HRH07] as
well as empirical requirements elicitation (cf. analysis results in [dSHR07] as well as
[Hil08]).2

The main functional areas and requirements regarding TRM in distributed settings derived
by means of literature reviews and tool evaluation have been complemented by conducting
two observational case studies encoded MBL and VCI3 (see table 1 and [dSHR07]). Table
1 presents an overview of the three main requirements categories: (1) change management
in general (CM), (2) trace capturing and maintenance (TCM), and (3) trace representation
and analysis. Besides common literature [HRH07, HRG+08], these findings are substan-
tiated by the MBL and VCI studies [dSHR07].

Table 1: Overview of Requirements from Case Studies and Reviews (CM = change management;
TCM = trace capturing and maintenance; TRA = trace representation and analysis)

Requirement Cat. Source/Reference
Automatic change notifications CM MBL and VCI studies
Workplace awareness support CM [DCAC03] and MBL study
Traceability information supply CM GSD study, literature review

Collaborative trace capturing TCM VCI study, literature review
Collaborative trace maintenance TCM VCI study, literature review
Rationale management support TCM VCI study, literature review

Alternative visual representations TRA VCI study, literature review
Predefined views and filters TRA VCI study
Adjacency graph analysis TRA VCI study, literature review

Based on these functional requirements, the main functionality supported by the TraVis
solution is presented with respect to related work. The requirements elicited here corre-
spond to the main areas of TRM, i.e. (1) CM and impact analyses as major use case for
utilizing TRM information as well as the process of capturing and analyzing this informa-
tion. However, in order to support CM in general, advanced methods for trace capturing
(TCM) and analysis (TRA) are required as well. In addition to analyzing change impact,
traceability information is also critical for (2) project status reporting and (3) overall docu-
mentation of traces by developers and other team members. This functionality can further
be subdivided into (a) capturing and generation, (b) storage and representation, (c) analy-
sis and maintenance use cases [Hil08]. In addition, this information is vital to project and

2For a more detailed requirements analysis and review of related work see [Hil08].
3Real names have been changed by the authors and these acronyms simply represent variable names without

any semantic meaning.

163

163

program management for (4) performance monitoring purposes. Enhanced information
supply can additionally assist (5) post-specification development tasks that will also be
discussed in the following paragraphs.

Change Management and Impact Analysis. Change management (CM) tasks turn out
to be the prevailing field of application for traceability information—e.g. for change prop-
agation, generating notifications, and facilitating impact analyses in particular. Especially
in the latter case, traceability information is critical in case of late changes for determining
(1) directly and (2) indirectly affected artifacts and thus be able to (3) estimate the resulting
overall costs of changes proposed in order to decide whether the change can be conducted
or not [KS98]. Most often, change impact analysis pertains to changing requirements after
an initial specification has been defined—e.g. in the form of change requests posted by dif-
ferent stakeholders [Som07]. These include the integration of new requirements as well as
deleting and changing existing ones [Poh07].4 The positive effects of sophisticated trace-
ability information on impact analysis quality and efficiency has also been substantiated
empirically (cp. for instance [LS96] and [LS98]). Automatically generated notifications as
well as visual representations of dependencies can substantially support impact analyses
[EH91].5

Project Status Reporting. CM also includes requirements implementation status track-
ing and reporting, i.e. capturing and analyzing the requirements’ implementation status
in post-specification project phases [Sch02]. In order to be able to determine and analyze
the exact status of one particular requirement’s implementation, continuous horizontal
traceability from the software requirements specification (SRS) via architectural models,
source code, and test cases must be established [Poh07]. This also requires information
about contribution structures [Got95], i.e. authorship information [dSDR+04], and un-
derlying rationale pertaining to post-specification artifacts and enables ensuring that all
current project activities are based on actual customer demands and thus create customer
value. Again, adequate quantitative data and according visual representations can be seen
as possible approach to supporting this task. Moreover, visualizations not only facilitate
inter-developer communication and project management, but also foster customer under-
standing and thus eventually system acceptance.6

Overall Project Documentation Support. The overall project documentation subsumes
information necessary for both impact analysis and status reporting tasks. Taken together,
a project’s documentation corresponds to the overall traceability network containing both
pre- and post-specification information with respect to artifact relations, design and change
rationale, as well as contribution structures [KS98]. Project documentation tasks, there-
fore, pertain to the entire TRM process from capturing via storage and representation to

4Moreover, traceability information facilitates identifying cause and estimating the impact of bugs within the
scope of software maintenance and re-engineering of legacy systems [Poh07].

5Current RM tools, such as DOORS and CaliberRM, do not provide full impact analysis support with respect
to a complete analysis of all post-specification artifacts [GHR07].

6As it is the case for impact analysis, current RM tool do not allow a continuous post-SRS status tracking.

164

164

analysis and maintenance [Som07]. As has been argued before, disposing of relevant trace-
ability information is vital to numerous other TRM-related tasks and can in turn facilitate
distributed collaboration on the whole. Especially with respect to distributed development
scenarios, current RM and SE solutions cannot provide integrated information and tool
support [HRH07, GHR07, HRG+08].

Project Documentation Capturing and Generation. As regards capturing traceability
network information, in particular, a collaborative approach based on one central reposi-
tory is suggested both in literature and practice (cf. findings in [dSHR07]). Moreover, a
common metamodel, including artifact entities, traces, and semantics as well as method-
ological guidelines and policies in the form of a traceability manual help coordinating this
activity. Automatically generated suggestions for candidate links, on the other hand, can
provide additional decision support, but are not considered here any further, since so far
only research-in-progress solutions exist, which most often still require manual interven-
tion and/or artifact description constraints [Hil08].

Project Documentation Storage and Representation. Based on the assumption of a
central storage of traceability information, all distributed project stakeholders can be pro-
vided with adequate representations of relevant extracts retrieved by means of filtering
and search techniques. Due to the complexity of large-scale distributed software projects
visualizations facilitate stakeholder communication as compared to standard list and table
representations. Currently, the information necessary for end-to-end TRM can only be
provided by collaboration platforms [HRH07, HRG+08].

Project Documentation Analysis and Maintenance. With respect to TRM information
analysis and maintenance support, filtering and search mechanisms need to be comple-
mented by more advanced visualization and analysis methods such as adjacency graphs for
more systematic impact analyses. However, current RM tools and collaboration platforms
usually provide analysis functionality only based on matrix and linked list representations
(cp. above and findings in [GHR07, HRG+08]).

Project Monitoring and Inspection. Within the scope of project monitoring activities,
which are mostly conducted by project managers and other high-level stakeholders, the
overall development process in terms of who has done what and when (process data) needs
to be traceable at any given time [DP98]. On this basis, project managers have to be
able to assess and report individual and team performance, balance the overall work load,
and maintain reasonable division of labor while also considering implementation status
reports (see above). To be able to do so, end-to-end traceability information is utilized to
understand relations and particularly dependencies between artifacts and the stakeholders
involved. Moreover, process data on tasks performed, resources consumed, and other
quality measures can be utilized for general project planning and control [DP98].7

7Current development environments mainly focus on source code monitoring [HRG+08]. Other approaches,
such as Ariadne [dS05], monitor socio-technical relations, but again only based on source code dependencies

165

165

Post-Specification Requirements Management. Requirements management tasks also
comprise validation, verification, testing, and establishing standards compliance [SZ04].
Contribution structures, for instance, can be utilized to identify and involve relevant stake-
holders into validation activities. As regards verification, refinement, dependency, and
satisfiability relations allow for ensuring that all requirements specified have been allo-
cated to ensuing implementation tasks and corresponding artifacts such as models and
code. Similarly, traceability relations can be used to check the existence of appropriate
test cases for verifying different requirements [SZ04] and to retrieve those.

Other Post-Specification Tasks. Traceability information and management capabilities
can also support other general SE tasks such as finding the right stakeholders for commu-
nication and coordination purposes, artifact understanding and software reuse as well as
software maintenance and thus support SE decisions due to better overview, visualizations,
and analysis methods, e.g. for finding relevant information and/or contact persons more
quickly. Group or team awareness is crucial in distributed settings due to the volatility
of communication networks and partially sparse interactions among related stakeholders
[HMFG00]. Appropriate visualization of relations between users and/or artifacts (cp. also
[dS05]) can thus lead to more purposeful collaboration.

Artifact understanding, informed software reuse, and maintenance can also be accounted
to general SE tasks that can benefit from traceability information. Improved traceabil-
ity supports different stakeholders in understanding artifacts and their respective contexts
even when not having contributed to their creation [SZ04]. For full artifact comprehension,
rationale capturing, representation, and analysis capabilities are critical as well [RJ01].
Furthermore, requirements dependencies can support software reuse in that similar re-
quirements are identified when the stated requirements are compared with existing re-
quirements for indicating possibly reusable components from different artifact stages. In
general, similarities between artifacts on different levels of horizontal abstraction along
the software development life cycle can be utilized to manage application frameworks and
software product lines [SZ04].

4 Implementation Platform and Technologies

The following sections briefly introduce the underlying information model implemented in
the collaboration platform which the TraVis tool is based on. Moreover, other technologies
used for the implementation of the TraVis solution approach and relevant implementation
details are also outlined.

and code authorship information.

166

166

4.1 Traceability Information Model

Based on general trace information models, the underlying platform’s inherent informa-
tion model and its accessibility via the Web service API have to be adapted to TraVis.
Compared to the underlying platform information model, some interrelations had to be
simplified due to the vendor’s practical restrictions. However, all vital elements of the
TraVis information model are represented—tracker items and all different kinds of arti-
facts (documents, wiki pages, source code, etc.), for instance, can be tracked by distinct
realization states and versions as well as categorized by embracing trackers or containers,
respectively. Rationale information can be added by means of (wiki) comments to types
of associations between tracker items and artifacts.

Figure 1: CodeBeamer Information Model

As can be seen in figure 1, the model differentiates between four basic types of associa-
tions: depends, parent, child, and related. Moreover, responsible users can take
on various roles as they are associated to certain tracker items or artifacts. These include
owner, creator, assigned to, submitted by, modified by, and locker
(someone who has locked a particular artifact for non-concurrent editing). Change re-
quests are modeled as tracker items in a so-called change request tracker and therefore
not represented separately in the CodeBeamer model. Furthermore, items in change re-
quest and requirements trackers also dispose of wiki-based rationale descriptions directly
attached. For further adapting the CodeBeamer information model, specific project tem-
plates with predefined tracker structures are created. To be able to connect to the collabo-
ration server and extract the relevant traceability information, TraVis uses CodeBeamer’s
Web service API (for a detailed description of the packages used see [HGK08]).

167

167

4.2 Implementation Technologies and Details

To be able to connect to the collaboration platform over the Internet and, thus, provide a
Web-based user interface, the Java WebStart8 (JWS) technology by Sun Microsystems is
chosen. Moreover, JWS allows iterative updates to be able to extend the current proto-
type’s functionality while keeping entailing network traffic low. This is and will be par-
ticularly critical for evaluating the overall solution with globally distributed stakeholders
[Hil08].

For extracting the traceability information from the collaboration platform, the Hessian9

binary Web service protocol provided by the underlying CodeBeamer platform is utilized.
Besides its most advanced association mechanisms, link semantics, and wiki engine inte-
gration, the platform has initially been chosen for the prototypical TraVis implementation
due to its fast and flexible Web service application programming interface (API) which
has also been extended collaboratively with the vendor in the course of this research.10

The CodeBeamer platform provides an integrated wiki engine for (a) annotating and com-
menting on tracker items and other artifacts, e.g. to add rationale information, and (b) for
creating self-contained wiki documents. Traceability information captured via wiki pages
and comments can be in turn represented as interlinked wiki content in CodeBeamer’s Web
frontend and analyzed via the Web service API (see also [HGK08]). As for the WebStart
application’s user interface layer, TraVis uses Java Universal Network/Graph11 (JUNG)
framework. The JUNG architecture is designed to support a variety of representations of
entities and their relations, such as directed and undirected graphs, multi-modal graphs,
graphs with parallel edges, and hypergraphs.

On basis of the different Web-based technology platform just described, the most impor-
tant details pertaining to the implementation of TraVis are documented in figure 2. How-
ever, the focus of this paper is on the TraVis part of the overall solution architecture, i.e.
visual representation, analysis, and maintenance functionality, and thus particular the use
cases specified in section 3. The overall solution implementation architecture underlying
this paper also includes an adapted collaboration platform as well as a separate source
code management (SCM) repository (see figure 2). Moreover, particular semantic infor-
mation can be added for more efficient retrieval of certain objects (cp. class descriptions
in [Hil08, HGK08] and cf. information model in figure 1).

5 Tool Implementation and Application Scenarios

In this section, the functional areas presented in section 3 are substantiated to demonstrate
how the underlying requirements are implemented by the TraVis solution and, thus, the

8http://java.sun.com/products/javawebstart/ (2007-10-16).
9http://hessian.caucho.com/ (2007-10-16).

10CodeBeamer has been analyzed and compared to other commercially available collaboration platforms, e.g.
in [RGBH07], [HRH07], and [HRG+08].

11http://jung.sourceforge.net/ (2007-10-16).

168

168

Figure 2: TraVis’ Embedding Solution Architecture

feasibility of the approach as well as the applicability of the implementation is evaluated
in terms of an initial demonstration or proof of concept. In doing so, TRM activities
concerning (a) representation and visualization as well as (b) analysis and maintenance
can be distinguished.12

5.1 Trace Representation and Visualization

TraVis provides different means of displaying the traceability network graph extracted
from the development platform. Starting with an empty panel, the application’s user in-
terface requires the user to either manually select and deselect different element and as-
sociation types or use various menu options for filtering, searching, and transforming the
graph.

Manual Selection. The checkboxes of the TraVis user interface allow for a fine-grained
configuration of the traceability information to be shown in the center panel. According
to the CodeBeamer information model, the following elements are available for visual-
ization: (1) users (stakeholders), (2) issue trackers, tracker items, and attachments (3)
documents and folders (as parts of the document management system), (4) forums and
single posts, (5) wiki pages, as well as (6) source files. When selecting particular project
elements, only the resulting combination types of associations are activated while all other
relations are shaded and not available. Accordingly, when removing certain information
elements, these changes update the active options of manual selection. When checking or
un-checking certain association types, these are added or removed, respectively. Checking

12The methodology for collaboratively capturing traceability information by means of the functionality incor-
porated in the underlying platform is not in the focus here, for further details see [Hil08]. Moreover, [Hil08]
also documents three independent evaluation cycles and provides substantial evidence for the approach’s utility
in distributed scenarios.

169

169

Add/Remove all displays or hides all relation types possible. Moreover, edge labels can
be manually added by means of the respective checkbox in the Options menu. Therefore,
the checkboxes are the universal user interface for custom analyses concerning all major
functional TRM requirements considered in this paper.

Element Filters. In addition to manually removing elements and associations from the
graph, TraVis also provides numerous predefined filters for reducing network complexity
and facilitating inspection tasks. To be able to do so, inactive users, other disconnected
elements with no relations, as well as closed tracker items representing finished tasks can
be filtered out automatically. Moreover, tracker items can be added to the graph, removed,
and highlighted with respect to different tracker categories, implementation phases, and
realization states. As has been mentioned earlier, TraVis complementarily analyzes links
between wiki pages and thus these can be added or filtered out by checking the Wiki Links
filter option. In addition to manually selecting and deselecting graph elements, filters are
thus also universally applicable to a variety of TRM tasks such as status reporting and
general traceability information management.

Predefined Views. Besides selection options and filters, TraVis also disposes of many
other possible choices of graph representation. To facilitate overall usability and reduce
complexity of the application, TraVis currently provides the following predefined views
which can be easily adapted and extended to other use cases by means of TraVis’ object-
oriented and component-based architecture: (1) An “Ego View” with all elements associ-
ated to one particular stakeholder, (2) “Editing (basic)” and (3) “Editing (all)” showing
elements that can be linked visually by TraVis, either regarding reduced or full project
complexity, (4) “Task Distribution” with stakeholders and shared artifacts (see example
below), (5) “Major Artifacts”, (6) “Tracker Structure”, as well as (7) “Project Manage-
ment Analysis” which display tasks associated with certain stakeholders.

The task distribution view reveals who is doing what as well as collaboration structures
formed by shared artifact relations between stakeholders, which is the basis for further
analysis methods such as social network inspections (cp. next section as well as 6). In the
case of this particular task distribution view, the implementation consists of four different
graph options: (1) the types of elements and associations included (here tracker items,
users, and their interrelations), (2) value-based vertex sizing (instead of uniform sizing,
see subsequent section), (3) mouse mode (picking), and (4) graph layout (cp. also the
following section). However, TraVis’ architecture allows for adapting and creating views
with more or less options very easily, e.g. by simply adding a new radio button in the
Views menu.

Search Functions. For analyzing complex traceability networks, TraVis implements
two complementary types of searches: (1) an integrated type-ahead search and (2) a search
menu for adding and highlighting particular nodes. The former search function can be uti-
lized to spot and find individual artifacts in very dense and complex graphs. In doing so,
the type-ahead search already highlights graph items while the user is still typing, i.e. the

170

170

search process can be gradually concretized, while search results are instantly displayed in
the center pane. For this and all other types of searching the traceability network informa-
tion, the artifacts’ titles and major description attributes are indexed and thus searchable.
These search results are categorized according to the types of elements found—such as
tracker items and documents in this case. By clicking particular elements in the result
tree a graph can be built up from scratch or complemented (cp. also filtering mechanisms
above). The Find Artifact (Highlight) function operates analogously to the type-ahead
variant.

Transformations. TraVis also provides different graph transformations such as distor-
tion, rotation and zooming. With respect to graph distortion, different lenses are defined
with both hyperbolic and linear magnifying optics. To further reduce the graph’s com-
plexity, the different lens modes can be combined with all other options, filters, and views
described so far. For zooming and rotating the graph both mouse and keyboard shortcut
controls are provided in addition to the respective items in the Options menu of TraVis’
user interface.

5.2 Trace Analysis and Maintenance

The implementation details described so far focused on visualizing the information re-
trieved from the platform for universally supporting different software engineering deci-
sions and use cases. On top of that, TraVis also provides tool-supported methods for visual
traceability network analysis and maintenance. Therefore, the following paragraphs expli-
cate the TraVis functionality for exploring and analyzing the graph by means of additional
information visualizations as well as visual editing capabilities.

Gradual Graph Exploration. Since the size of real-world traceability graphs are a ma-
jor concern in TRM, incremental exploration techniques are a good solution for analyzing
huge graphs originating from one particular element (cf. [HMM00], p. 37). This ele-
ment can either be specified by a change request or found by the search and add function
described above. The context menu option Show connected vertices adds all elements con-
nected to a requirement resulting of a search operation, as well as the respective relation
types as edge labels (related, depends, etc.). By applying this method in turn to one
of the newly added elements, the graph is gradually explored from its origin. Furthermore,
it is possible to show all connected vertices, i.e. the complete adjacency graph, of one par-
ticular start node by means of the corresponding option in the context menu (see figure 3).
This type of information visualization therefore identifies artifacts directly and indirectly
affected by changes to the focal artifact and thus facilitates impact analyses (cf. section
3). Moreover, status reporting is supported by enabling to follow the horizontal trace path
of one requirement up to the current realization state. Additional artifact information is
displayed on mouse-over operations in the form of tooltips. Vice versa, TraVis also allows
for removing particular nodes.

171

171

Figure 3: Gradual Graph Exploration Functionality

Trace Network Analysis. Besides manual trace network analysis by means of the check-
boxes and options explicated above, TraVis also provides a comprehensive network analy-
sis function activated by choosing the predefined project management analysis view. This
non-visual “view” analyzes the number of traces among the different types of trackers
and displays a detailed dynamically generated list of requirements and relations between
tracker items. In doing so, customized trackers in addition to standard requirements,
change requests, and bug trackers are considered as well. This function facilitates auditing
the overall project documentation as well as determining traceability as a quality measure
(cp. also data collection and measurement procedures in evaluation section. Again, the
show connected vertices can also be applied to particular users and thus monitored what
artifact development activities they are currently involved in. Using the task distribution
view, on the other hand, also supports project monitoring and controlling—e.g. by spotting
out project members that do not participate in any collaborative activities. Furthermore,
the function Team Statistics in the Project menu returns a list of all project members’
relations to certain project elements such as tracker items and documents, for instance,
which also enables project managers to compare and assess the developers’ collaboration
intensity.13

Value-Based Node Sizing. Also mainly for project management (monitoring and con-
trolling) purposes, TraVis implements variable node sizing algorithms for indicating cus-
tomer value based on requirements analysis results such as priorities and other value mea-
sures. The customer value assigned to the requirements is then propagated to related and
dependent artifacts such as design documents and source code—not including stakehold-
ers. Therefore, the initial heuristic algorithm for calculating the node sizes has been im-
proved by adapting the PageRank algorithm as also applied by the Google14 search engine

13It has to be noted though, that tools such as TraVis can create a possibly unwanted form of transparency
from the developers’ perspective and raise data protection concerns that are beyond the scope of this research.

14http://www.google.com/ (2007-10-20).

172

172

to the requirements of TraVis’ solution architecture [PBMW98]. The PageRank algorithm
is based on the assumption that nodes in a network, in this case artifacts and tracker items,
are more relevant or valuable according to the number of references by incoming relations
and their respective values. It has been shown that the values within a network converge
after a finite number of iterations [PBMW98]. To be able to do so, TraVis initializes the
nodes other than requirements with a value of 1

number(nodes) and defines a constant d15

to accelerate convergence. The new value of one particular node is thus calculated as the
sum of the related nodes’ start values while the node’s new start value is determined by
(1 − d) + d ∗ new value.16

Figure 4: Extract from a Value-Based Task Distribution Graph

Value-based node sizing and the customer values written back to the platform as additional
attributes, thus, provide decision support for prioritizing artifact-related activities accord-
ing to their customer value [EBHG05] and, therefore, iterative as well as agile methods
(see figure 4 for an extract of a value-based graph). Furthermore, customer value informa-
tion also complements and quantifies the overall projects awareness as well as personnel
turnover decisions (cf. section 3). Figure 4 also depicts how the different artifact types are
encoded in different colors and patterns in order to provide even better visual information
and decision support.

Rationale Information Management. Besides customer value, the artifact nodes of the
traceability network carry a lot of additional information which can be utilized to com-
prehend justifications behind design as well as change decisions and version history—i.e.
rationale information. To be able to prepare and provide this artifact context information

15Using a constant d is recommended by [PBMW98] and has been calibrated here to a value of 0.85 by
means of the data from early evaluations and open source projects on the CodeBeamer-based JavaForge platform:
http://javaforge.com/ (2007-10-20). Currently, the TraVis implementation of PageRank converges
after less than ten iterations for most projects. However, to provide some safety buffer, TraVis calculates 15
iterations.

16cf. [PBMW98] and [HGK08] for a more detailed description of the algorithm and calculation examples.

173

173

in an easily processable manner, the graphs are complemented by a so-called element in-
formation pane which displays a tree visualization of additional artifact or stakeholder
information depending on the node currently selected in the center pane. While user ele-
ment information is mainly useful for monitoring purposes, artifact rationale information
facilitates both impact analyses and general project documentation and maintenance ac-
tivities.17

Editing and Platform Synchronization. Starting with one of the predefined editing
views (cp. section 5.1), for instance, or after manually selecting mouse mode editing in
combination with any other view or filter, allows for removing and creating new asso-
ciations between elements of the graph (see example in figure 5). This is conducted by
simply dragging and dropping a line from one node to the other. As can be seen in figure
5, an association comment and type can be specified before the edge is added to the graph.
Newly created edges as well as deleted ones are first recorded by TraVis’ internal object
model and later committed as a complete transaction to the platform by clicking on Sub-
mit Changes in the Project menu. Accordingly, changes made directly to the platform via
its Web user interface can be synchronized by means of the Reload Project function. Vi-
sual editing essentially facilitates collaborative capturing and maintenance of traceability
information and thus overall project documentation (cf. use case description in section 3).

Figure 5: Visual Editing and Maintenance of Traceability Information

6 Summary and Outlook

As has been demonstrated in the preceding sections, the current prototype version im-
plements all major functional requirements specified with respect to TraVis’ visual rep-

17See [DMMP06] for further definitions of rationale management tasks in SE.

174

174

resentation, analysis, and maintenance support. It has also been shown that the adapted
and customized version of CodeBeamer used for this prototypical implementation of the
overall solution architecture covers the complementary collaborative capturing and main-
tenance processes. These TRM activities are particularly important in distributed software
projects—mainly for enabling better mutual workplace awareness and informal coordi-
nation mechanisms due to the central availability of project knowledge in the form of
traceability information.

Due to the fact that software projects can become very complex and spatial distribution
of artifacts and actors hampers workplace awareness and process transparency, a lack of
traceability can become harmful to project efficiency and documentation effectiveness in
particular. Bidirectional end-to-end traceability, as required by CMMI, for instance, is
critical, however, both with respect to in-project decision support and later maintenance
tasks. Hence, TraVis provides added value particularly to distributed collaborative soft-
ware development projects.

TRM methods as well as their combination with the VBSE approach can increase the qual-
ity of the artifacts developed within the individual project phases and, therefore, also the
quality of the final product. For tool-based project support, the application of a software
development platform that incorporates communication between all team members and
enables information capturing should be considered. Additionally, tracking and managing
particular requirements all the way to the new product are also supported [RGBH07].

Thus, within this paper, a novel trace visualization approach and respective tool support is
introduced, which is based on such an underlying collaboration platform while enhancing
the platform’s functionality by graphical visualization as well as analytic filtering mech-
anisms and predefined views. In doing so, various TRM activities within distributed de-
velopment projects are supported. Hereby, the focus of the tool’s conception is mainly the
support of cross-cutting project management functionality, requirements and change man-
agement in particular. This paper, thus, takes different requirements identified, substanti-
ated, and verified in both, literature and real-world practice into account and implements a
Web-enabled solution architecture based on an underlying central collaboration platform
integrating various artifact repositories (cp. figure 2).

The latest version of TraVis described in this paper is complemented by enhanced trace
analysis functionality and predefined views specifically designed to improve the tool’s
performance in certain TRM application respects [HGK07, Hil08]. Furthermore, for the
value-based calculation of the size of the artifacts [HGK07], an advanced analysis method
based on the PageRank algorithm is implemented [PBMW98]. Additionally, maintain-
ability and usability of TraVis are further enhanced, for instance through additional filter
and search functionality.18 The main rationale for enhancing the solution with respect to
visual and value-based analysis support is the need to reduce the complexity of relations
in distributed reasonably and thus provide better decision support.

Within future conceptions and implementations of the tool support, functionality for addi-

18These enhancements are based on an initial set of two empirical evaluation studies concerning TraVis appli-
cability in distributed settings [Hil08] and eventually aim at increasing the output quality and process efficiency
of particular TRM tasks in distributed collaborative software development.

175

175

tional analyses like the graphical display of the social networks between project members
and across multiple projects—both intra- and inter-organizationally—shall be integrated.
For comprehensive social network analyses, authorship information pertaining to both
pre- and post-specification artifacts is required [dSHR07]. Combining and visualizing in-
formation on artifact relation and contribution structures in turn allows for deriving social
networks or sociograms19 from socio-technical relations of artifacts and responsible stake-
holders which provide a good basis for project and team structure analysis [dSRC+04].
This, in turn, can further facilitate team awareness, communication, and informal coor-
dination [RvdHAA+07]. Personnel turnover situations that are most often noticeable in
larger-scale projects, offshore outsourcing scenarios in particular, represent one major use
case for this kind of information (see section 3 as well as [dSHR07]).

Besides these conceptional enhancements, already integrated functionality will be further
evaluated experimentally to gather conclusions for future TRM requirements and devel-
opment activities [Hil08]. In addition, several case studies and controlled experiments
involving both students and partners within the software industry are planned in order to
further evolve the solution and elicit remaining deficiencies as well as new requirements.

References

[BME+07] Grady Booch, Robert A. Maksimchuk, Michael W. Engel, Bobbi J. Young, Jim
Conallen, and Kelli A. Houston. Object-Oriented Analysis and Design with Appli-
cations. Addison-Wesley, Boston, USA, 3rd edition, 2007.

[DCAC03] Daniela Damian, James Chisan, Polly Allen, and Brian Corrie. Awareness Meets
Requirements Management: Awareness Needs in Global Software Development.
In Proceedings of the Workshop on Global Software Development (GSD’03), pages
7–11, 2003.

[DMMP06] Allen Henry Dutoit, Raymond McCall, Ivan Mistrik, and Barbara Paech, editors.
Rationale Management in Software Engineering. Springer, Berlin. Deutschland,
2006.

[DP98] Ralf Dömges and Klaus Pohl. Adapting Traceability Environments to Project-
Specific Needs. Communications of the ACM, 41(12):54–62, 1998.

[DP01] Allen H. Dutoit and Barbara Paech. Rationale Management in Software Engineer-
ing. In Chang SK, editor, Handbook on Software Engineering and Knowledge
Engineering, volume 1. World Scientific, 2001.

[dS05] Cleidson R. B. de Souza. On the Relationship between Software Dependen-
cies and Coordination: Field Studies and Tool Support. PhD thesis, Don-
ald Bren School of Information and Computer Science, University of Cal-
ifornia, Irvine, USA, 2005. http://www2.ufpa.br/cdesouza/pub/
cdesouza-dissertation.pdf.

[dSDR+04] Cleidson de Souza, Paul Dourish, David Redmiles, Stephen Quirk, and Erik Trainer.
From Technical Dependencies to Social Dependencies. In Proceedings of the Work-
shop on Social Networks at the 2004 International Conference on CSCW, 2004.

19Sociograms are graph-based representation of social relations that a person has. In software projects, these
can be derived from shared artifacts and communication structures [dS05].

176

176

[dSHR07] Cleidson R. B. de Souza, Tobias Hildenbrand, and David Redmiles. Towards Vi-
sualization and Analysis of Traceability Relationships in Distributed and Offshore
Software Development Projects. In Proceedings of the 1st International Conference
on Software Engineering Approaches for Offshore and Outsourced Development
(SEAFOOD’07). Springer, 2007.

[dSRC+04] Cleidson R. B. de Souza, David Redmiles, Li-Te Cheng, David Millen, and John
Patterson. How a Good Software Practice Thwarts Collaboration: The Multiple
Roles of APIs in Software Development. In Proceedings of the 12th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (SIGSOFT’04),
pages 221–230. ACM Press, 2004.

[EBHG05] Alexander Egyed, Stefan Biffl, Matthias Heindl, and Paul Grünbacher. A value-
based approach for understanding cost-benefit trade-offs during automated software
traceability. In TEFSE ’05: Proceedings of the 3rd international workshop on
Traceability in emerging forms of software engineering, pages 2–7. ACM Press,
2005.

[EH91] Michael Edwards and Steven L. Howell. A Methodology for Requirements Specifi-
cation and Traceability for Large Real-Time Complex Systems. Defense Technical
Information Center, Fort Belvoir, USA, 1991.

[GF94] Orlena C. Z. Gotel and Anthony C. W. Finkelstein. An Analysis of the Require-
ments Traceability Problem. In Proceedings of the 1st International Conference on
Requirements Engineering (RE’94), pages 94–101. IEEE Computer Society, 1994.

[GHR07] Michael Geisser, Tobias Hildenbrand, and Norman Riegel. Evaluating the Appli-
cability of Requirements Engineering Tools for Distributed Software Development.
Working Paper des Lehrstuhls für ABWL und Wirtschaftsinformatik der Universität
Mannheim, (2), 2007.

[Got95] Orlena Gotel. Contribution Structures for Requirements Traceability. PhD thesis,
Department of Computing, Imperial College of Science, Technology, and Medicine,
London, UK, London, UK, 1995.

[HGK07] Tobias Hildenbrand, Michael Geisser, and Lars Klimpke. Konzeption und Im-
plementierung eines Werkzeugs für nutzenbasiertes Traceability- und Rationale-
Management in verteilten Entwicklungsumgebungen. Working Paper, Lehrstuhl
für ABWL und Wirtschaftsinformatik der Universität Mannheim, (5), 2007.

[HGK08] Tobias Hildenbrand, Michael Geisser, and Lars Klimpke. TraVis 2 - Ein Werkzeug
für verteiltes, nutzenbasiertes Traceability- und Rationale Management. Working
Paper, Lehrstuhl für ABWL und Wirtschaftsinformatik der Universität Mannheim,
2008.

[Hil08] Tobias Hildenbrand. Improving Traceability in Distributed Collaborative Software
Development—A Design-Science Approach. Phd thesis, University of Mannheim,
Germany, 2008.

[HMFG00] James D. Herbsleb, Audris Mockus, Thomas A. Finholt, and Rebecca E. Grinter.
Distance, Dependencies, and Delay in a Global Collaboration. In Proceedings of
the 2000 ACM Conference on Computer Supported Cooperative Work (CSCW’00),
pages 319–328. ACM Press, 2000.

[HMM00] Ivan Herman, Guy Melançon, and M. Scott Marshall. Graph Visualization and Nav-
igation in Information Visualization: A Survey. IEEE Transactions on Visualization
and Computer Graphics, 6(1):24–43, 2000.

177

177

[HMPR04] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design Science
in Information Systems Research. MIS Quarterly, 28(1):75–105, 2004.

[HRG+08] Tobias Hildenbrand, Franz Rothlauf, Michael Geisser, Armin Heinzl, and Thomas
Kude. Approaches to Collaborative Software Development. In Proceedings of
the 2nd Workshop on Engineering Complex Distributed Systems (ECDS’08). IEEE
Computer Society, 2008. accepted for publication.

[HRH07] Tobias Hildenbrand, Franz Rothlauf, and Armin Heinzl. Ansätze zur kollabora-
tiven Softwareerstellung. WIRTSCHAFTSINFORMATIK, 49(Special Issue):S72–
S80, 2007.

[Kru04] Philippe Kruchten. The Rational Unified Process: An Introduction. Addison-
Wesley, Boston, USA, 3rd edition, 2004.

[KS98] Gerald Kotonya and Ian Sommerville. Requirements Engineering – Processes and
Techniques. John Wiley & Sons, Chichester, UK, 1998.

[LS96] Mikael Lindvall and Kristian Sandahl. Practical Implications of Traceability. Soft-
ware Practice and Experience, 26(10):1161–1180, 1996.

[LS98] Mikael Lindvall and Kristian Sandahl. Traceability Aspects of Impact Analysis in
Object-Oriented Systems. Journal of Software Maintenance: Research and Prac-
tice, 10(1):37–57, 1998.

[PBMW98] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank
Citation Ranking: Bringing Order to the Web. Stanford Digital Library Technolo-
gies Project, 1998.

[Poh07] Klaus Pohl. Requirements Engineering – Grundlagen, Prinzipien, Techniken.
dpunkt.verlag, Heidelberg, Deutschland, 1st edition, 2007.

[RGBH07] Felix Rodriguez, Michael Geisser, Kay Berkling, and Tobias Hildenbrand. Evalu-
ating Collaboration Platforms for Offshore Software Development Scenarios. In
Proceedings of the 1st International Conference on Software Engineering Ap-
proaches For Offshore and Outsourced Development (SEAFOOD’07), pages 96–
108. Springer, 2007.

[RJ01] Balasubramaniam Ramesh and Matthias Jarke. Towards Reference Models for Re-
quirements Traceability. IEEE Transactions on Software Engineering, 27(1):58–93,
2001.

[RvdHAA+07] David Redmiles, André van der Hoek, Ban Al-Ani, Tobias Hildenbrand, Stephen
Quirk, Anita Sarma, Roberto Silveira Silva Filho, Cleidson de Souza, and
Erik Trainer. Continuous Coordination: A New Paradigm to Support Glob-
ally Distributed Software Development Projects. WIRTSCHAFTSINFORMATIK,
49(Sonderheft):S28–S38, 2007.

[Sch02] Bruno Schienmann. Kontinuierliches Anforderungsmanagement: Prozesse, Tech-
niken, Werkzeuge. Addison-Wesley, Boston, USA, 2002.

[Som07] Ian Sommerville. Software Engineering. Addison-Wesley, Boston, USA, 8th edi-
tion, 2007.

[SZ04] George Spanoudakis and Andrea Zisman. Software Traceability: A Roadmap. In
Shi-Kuo Chang, editor, Handbook of Software Engineering and Knowledge Engi-
neering, pages 395–428. World Scientific Publishing, River Edge, USA, 2004.

178

178

The Emergence of Partnership Networks in the Enterprise
Application Software Industry - An SME Perspective

Jens-M. Arndt, Thomas Kude, Jens Dibbern, and Armin Heinzl

jens.arndt thomas.kud dibber heinzl@uni-mannheim.de

Abstract: The enterprise application development industry is currently undergoing
profound changes. The well established, large system developers (hubs) take the lead
in establishing partner networks with much smaller, often young companies (spokes).
This paper takes the perspective of these spokes and seeks to understand their moti-
vations for entering into such partner networks. Drawing on research on strategic al-
liances and product complementarities, a theoretical framework on the determinants of
partnering is developed. It is argued that partnering is especially attractive for smaller
organizations when it allows them to access capabilities that would otherwise be dif-
ficult to obtain. Three broad categories of dynamic capabilities of hub organizations
are assumed to act in this role: the capability to innovate architectures, the capability
to provide an integrated enterprise application system, and the capability to address
broad markets. These are analyzed in eight case studies. The cases represent small
and medium sized enterprises (SMEs) that are participating in the partner network of a
leading provider of enterprise application systems. The study reveals that while access
to market capabilities is a key motivator for all spokes, the other two capabilities do
not play an identical role in all cases. Rather, their impact on partnering motivation
is contingent upon the type of solution offered by the partner in relation to the large
system developer.

1 Introduction

The structure of the enterprise application software (EAS) industry has been subject to
continuous change. Generally, EAS are information systems that reflect business-related
organizational tasks and processes and the individual roles involved in these processes.
The first of these EAS have been developed by hardware manufacturers. Then, during
the 1960s, independent software vendors emerged that developed specific EAS for their
customers. As more and more of these solutions had been used by companies, the sys-
tems integration effort increased significantly. As a consequence, in the 1980s, a trend
towards consolidation started in the industry [CK03]. Offering comprehensive function-
alities within one system avoided the need for complex, cross-solution integration. The
enormous success of the providers of these integrated systems even reinforced the consoli-
dation process [Dav98]. As a result, today the industry is clearly dominated by a few global
companies and it has become common practice among customers to focus on a base sys-
tem from one of these key players in the industry [Mer05]. This jack-off-all-trades strategy

179

179

, , e , n

[FMS98] is based on generic software. This implies that the basic functionalities provided
by the integrated systems are industry best practice but not necessarily best practice for
a particular customer [Som04]. The trade-off between generic and bespoke software has
opened up the market for SMEs that provide very specific solutions for a small group of
customers (narrow specialist strategy). Indeed, by integrating various specific solutions
from different specialists into a coherent whole, customers may end up with superior sys-
tems [FSW00]. A more intense inter-organizational division of labor, which has been
adopted in many other industries [BC00], has recently begun to play a more important
role in the EAS industry. This has been fueled by the emergence of service-oriented ar-
chitectures (SOA) which promise to reduce the integration effort between heterogeneous
software applications [FSW00]. On the one hand, large vendors started to promote their
systems with the ability to integrate third party solutions [Gre03]. On the other hand,
SMEs have begun to realize that rather than fighting against windmills, it is more benefi-
cial for them to cooperate with large systems providers [Ten03].

While certain types of cooperations such as joint ventures, strategic alliances, or licensing
agreements have been observed in the industry for quite some time [RK94, GI06], more
recently a new form of cooperation can be observed. Many of the large providers of
integrated application systems have begun to actively foster partnership networks. These
partnership networks may be described as loosely-coupled systems where the participants
respond to changes in the partner’s environment but still stay independent from each other
[OW90] in that they are not linked by capital (joint venture) or through joint effort in
a specific project or business area (strategic alliance), but by more general agreements
which may be based on certifications of the other party’s products or resources.

The underlying rationale for the emergence of these partnership networks has been rarely
addressed in research. As a first attempt for closing this research gap, this study adopts
the position of SMEs (spokes). The question is raised why these SMEs enter into partner
relationships with large dominant players in the software industry. Drawing on the theory
of dynamic capabilities for strategic alliances formation [ES96], three types of capabilities
of hubs are identified [Hag93] that are proposed to be key motivators for smaller compa-
nies to become partner of a large systems provider [Ahu00]. The proposed reasons are
combined in a theoretical framework and empirically examined in a multiple case-study
design which focuses on one particular partnership network.

2 Theoretical Foundation

2.1 Networked Industry Structure

It has been argued above that currently a more intense division of labor is emerging in
the EAS development industry. On the one hand, this division of labor implies that each
company is focusing on its core competency, such as particular well defined software com-
ponents [STT05]. On the other hand, it results in the necessity of a more intense coopera-
tion between these specialized companies in order to ensure that particular entities can be

180

180

integrated into a coherent system. How such cooperation can be achieved has been widely
studied. In general, two archetypes of cooperation are distinguished: The completely in-
termeshed and the hub-and-spoke network [SMC92]. In the first case, all companies are
inter-connected with all others. Partners are dynamically selected as needed. In the second
case, a core firm exists that inter-connects with all other organizations in a stable network.
This central organization often takes on the role of a platform leader that is assumed to de-
fine technologies, markets, strategies, structures, and processes [GC02]. From these two
organizational alternatives, the hub-and-spoke network closely resembles the above dis-
cussed structure that is currently emerging in the EAS development industry. The network
is proposed to emerge around existing strong vendors and their systems (i.e., hubs), that
form the network of partners (spokes).

In IS research, cooperative arrangements in the EAS industry have recently been studied
more intensely. It has been argued that mergers and acquisitions [GI06] as well as strategic
alliances [GI07] are formed in order to create value from complementarities that exist be-
tween different types of products and services. In the context of hub-and-spoke partnership
networks, the hub was found to be responsible for developing the system’s platform, which
includes the general functionalities of standardized enterprise software. This platform is
then complemented by the spokes, which are supposed to develop specific niche func-
tionalities [GC02]. Through the existence of network externalities, the platform of such
a central vendor becomes more valuable if more complementary products exist [SV99].
Thus, the attractiveness of taking on the role of this central platform architect increases
with the growth of the network [MF93]. The question is raised, however, whether similar
benefits from complementarities can also be realized by the spokes. Their ability to profit
directly from network participation through externalities is limited. Thus, it has to be as-
sumed that the key benefits originate from the dyadic relationship with the hub. In order
to understand the underlying rationale for the spokes to enter into a partnership with a hub
organization, it is essential to understand the unique capabilities that the hub brings into
the network. While previous research has mostly focused on studying dynamic capabili-
ties that spoke organizations have to develop on their own [MV07], this study argues that
accessing the capabilities of the large partner also plays an important role for the spokes’
competitiveness. Thus, in the following, the underlying theoretical foundations for the role
of dynamic capabilities in partnership formation are introduced.

2.2 Access to Dynamic Capabilities as Inducement for Partnering

Previous research has predominantly drawn on the resource-based view (RBV) for un-
derstanding why organizations enter into cooperative relationships [IHV02]. By viewing
firms as bundles of resources, it has been argued that the main reason why firms partner
is to gain access to resources which they currently do not possess, but which the partner
is offering [ES96]. This fact has also been labeled as the duality of inducements and op-
portunities [Ahu00]. In particular, dynamic capabilities are acting as inducements. They
refer to the ability of using resources in a way that enables organizations to not only re-
act to changes in their environment but to shape their environment to a certain extent

181

181

[TPS97]. This ability is particularly relevant in dynamic contexts, such as EAS develop-
ment [MMS05]. For instance, the theoretical discussion will show that not only particular
products or services are suggested to turn firms into attractive partners, but the capability to
constantly invent new products and services and to bring them to market. In the following,
we will discuss which dynamic capabilities are relevant in the context of hub-and-spoke
partner networks in the EAS industry.

According to a large scale survey by [Hag93], network formation in high-tech industries
such as EAS development, is motivated by three types of inducements: Speeding the pro-
cess of innovation, accessing complementary technology, and gaining access to novel mar-
kets.1 The capability to innovate has been found to be of prime importance for network
formation [Fre91]. Historically, many periods of fast-paced technical progress can be ex-
plained through such a process of collective innovation across the boundaries of single
firms [All83]. It has even been found that those organizations that emphasize innovations
as a core part of their strategy are particularly inclined to enter into inter-organizational
networks [ES96]. In a similar way, technology integration has often been stated as a prime
motive for network formation. The rationale behind this argument lies in the increased
complexity of modern technologies. As products have become increasingly complex, sin-
gle organizations struggle in addressing the entire scope of their development. Thus, joint
development of technology has been suggested in order to benefit from synergies between
technological capabilities [ES96]. Finally, gaining access to certain markets has repeat-
edly been brought forward in the literature. This includes both the access to new markets
through the augmentation of the product portfolio and the ability to address geographically
remote markets [Hag93]. In the software industry, inter-organizational collaboration has
been suggested as a key strategy for gaining access to marketing capabilities [RK94].

2.3 An Integrated Framework for Relationship Formation

Drawing on the theoretical insights from the formation of strategic alliances, a framework
is developed that explains partnering from an SME perspective. As the discussion on the
duality of inducements and opportunities has shown, these organizations can be assumed
to enter into alliances because they have a specific need to integrate external resources
[WW81]. Thus, the following section discusses capabilities that hub organizations possess
and spokes lack. These are assumed to be the key motivating factors for the partnership
formation from the spokes’ perspective. They are developed based on the three general
types of capabilities identified above.

1Although [Hag93] focuses on strategic alliances and thus on the joint deployment of resource, while this
paper explicitly states that the here analyzed partnerships between hubs and spokes in the EAS industry usually
do not imply such a joining of resources, [Hag93]’s taxonomy is still deemed a well suited starting point for
building a research model.

182

182

Architectural Innovation Capabilities. Innovativeness plays a key role for organiza-
tions in high-tech industries such as the software industry, since they have to constantly
cope with new technological advances as well as constantly changing customer require-
ments [Den04]. However, while innovativeness clearly constitutes one of the key dynamic
capabilities of software firms [MV07], it is less clear how an SME benefits from the in-
novativeness of its large partner. More clarity is achieved through classifying innovations
into different categories. As such, for industries that are characterized by a modular mode
of operation, the distinction can be made between innovation at the component and the
architectural level [HC90]. While component innovations accrue within the boundaries
of one module, architectural innovations are affecting the way or the general structure
by which the components are bound together to form a coherent system. A prominent
and recent example for such an innovation that affects the assembling of different system
components can be seen in the already mentioned emergence of SOA.

Architectural innovations require the capability to understand interdependencies between
the different components as well as the functionality of the entire system [HC90]. Stated
in other words, these architectural innovations are not confined to the narrowly circum-
scribed components in which the SMEs specialize. Thus, it can be assumed that SMEs
face difficulties in developing innovations on the architectural level. Contrary, the capabil-
ity to innovate on an architectural level is closely aligned with the business of integrating
components or modules into systems which is exactly the core business of large hub or-
ganizations. Their core competency is to build and maintain integrated systems based on
internally or externally developed components. In order to stay competitive in the systems
market, they have to constantly innovate their architectural capabilities. Since the compo-
nents of SMEs need to be aligned with architectural innovations in order to be compatible
with other components, access to state-of the art architectural knowledge is crucial for
them. It is important to stress that the spokes’ prime motive for partnering with a hub is
not the access to specific innovations, but to the hub’s capability to innovate. Spokes do
not actually use the hub’s products, but aim at providing a module of an overall system
that fulfills the changing customer requirements. This can be achieved by partnering with
hub organizations, which is articulated in the following proposition:

Proposition I. Small software producers (spokes) are partnering with large
IS producers (hubs) in order to gain access to their capabilities to develop
architectural innovations.

Integrated Systems Provision Capabilities. Closely related to the ability to innovate on
the architectural level are those capabilities necessary to provide a technological base. In
the context of EAS development, this technological base is considered to be the integrated
system, which the hubs provide. The capabilities necessary to provide such a system rep-
resent the core competency of the hub organizations. As discussed above, the capabilities
of hubs are historically rooted in the trend towards systems consolidation and developing
comprehensive systems within the boundaries of a single firm [CK03]. The capabilities
for developing such highly complex and integrated systems go far beyond what SMEs can
provide. They are rooted in a profound understanding of various underlying technologi-
cal disciplines and their interrelationships, an understanding of the entire system behavior

183

183

in terms of relevant parameters, the ability to design the entire system, the ability to de-
sign most key components of the system, and the ability to assemble component interfaces
[Pre03]. As an example, the capabilities to provide such an integrated system served as the
foundation of the success story of large providers of enterprise resource planning (ERP)
software during the last two decades. They were the first that enabled a seamless integra-
tion of the entire information flows within an organization which was the foundation of
their success story [Dav98].

As today the systems landscapes of large organizations are dominated by the solutions of
these systems developers, the majority of SMEs in the EAS industry have realized that the
success of their business critically depends on the inter-operability of their own solution
with that of the large systems providers [Mer05]. In order to achieve this inter-operability
of their own solution with the large systems, SMEs need to be well informed about the
functionalities and interfaces of theses systems. By partnering with such a large system
provider, the SMEs can facilitate their access to this kind of information. Furthermore,
the inter-operability of the different solutions can be ascertained. This helps to reduce
uncertainty on both the spokes and the hub side. This leads us to the following proposition:

Proposition T. Small software producers (spokes) are partnering with large
EAS producers (hubs) in order to gain access to their capabilities to provide
an integrated system.

Notably, these capabilities to provide an integrated system refer to the exploitation of ex-
isting product architecture potential, which has been defined by the hub organization. This
rather short term oriented “synchronic” capability differs from the long term capability to
introduce incrementally or radically new systems architectures which has been referred to
as “diachronic” systems integration capabilities [Pre03] (see Proposition I).

Market Access Capabilities. A third set of unique capabilities of the hubs that makes
partnering with them attractive for spoke organizations is related to the sheer market power
of the hubs. The products and services of SMEs in the software industry are of little value
for most customers without being integrated into their existing systems landscape, which
is largely dominated by the products of large systems providers. Thus, SMEs critically
depend on the market access capabilities of the large providers and their willingness to
consider the solutions of an SME as a complementary product in their solutions land-
scape. Many SMEs also cannot afford to make large investments into marketing activities
which makes it particularly interesting for them to profit from the sophisticated marketing
capabilities of large providers through a partnership arrangement [RK94].

Also, the strong market reputation of large systems providers can help SMEs reducing cus-
tomer uncertainty about the quality and long term-reliability of their products and services.
As it has been mentioned above, the quality of software is difficult to assess in advance.
Through a partnership with a large vendor, SMEs can increase the level of trust in their
solutions and their sustainability, in particular when the resources or products of the SMEs
are officially accredited by the hub organization, e.g. through a certification [SB04]. The
partnership agreement may substitute a direct quality assessment by signaling the trust-

184

184

worthiness of the SME to the market [Spe73]. Thus, the SMEs benefit from partnering
with established large systems providers by leveraging their own market access through
the large installed base of the hubs and by benefiting from the reputation of the hubs. The
final proposition therefore reads as follows:

Proposition M. Small software producers (spokes) are partnering with large
EAS producers (hubs) in order to gain access to their capabilities to address
broad markets.

2.4 Summary

The preceding discussion has evolved around the research objective of why small EAS
development organizations are partnering with large system providers. As the underly-
ing theoretical perspective on this issue has been that of dynamic capabilities, it has been
argued that especially those capabilities of hubs are of prime importance that are diffi-
cult for the spokes to obtain. The discussion has, thus, focused on benefits of the inter-
organizational approach in the EAS development industry and yielded the insight that
three broad categories of benefits promise to be relevant in this context. As such, bene-
fits from the hub’s innovation capability, systems integration capability, and market access
capability have been identified. The proposed relationships are illustrated in Figure 1.

Figure 1: A Model for Explaining the Partnering Motives for SMEs in the EAS Industry.

3 Empirical Analysis

3.1 Methodology and Data Collection

According to [KL00], the choice of an appropriate research design is to a large extend
determined by the research question that is intended to be answered. This paper deals

185

185

with the question why SMEs are partnering with well established large system providers.
According to [Yin03], the case study approach is particularly promising to answer such
why questions about motivations and rationales. The context in which case study research
is especially well suited is characterized by two distinctive features. First, the boundaries
between the studied phenomenon and its context are blurred. Second and closely related
to this, a multitude of both variables of interest and available data covering these variables
exist. Both features are clearly given in the above described context of EAS development.
Obviously, various stakeholders and influencing factors are involved in this industry, and
it is by no means clear which belong to the studied phenomenon and which are context.

Since this study is concerned with the motives of SMEs for partnering, the unit of anal-
ysis is the particular organization. Accordingly, a multiple-case study design was chosen
[MH94]. It allows to investigate partnership formation by considering the contextual con-
ditions of different organizations and, thereby, allows for an analytical generalization of
the study findings [Yin03]. More specifically, generalization is achieved by applying lit-
eral replication logic, where each case is treated as a separate study for examining our
proposed relationships [Yin03]. In order to enable the comparability of the individual
cases, the focus was set on one particular partnership network which was established and
is lead by one particular hub. This hub company is a large, global EAS vendor and one
of key vendors for standardized solutions (known as enterprise resource planning (ERP)
systems) discussed in the introduction of this paper. The recent version of the hub’s EAS,
however, is offered to customers as a platform based on SOA rather than a standardized,
monolithic ERP solution.

Eight SMEs were selected that entered into a partnership with this hub organization. All
analyzed case companies build on the hub’s platform and, thereby, extend the overall sys-
tem in a certain way. Each of the eight spoke companies is a certified partner of the hub,
i.e., the hub has accredited that the solution of the spokes has the capability to technically
integrate with the hub system. Table 1 introduces the case companies and their respective
extensions of the overall system. It was ensured that each of the eight case companies rep-
resents an independent legal entity and is no subsidiary of any larger organization. Data
from the spokes was collected from multiple sources, such as expert interviews, secondary
material and personal observation between May and June 2007. Although the character of
our analysis is rather exploratory, the expert interviews were guided by the propositions
presented in section 2. As some of the case companies had even less than twenty em-
ployees, it was impossible to gain more than one interview partner for six out of the eight
cases. For the other two cases, two and three interviews were conducted. On average, the
interviews lasted one hour and resulted in a total verbatim transcript of 85 pages and more
than 50,000 words of qualitative data2.

For data analysis purpose, codes were developed for the three discussed propositions
[MH94] by assigning a brief label for each of them: Innovation, Technology, and Mar-
ket. Using this scheme, the transcripts of the interviews were then coded by assigning text
passages to the three partnership motives proposed in the theoretical framework. These ex-
tracted interview fragments were then used for a two-stage analysis. First, a rough estimate

2Two interview partners did not give their approval to tape record the interview. Accordingly for these two
interviews no verbatim transcript could be made. Rather, comprehensive notes have been taken by the authors.

186

186

Case Company A Integration between the hub’s system and various machines such
as vending machines or intelligent refrigerators.

Case Company B Integration between the hub’s system and a CAD system of a
different vendor.

Case Company C Integration between the hub’s system and a groupware system of
a different vendor.

Case Company D Providing systems for automatic, mobile data recording, used for
example for inventory management.

Case Company E Full-range supplier of IT systems and services for newspaper
publishing companies.

Case Company F Integration between the hub’s system and various archiving sys-
tems.

Case Company G Integration between the hub’s system and various enterprise out-
put systems, such as high-volume printers.

Case Company H Providing a product information management system for cross-
media publishing.

Table 1: The Analyzed Case Companies.

of the importance of each of the proposed benefits was assessed by counting the frequen-
cies of the relevant fragments [MH94]. Then, a second round of analysis was conducted
in which the underlying background of each fragment was carefully considered in light of
each proposition [DWH07]. In the following, the findings from this two-stage process will
be presented. Since space is limited, we will directly enter into the cross-case analysis.
However, whenever necessary, the peculiarities of particular cases will be highlighted.

3.2 Data Analysis

Table 2 provides an overview of the number of relevant interview fragments for each of the
proposed partnership motives. As can be inferred from this table, the hub’s market access
capabilities were the most frequently mentioned motive for entering into the partnership
network. Indeed, in each case, this was named as the main motive. The second motive,
in terms of frequency of quotes, was the hub’s capability to provide an integrated sys-
tem. Only rarely, the interview partner explicitly discussed the implications of the hub’s
capability to innovate systems architectures.

Innovation Technology Market
Number of Quotes 3 13 26
Average per Interview 0.27 1.18 2.36

Table 2: Number of Relevant Interview Fragments.

187

187

A closer examination of the interview quotes largely confirmed the picture obtained from
the frequency counting. Table 3 illustrates our findings of our qualitative data analysis for
each of the three propositions and for each case. The proposed benefits for partnering are
either supported (+), rejected (o), or even a reversed relationship could be found (-).

Innovation Technology Market
Case Company A o + +
Case Company B - + +
Case Company C o + +
Case Company D o o +
Case Company E o o +
Case Company F o + +
Case Company G o + +
Case Company H o o +

Table 3: The Spokes’ Reasons to Participate in the Network.

In all eight spoke cases, the interviewees unanimously declared that the primary reason
for partnering was the expected benefit from the hub’s market power. In this context,
good support was found for the underlying rationale of this proposition. Essentially, all
clients of the spoke companies were found to already possess a system developed by the
hub organization. Thus, the value of the spokes’ products was inevitably linked to the
presence of the hub’s system. Indeed, the integration interface of the spokes’ solutions with
that of the hub was seen as a main selling point for spokes. Through the partnership the
spokes hoped to gain access to more customers that profit from the spokes’ complementary
functionality to the hub’s system. In addition, the signaling aspect was also found to be
of prime importance. The reputation that small companies gain from the partnering with
a large, well recognized organization was confirmed to be crucial. Two spokes explicitly
mentioned the fact that customers prefer their organization over competitors because of
their partnership with the hub. Thus, clear support for the proposed benefit from the hub’s
market capability could be found in the collected data.

The examination of the data regarding benefits from the hub’s systems provisioning capa-
bilities as a driver for partnering has shown a more ambiguous picture. While for some
case companies gaining access to information about functionalities and interfaces of the
hub’s systems were considered as very important (highlighted by a “+” in Table 3), oth-
ers either did not even mention that aspect of the partnership or considered it of minor
importance (highlighted by a “o” in Table 3). Notably, however, for none of the compa-
nies, the hub’s capabilities to provide an integrated system were the driving force to enter
into the partnership like it was found to be true for market access capabilities. Rather, for
those companies that emphasized its importance, these capabilities of the hub were seen
as a necessary precondition for realizing the final goal of market access that all spokes did
have in common.

Even less support was found for the proposition on architectural innovativeness of the hub
organization as a driving force for partnering. For none of the studied case companies,

188

188

access to architectural innovativeness was considered as a key factor for joining the partner
network. Contrary to our proposition, the innovation capability of the hub was even seen
as a potential threat rather than benefit in one particular case (Case B). Other spokes were
unsure about the implications of architectural innovations by the hub.

Summing up, the data analysis revealed mixed support for our propositions. In particular,
with regard to the benefits from systems provisioning capabilities of the hub, there are
strong differences between two particular groups of organizations. These group differ-
ences call for a deeper investigation of the underlying reasons and potential theory refine-
ment. This is addressed in the next section.

4 Discussion

When comparing the company profiles, as shown in Table 1, with the main differences
between the case companies regarding Proposition T, as shown in Table 3, it becomes
apparent that benefits from systems provisioning capabilities by the hub were only em-
phasized by those companies whose core business is the integration of other hardware
or software components with that of the hub system (Cases A, B, C, F, G). In contrast,
those companies whose core business is the development of software with business pro-
cess functionality (Cases D, E, H), did not see the access to the hub’s systems provisioning
capability as a key benefit. Rather, they saw the inter-operability of their own system with
that of the hub as a mere necessity. The integration itself was not seen as a key differentia-
tor for their business model of selling business functionality systems. Accordingly, access
to information about functionalities and interfaces of the hub’s systems were not seen as
providing any value per se. This is nicely illustrated by Case Company D, which develops
a solution for automatic mobile data recording for voice controlled warehousing systems.
This system allows for a more efficient inventory handling, even if it is not integrated with
the partner’s platform. Thus, although there is value in integrating the mobile recording
system with the hub system by enhancing the efficiency of the inventory handling pro-
cess through automatic rather than manual data transfer, the core value comes from the
mobile recording functionality of the system. The same holds true for Case Company E.
The solutions developed by this company are specialized on managing advertisement pro-
cesses and transforming printed newspapers into online presence. Thus, the main added
value for newspaper publishing companies is offered by the system’s functionality. The
integration with the hub’s system, which allows the transfer of advertisement data directly
into the standard business applications, only facilitates a better usage of the main solution
functionality. The same story can be told for the cross-media publishing solution of Case
Company H. Thus, taken together, the integration with the hub’s system provides addi-
tional value for the customers of the spokes, but the main selling point is still the systems
functionality, which is mostly unrelated to the inter-operability.

This completely deviates from the perspective of the second group. Their business model
critically depends on their unique capability of providing interfaces between different tech-
nological infrastructures. This requires them to gain and maintain a profound understand-
ing of the unique interface requirements of the two entities that they seek to integrate.

189

189

Since one of these entities is the system of the hub, the integrators see significant value in
the information on functionalities and interfaces. The partnership makes it much easier for
them to get access to this information which they need for their integration business.

Consequently, the impact of the hub’s systems provisioning capabilities on the spokes’
motivation to partner with the hub depends on the nature of the solution that the spokes
provide. The key differentiator between the solutions is the focus of their business model.
The spokes analyzed in our sample were found to either focus on solution integration
or on (stand alone) business process functionality. Thus, each spoke can be placed on
a continuum from low-high importance of business process functionality and low-high
solution integration capability as depicted in Figure 2.

Figure 2: Importance of Business Functionality in the Partner’s Solution.

Thus, refining the above sketched model, we introduce this importance of business func-
tionalities as a moderating factor. Our data revealed that access to details about the pro-
vided system - especially regarding its interfaces - is of key importance to those partners
that focus on integrating this system with another one (left side of Figure 2). In contrast,
for those companies that focus on providing business process functionality (right side of
Figure 2), this aspect is of minor relevance. This led us to the formulation of the following
emergent proposition:

Proposition BFT : The higher the importance of business process functionality
as opposed to solution integration for the business model of a spoke organi-
zation, the weaker is the proposed positive effect of the hub’s capability to
provide an integrated system on the spoke’s motivation to enter into a partner-
ship with this hub.

Taking the distinctive value proposition of the integrators into account, the fact that one
of the integrators (Case Company B) actually saw the innovative capability of the hub as
a potential threat rather than benefit becomes clearer. As far as the hub adopts a radically
new systems architecture that makes the integration with external hardware or software
components much easier for the hub, the business model to integrate this hub’s system
with another solution might be threatened. Thus, the architectural innovativeness of this
specific hub might reduce its attractiveness as a partner. Consequently, the move towards
more flexible component-based system architectures, such as SOA, may not be beneficial
for all partners of the hub organization. Accordingly, Proposition I is modified as follows:

190

190

Proposition IALT . The architectural innovation capabilities of a large system
developer (hub) are detaining small software companies (spokes) from part-
nering with this hub.

Notably, however, this reversed link is only proposed for spokes whose business model
is based on solution integration. For SMEs that focus on providing systems with busi-
ness process functionality the innovativeness of the hub plays a minor role for partnering.
Accordingly, the following moderating impact is proposed:

Proposition BFI : The higher the importance of business process functionality
as opposed to solution integration for the business model of a spoke organi-
zation, the weaker is the proposed negative effect of the hub’s architectural
innovation capability on the spoke’s motivation to enter into a partnership
with this hub.

The enhanced theoretical framework is illustrated in Figure 3. The described innovation
aspects are highlighted with dotted lines in this figure, since they are inherently exploratory
in nature. The here collected data is not comprehensive enough to draw conclusions about
their analytical generalizability. Thus, these links may viewed as theory emergent.

Figure 3: The Enhanced Model for Explaining the Motives of SMEs to Partner.

191

191

5 Conclusion

This paper has addressed the emergence of novel organizational structures in the EAS de-
velopment industry. It builds on recent work that examined the role of complementarities
for explaining inter-organizational forms of cooperation in the software industry [GI06],
as well as the role of dynamic capabilities for SMEs in order to stay competitive in the soft-
ware market [MV07]. The study is unique in that it focuses on new, more loosely-coupled
forms of hub-and-spoke partnership arrangements that have emerged in the software indus-
try. For explaining the emergence of these partnership networks, the concept of duality of
inducements and opportunities for network formation [Ahu00] along with research on the
motives of strategic alliance formation [Hag93] were applied. Benefits from three types of
dynamic capabilities of large systems providers were proposed to motivate SMEs to enter
into partnership networks of large systems providers. The resulting theoretical framework
was empirically examined through a multiple case study including eight spoke companies
that participate in the same partnership network of a large hub. Our findings revealed that
the market access capabilities of the hub are a strong motivation for SMEs for joining the
partnership network of the hub. Indeed, this was found to be the dominant motivation. A
different picture emerged for the role of the hub’s capabilities in architectural innovation
and providing an integrated system. The impact of these two dynamic capabilities was
found to be contingent on the type of solution that is provided by the spokes. In cases
where the business model of spokes was focusing on providing integration interfaces be-
tween the hub and other hardware or software components, architectural innovation may
even be seen as a threat rather than benefit, while access to the capabilities to provide an
integrated system of the hub is seen as being important. In contrast, for spokes that de-
velop solutions with business process functionality, both architectural innovativeness and
systems integration capabilities of the hub played a minor role for partnering.

While it should be kept in mind that the findings from this research are based on a limited
set of data and that the qualitative nature of our analysis may include some form of bias, we
believe that our findings provide an interesting starting point for further research in the area
of partnership networks in the software industry. One fruitful avenue for such an endeavor
may be the application of the here developed framework from the hub perspective. This
seems to be of prime importance, as it not only allows for a comprehensive analysis of the
different roles in the network, but also of their interactions. Moreover, a closer analysis
of the here developed propositions is promising. Especially a more distinct elaboration
on the differences between groups of SME partners and their implications promises to be
especially insightful not only for research, but for practitioners alike.

References

[Ahu00] G. Ahuja. The Duality of Collaboration: Inducements and Opportunities in the Forma-
tion of Interfirm Linkages. Strategic Management Journal, 21(3):317 – 343, 2000.

[All83] R. C. Allen. Collective Invention. Journal of Economic Behavior and Organization,
4(1):1 – 24, 1983.

192

192

[BC00] C. Y. Baldwin and K. B. Clark. Design Rules - Volume 1. The Power of Modularity. The
MIT Press, Cambridge, USA, 2000.

[CK03] M. Campbell-Kelly. From Airline Reservation to Sonic the Hedgehog: A History of the
Software Industry. The MIT Press, Cambridge, USA, 2003.

[Dav98] T. H. Davenport. Putting the Enterprise into the Enterprise System. Harvard Business
Review, 76(4):121 – 131, 1998.

[Den04] P. J. Denning. The Social Life of Innovation. Communications of the ACM, 47(4):15 –
19, 2004.

[DWH07] J. Dibbern, J. Winkler, and A. Heinzl. Explaining Variations in Client Extra Costs Be-
tween Software Projects Offshored to India. MIS Quarterly, 31(Special Issue on IS
Offshoring - forthcoming), 2007.

[ES96] K. M. Eisenhardt and C. B. Schoonhoven. Resource-Based View of Strategic Alliance
Formation: Strategic and Social Effects in Entrepreneurial Firms. Organization Science,
7(2):136 – 150, 1996.

[FMS98] J. Farrell, H. K. Monroe, and G. Saloner. The Vertical Organization of Industry: System
Competition versus Component Competition. Journal of Economics and Management
Strategy, 7(2):143 – 182, 1998.

[Fre91] C. Freeman. Networks of Innovators: A Synthesis of Research Issues. Research Policy,
20(5):499 – 514, 1991.

[FSW00] M. Fan, J. Stallaert, and A. B. Whinston. The Adoption and Design Methodologies
of Component-Based Enterprise Systems. European Journal of Information Systems,
9(1):25 – 35, 2000.

[GC02] A. Gawer and M. A. Cusumano. Platform Leadership. Harvard Business School Press,
Cambridge, MA, 2002.

[GI06] L. S. Gao and B. Iyer. Analyzing Complementarities Using Software Stacks for Software
Industry Acquisitions. Journal of Management Information Systems, 23(2):119 – 147,
2006.

[GI07] L. S. Gao and B. Iyer. Partnerships between Software Firms: Is There Value from Com-
plementarities? Accessible online at: http://www.softwareecosystems.com, 2007.

[Gre03] J. Greenbaum. Build vs. Buy in the 21st Century. Intelligent Enterprise, 6(7):26 – 31,
2003.

[Hag93] J. Hagedoorn. Understanding the Rational of Strategic Technology Partnering: Interor-
ganizational Modes of Cooperation and Sectoral Differences. Strategic Management
Journal, 14(5):371 – 385, 1993.

[HC90] R. M. Henderson and K. B. Clark. Architectural Innovation: The Reconfiguration of
Existing Product Technologies and the Failure of Established Firms. Administrative Sci-
ence Quarterly, 35(1, Special Issue: Technology, Organizations, and Innovation):9 – 30,
1990.

[IHV02] R. D. Ireland, M. A. Hitt, and D. Vaidyanath. Alliance Management as a Source of
Competitive Advantage. Journal of Management, 28(3):413 – 446, 2002.

[KL00] F. N. Kerlinger and H. B. Lee. Foundations of Behavioral Research. Harcourt College
Publishers, Fort Worth, TX, 4th ed. edition, 2000.

193

193

[Mer05] P. Mertens. Integrierte Informationsverarbeitung 1. Gabler, Wiesbaden, GER, 15th
edition, 2005.

[MF93] C. R. Morris and C. H. Ferguson. How Architecture Wins Technology Wars. Harvard
Business Review, 71(2):86 – 96, 1993.

[MH94] M. B. Miles and A. M. Huberman. Qualitative Data Analysis. Sage Publications, Thou-
sand Oaks, USA, 1994.

[MMS05] R. E. Miles, G. Miles, and C. C. Snow. Collaborative Entrepreneurship - How Com-
munities of Networked Firms Use Continuous Innovation to Create Economic Wealth.
Stanford Business Books, Stanford, CA, 2005.

[MV07] L. Mathiassen and A. M. Vainio. Dynamic Capabilities in Small Software Firms:
A Sense-and-Respond Approach. IEEE Transactions On Engineering Management,
54(3):522– 538, 2007.

[OW90] J. D. Orton and K. E. Weick. Loosely Coupled Systems: A Reconceptualization.
Academy of Management Review, 15(2):203 – 223, 1990.

[Pre03] A. Prencipe. Corporate Strategy and Systems Integration Capabilities: Managing Net-
works in Complex Systems Industries. In A. Prencipe, A. Davies, and M. Hobday, ed-
itors, The Business of Systems Integration, pages 114 – 132. Oxford University Press,
Oxford, UK, 2003.

[RK94] P. M. Rao and J. A. Klein. Growing Importance of Marketing Strategies for the Software
Industry. Industrial Marketing Management, 23(1):29 – 37, 1994.

[SB04] W. G. Sanders and S. Boivie. Sorting Things Out: Valuation of New Firms in Uncertain
Markets. Strategic Management Journal, 25(2):167 – 186, 2004.

[SMC92] C. C. Snow, R. E. Miles, and H. J. Coleman. Managing 21st Century Network Organiza-
tions. Organizational Dynamics, 20(3):4 – 20, 1992.

[Som04] I. Sommerville. Software Engineering. Pearson Education Limited, Harlow, UK, 7th ed.
edition, 2004.

[Spe73] M. Spence. Job Market Signaling. The Quarterly Journal of Economics, 87(3):355 –
374, 1973.

[STT05] N. Staudenmayer, M. Tripsas, and C. L. Tucci. Interfirm Modularity and Its Implications
for Product Development. Journal of Product Innovation Management, 22(4):303 – 321,
2005.

[SV99] C. Shapiro and H. R. Varian. Information Rules - A Strategic Guide to the Network
Economy. Harvard Business School Press, Boston, MA, 1999.

[Ten03] B.-S. Teng. Collaborative Advantage of Strategic Alliances: Value Creation in the Value
Net. Journal of General Management, 29(2):1 – 22, 2003.

[TPS97] D. J. Teece, G. Pisano, and A. Shuen. Dynamic Capabilities and Strategic Management.
Strategic Management Journal, 18(7):509 – 533, 1997.

[WW81] J. A. Welsh and J. F. White. A Small Business is not a Little Big Business. Harvard
Business Review, 59(4):18 – 27, 1981.

[Yin03] R. K. Yin. Case Study Research - Design and Methods, volume 5 of Applied Social
Research Methods Series. Sage Publications, Thousand Oaks, USA, 3rd edition, 2003.

194

194

P-1 Gregor Engels, Andreas Oberweis, Albert
Zündorf (Hrsg.): Modellierung 2001.

P-2 Mikhail Godlevsky, Heinrich C. Mayr
(Hrsg.): Information Systems Technology
and its Applications, ISTA’2001.

P-3 Ana M. Moreno, Reind P. van de Riet
(Hrsg.): Applications of Natural Lan-
guage to Information Systems,
NLDB’2001.

P-4 H. Wörn, J. Mühling, C. Vahl, H.-P.
Meinzer (Hrsg.): Rechner- und sensor-
gestützte Chirurgie; Workshop des SFB
414.

P-5 Andy Schürr (Hg.): OMER – Object-
Oriented Modeling of Embedded Real-
Time Systems.

P-6 Hans-Jürgen Appelrath, Rolf Beyer, Uwe
Marquardt, Heinrich C. Mayr, Claudia
Steinberger (Hrsg.): Unternehmen Hoch-
schule, UH’2001.

P-7 Andy Evans, Robert France, Ana Moreira,
Bernhard Rumpe (Hrsg.): Practical UML-
Based Rigorous Development Methods –
Countering or Integrating the extremists,
pUML’2001.

P-8 Reinhard Keil-Slawik, Johannes Magen-
heim (Hrsg.): Informatikunterricht und
Medienbildung, INFOS’2001.

P-9 Jan von Knop, Wilhelm Haverkamp
(Hrsg.): Innovative Anwendungen in
Kommunikationsnetzen, 15. DFN Arbeits -
tagung.

P-10 Mirjam Minor, Steffen Staab (Hrsg.): 1st
German Workshop on Experience Man-
agement: Sharing Experiences about the
Sharing Experience.

P-11 Michael Weber, Frank Kargl (Hrsg.):
Mobile Ad-Hoc Netzwerke, WMAN
2002.

P-12 Martin Glinz, Günther Müller-Luschnat
(Hrsg.): Modellierung 2002.

P-13 Jan von Knop, Peter Schirmbacher and
Viljan Mahni_ (Hrsg.): The Changing
Universities – The Role of Technology.

P-14 Robert Tolksdorf, Rainer Eckstein
(Hrsg.): XML-Technologien für das Se-
mantic Web – XSW 2002.

P-15 Hans-Bernd Bludau, Andreas Koop
(Hrsg.): Mobile Computing in Medicine.

P-16 J. Felix Hampe, Gerhard Schwabe (Hrsg.):
Mobile and Collaborative Busi-ness 2002.

P-17 Jan von Knop, Wilhelm Haverkamp
(Hrsg.): Zukunft der Netze –Die Verletz-
barkeit meistern, 16. DFN Arbeitstagung.

P-18 Elmar J. Sinz, Markus Plaha (Hrsg.):
Modellierung betrieblicher Informations-
systeme – MobIS 2002.

P-19 Sigrid Schubert, Bernd Reusch, Norbert
Jesse (Hrsg.): Informatik bewegt – Infor-
matik 2002 – 32. Jahrestagung der Gesell-
schaft für Informatik e.V. (GI) 30.Sept.-
3.Okt. 2002 in Dortmund.

P-20 Sigrid Schubert, Bernd Reusch, Norbert
Jesse (Hrsg.): Informatik bewegt – Infor-
matik 2002 – 32. Jahrestagung der Gesell-
schaft für Informatik e.V. (GI) 30.Sept.-
3.Okt. 2002 in Dortmund (Ergänzungs-
band).

P-21 Jörg Desel, Mathias Weske (Hrsg.):
Promise 2002: Prozessorientierte Metho-
den und Werkzeuge für die Entwicklung
von Informationssystemen.

P-22 Sigrid Schubert, Johannes Magenheim,
Peter Hubwieser, Torsten Brinda (Hrsg.):
Forschungsbeiträge zur “Didaktik der
Informatik” – Theorie, Praxis, Evaluation.

P-23 Thorsten Spitta, Jens Borchers, Harry M.
Sneed (Hrsg.): Software Management
2002 – Fortschritt durch Beständigkeit

P-24 Rainer Eckstein, Robert Tolksdorf
(Hrsg.): XMIDX 2003 – XML-
Technologien für Middleware – Middle-
ware für XML-Anwendungen

P-25 Key Pousttchi, Klaus Turowski (Hrsg.):
Mobile Commerce – Anwendungen und
Perspektiven – 3. Workshop Mobile
Commerce, Universität Augsburg,
04.02.2003

P-26 Gerhard Weikum, Harald Schöning,
Erhard Rahm (Hrsg.): BTW 2003: Daten-
banksysteme für Business, Technologie
und Web

P-27 Michael Kroll, Hans-Gerd Lipinski, Kay
Melzer (Hrsg.): Mobiles Computing in
der Medizin

P-28 Ulrich Reimer, Andreas Abecker, Steffen
Staab, Gerd Stumme (Hrsg.): WM 2003:
Professionelles Wissensmanagement – Er-
fahrungen und Visionen

P-29 Antje Düsterhöft, Bernhard Thalheim
(Eds.): NLDB’2003: Natural Language
Processing and Information Systems

P-30 Mikhail Godlevsky, Stephen Liddle,
Heinrich C. Mayr (Eds.): Information
Systems Technology and its Applications

P-31 Arslan Brömme, Christoph Busch (Eds.):
BIOSIG 2003: Biometric and Electronic
Signatures

GI-Edition Lecture Notes in Informatics

P-32 Peter Hubwieser (Hrsg.): Informatische
Fachkonzepte im Unterricht – INFOS
2003

P-33 Andreas Geyer-Schulz, Alfred Taudes
(Hrsg.): Informationswirtschaft: Ein
Sektor mit Zukunft

P-34 Klaus Dittrich, Wolfgang König, Andreas
Oberweis, Kai Rannenberg, Wolfgang
Wahlster (Hrsg.): Informatik 2003 –
Innovative Informatikanwendungen
(Band 1)

P-35 Klaus Dittrich, Wolfgang König, Andreas
Oberweis, Kai Rannenberg, Wolfgang
Wahlster (Hrsg.): Informatik 2003 –
Innovative Informatikanwendungen
(Band 2)

P-36 Rüdiger Grimm, Hubert B. Keller, Kai
Rannenberg (Hrsg.): Informatik 2003 –
Mit Sicherheit Informatik

P-37 Arndt Bode, Jörg Desel, Sabine Rath-
mayer, Martin Wessner (Hrsg.): DeLFI
2003: e-Learning Fachtagung Informatik

P-38 E.J. Sinz, M. Plaha, P. Neckel (Hrsg.):
Modellierung betrieblicher Informations-
systeme – MobIS 2003

P-39 Jens Nedon, Sandra Frings, Oliver Göbel
(Hrsg.): IT-Incident Management & IT-
Forensics – IMF 2003

P-40 Michael Rebstock (Hrsg.): Modellierung
betrieblicher Informationssysteme – Mo-
bIS 2004

P-41 Uwe Brinkschulte, Jürgen Becker, Diet-
mar Fey, Karl-Erwin Großpietsch, Chris-
tian Hochberger, Erik Maehle, Thomas
Runkler (Edts.): ARCS 2004 – Organic
and Pervasive Computing

P-42 Key Pousttchi, Klaus Turowski (Hrsg.):
Mobile Economy – Transaktionen und
Prozesse, Anwendungen und Dienste

P-43 Birgitta König-Ries, Michael Klein,
Philipp Obreiter (Hrsg.): Persistance,
Scalability, Transactions – Database Me-
chanisms for Mobile Applications

P-44 Jan von Knop, Wilhelm Haverkamp, Eike
Jessen (Hrsg.): Security, E-Learning. E-
Services

P-45 Bernhard Rumpe, Wofgang Hesse (Hrsg.):
Modellierung 2004

P-46 Ulrich Flegel, Michael Meier (Hrsg.):
Detection of Intrusions of Malware &
Vulnerability Assessment

P-47 Alexander Prosser, Robert Krimmer
(Hrsg.): Electronic Voting in Europe –
Technology, Law, Politics and Society

P-48 Anatoly Doroshenko, Terry Halpin,
Stephen W. Liddle, Heinrich C. Mayr
(Hrsg.): Information Systems Technology
and its Applications

P-49 G. Schiefer, P. Wagner, M. Morgenstern,
U. Rickert (Hrsg.): Integration und Daten-
sicherheit – Anforderungen, Konflikte und
Perspektiven

P-50 Peter Dadam, Manfred Reichert (Hrsg.):
INFORMATIK 2004 – Informatik ver-
bindet (Band 1) Beiträge der 34. Jahresta-
gung der Gesellschaft für Informatik e.V.
(GI), 20.-24. September 2004 in Ulm

P-51 Peter Dadam, Manfred Reichert (Hrsg.):
INFORMATIK 2004 – Informatik ver-
bindet (Band 2) Beiträge der 34. Jahresta-
gung der Gesellschaft für Informatik e.V.
(GI), 20.-24. September 2004 in Ulm

P-52 Gregor Engels, Silke Seehusen (Hrsg.):
DELFI 2004 – Tagungsband der 2. e-
Learning Fachtagung Informatik

P-53 Robert Giegerich, Jens Stoye (Hrsg.):
German Conference on Bioinformatics –
GCB 2004

P-54 Jens Borchers, Ralf Kneuper (Hrsg.):
Softwaremanagement 2004 – Outsourcing
und Integration

P-55 Jan von Knop, Wilhelm Haverkamp, Eike
Jessen (Hrsg.): E-Science und Grid Ad-
hoc-Netze Medienintegration

P-56 Fernand Feltz, Andreas Oberweis, Benoit
Otjacques (Hrsg.): EMISA 2004 – Infor-
mationssysteme im E-Business und E-
Government

P-57 Klaus Turowski (Hrsg.): Architekturen,
Komponenten, Anwendungen

P-58 Sami Beydeda, Volker Gruhn, Johannes
Mayer, Ralf Reussner, Franz Schweiggert
(Hrsg.): Testing of Component-Based
Systems and Software Quality

P-59 J. Felix Hampe, Franz Lehner, Key
Pousttchi, Kai Ranneberg, Klaus Turowski
(Hrsg.): Mobile Business – Processes,
Platforms, Payments

P-60 Steffen Friedrich (Hrsg.): Unterrichtskon-
zepte für informatische Bildung

P-61 Paul Müller, Reinhard Gotzhein, Jens B.
Schmitt (Hrsg.): Kommunikation in ver-
teilten Systemen

P-62 Federrath, Hannes (Hrsg.): „Sicherheit
2005“ – Sicherheit – Schutz und Zuver-
lässigkeit

P-63 Roland Kaschek, Heinrich C. Mayr,
Stephen Liddle (Hrsg.): Information Sys-
tems – Technology and ist Applications

P-64 Peter Liggesmeyer, Klaus Pohl, Michael
Goedicke (Hrsg.): Software Engineering
2005

P-65 Gottfried Vossen, Frank Leymann, Peter
Lockemann, Wolffried Stucky (Hrsg.):
Datenbanksysteme in Business, Techno-
logie und Web

P-66 Jörg M. Haake, Ulrike Lucke, Djamshid
Tavangarian (Hrsg.): DeLFI 2005: 3.
deutsche e-Learning Fachtagung Infor-
matik

P-67 Armin B. Cremers, Rainer Manthey, Peter
Martini, Volker Steinhage (Hrsg.):
INFORMATIK 2005 – Informatik LIVE
(Band 1)

P-68 Armin B. Cremers, Rainer Manthey, Peter
Martini, Volker Steinhage (Hrsg.):
INFORMATIK 2005 – Informatik LIVE
(Band 2)

P-69 Robert Hirschfeld, Ryszard Kowalcyk,
Andreas Polze, Matthias Weske (Hrsg.):
NODe 2005, GSEM 2005

P-70 Klaus Turowski, Johannes-Maria Zaha
(Hrsg.): Component-oriented Enterprise
Application (COAE 2005)

P-71 Andrew Torda, Stefan Kurz, Matthias
Rarey (Hrsg.): German Conference on
Bioinformatics 2005

P-72 Klaus P. Jantke, Klaus-Peter Fähnrich,
Wolfgang S. Wittig (Hrsg.): Marktplatz
Internet: Von e-Learning bis e-Payment

P-73 Jan von Knop, Wilhelm Haverkamp, Eike
Jessen (Hrsg.): “Heute schon das Morgen
sehen“

P-74 Christopher Wolf, Stefan Lucks, Po-Wah
Yau (Hrsg.): WEWoRC 2005 – Western
European Workshop on Research in
Cryptology

P-75 Jörg Desel, Ulrich Frank (Hrsg.): Enter-
prise Modelling and Information Systems
Architecture

P-76 Thomas Kirste, Birgitta König-Riess, Key
Pousttchi, Klaus Turowski (Hrsg.): Mo-
bile Informationssysteme – Potentiale,
Hindernisse, Einsatz

P-77 Jana Dittmann (Hrsg.): SICHERHEIT
2006

P-78 K.-O. Wenkel, P. Wagner, M. Morgens-
tern, K. Luzi, P. Eisermann (Hrsg.): Land-
und Ernährungswirtschaft im Wandel

P-79 Bettina Biel, Matthias Book, Volker
Gruhn (Hrsg.): Softwareengineering 2006

P-80 Mareike Schoop, Christian Huemer,
Michael Rebstock, Martin Bichler
(Hrsg.): Service-Oriented Electronic
Commerce

P-81 Wolfgang Karl, Jürgen Becker, Karl-
Erwin Großpietsch, Christian Hochberger,
Erik Maehle (Hrsg.): ARCS´06

P-82 Heinrich C. Mayr, Ruth Breu (Hrsg.):
Modellierung 2006

P-83 Daniel Huson, Oliver Kohlbacher, Andrei
Lupas, Kay Nieselt and Andreas Zell
(eds.): German Conference on Bioinfor-
matics

P-84 Dimitris Karagiannis, Heinrich C. Mayr,
(Hrsg.): Information Systems Technology
and its Applications

P-85 Witold Abramowicz, Heinrich C. Mayr,
(Hrsg.): Business Information Systems

P-86 Robert Krimmer (Ed.): Electronic Voting
2006

P-87 Max Mühlhäuser, Guido Rößling, Ralf
Steinmetz (Hrsg.): DELFI 2006: 4. e-
Learning Fachtagung Informatik

P-88 Robert Hirschfeld, Andreas Polze,
Ryszard Kowalczyk (Hrsg.): NODe 2006,
GSEM 2006

P-90 Joachim Schelp, Robert Winter, Ulrich
Frank, Bodo Rieger, Klaus Turowski
(Hrsg.): Integration, Informationslogistik
und Architektur

P-91 Henrik Stormer, Andreas Meier, Michael
Schumacher (Eds.): European Conference
on eHealth 2006

P-92 Fernand Feltz, Benoît Otjacques, Andreas
Oberweis, Nicolas Poussing (Eds.): AIM
2006

P-93 Christian Hochberger, Rüdiger Liskowsky
(Eds.): INFORMATIK 2006 – Informatik
für Menschen, Band 1

P-94 Christian Hochberger, Rüdiger Liskowsky
(Eds.): INFORMATIK 2006 – Informatik
für Menschen, Band 2

P-95 Matthias Weske, Markus Nüttgens (Eds.):
EMISA 2005: Methoden, Konzepte und
Technologien für die Entwicklung von
dienstbasierten Informationssystemen

P-96 Saartje Brockmans, Jürgen Jung, York
Sure (Eds.): Meta-Modelling and Ontolo-
gies

P-97 Oliver Göbel, Dirk Schadt, Sandra Frings,
Hardo Hase, Detlef Günther, Jens Nedon
(Eds.): IT-Incident Mangament & IT-
Forensics – IMF 2006

P-98 Hans Brandt-Pook, Werner Simonsmeier
und Thorsten Spitta (Hrsg.): Beratung in
der Softwareentwicklung – Modelle,
Methoden, Best Practices

P-99 Andreas Schwill, Carsten Schulte, Marco
Thomas (Hrsg.): Didaktik der Informatik

P-100 Peter Forbrig, Günter Siegel, Markus
Schneider (Hrsg.): HDI 2006: Hochschul-
didaktik der Informatik

P-101 Stefan Böttinger, Ludwig Theuvsen,
Susanne Rank, Marlies Morgenstern (Hrsg.):
Agrarinformatik im Spannungsfeld
zwischen Regionalisierung und globalen
Wertschöpfungsketten

P-102 Otto Spaniol (Eds.): Mobile Services and
Personalized Environments

P-103 Alfons Kemper, Harald Schöning, Thomas
Rose, Matthias Jarke, Thomas Seidl,
Christoph Quix, Christoph Brochhaus
(Hrsg.): Datenbanksysteme in Business,
Technologie und Web (BTW 2007)

P-104 Birgitta König-Ries, Franz Lehner,
Rainer Malaka, Can Türker (Hrsg.)
MMS 2007: Mobilität und mobile
Informationssysteme

P-105 Wolf-Gideon Bleek, Jörg Raasch,
Heinz Züllighoven (Hrsg.)
Software Engineering 2007

P-106 Wolf-Gideon Bleek, Henning Schwentner,
Heinz Züllighoven (Hrsg.)
Software Engineering 2007 –
Beiträge zu den Workshops

P-107 Heinrich C. Mayr,
Dimitris Karagiannis (eds.)
Information Systems
Technology and its Applications

P-108 Arslan Brömme, Christoph Busch,
Detlef Hühnlein (eds.)
BIOSIG 2007:
Biometrics and
Electronic Signatures

P-109 Rainer Koschke, Otthein Herzog, Karl-
Heinz Rödiger, Marc Ronthaler (Hrsg.)
INFORMATIK 2007
Informatik trifft Logistik
Band 1

P-110 Rainer Koschke, Otthein Herzog, Karl-
Heinz Rödiger, Marc Ronthaler (Hrsg.)
INFORMATIK 2007
Informatik trifft Logistik
Band 2

P-111 Christian Eibl, Johannes Magenheim,
Sigrid Schubert, Martin Wessner (Hrsg.)
DeLFI 2007:
5. e-Learning Fachtagung
Informatik

P-112 Sigrid Schubert (Hrsg.)
Didaktik der Informatik in
Theorie und Praxis

P-113 Sören Auer, Christian Bizer, Claudia
Müller, Anna V. Zhdanova (Eds.)
The Social Semantic Web 2007
Proceedings of the 1st Conference on
Social Semantic Web (CSSW)

P-114 Sandra Frings, Oliver Göbel, Detlef Günther,
Hardo G. Hase, Jens Nedon, Dirk Schadt,
Arslan Brömme (Eds.)
IMF2007 IT-incident
management & IT-forensics
Proceedings of the 3rd International
Conference on IT-Incident Management
& IT-Forensics

P-115 Claudia Falter, Alexander Schliep,
Joachim Selbig, Martin Vingron and
Dirk Walther (Eds.)
German conference on bioinformatics
GCB 2007

P-116 Witold Abramowicz, Leszek Maciszek (Eds.)
Business Process and Services Computing
1st International Working Conference on
Business Process and Services Computing
BPSC 2007

P-117 Ryszard Kowalczyk (Ed.)
Grid service engineering and manegement
The 4th International Conference on Grid
Service Engineering and Management
GSEM 2007

P-118 Andreas Hein, Wilfried Thoben, Hans-
Jürgen Appelrath, Peter Jensch (Eds.)
European Conference on ehealth 2007

P-119 Manfred Reichert, Stefan Strecker, Klaus
Turowski (Eds.)
Enterprise Modelling and Information
Systems Architectures
Concepts and Applications

P-120 Adam Pawlak, Kurt Sandkuhl,
Wojciech Cholewa,
Leandro Soares Indrusiak (Eds.)
Coordination of Collaborative
Engineering - State of the Art and Future
Challenges

P-121 Korbinian Herrmann, Bernd Bruegge (Hrsg.)
Software Engineering 2008
Fachtagung des GI-Fachbereichs
Softwaretechnik

P-122 Walid Maalej, Bernd Bruegge (Hrsg.)
Software Engineering 2008 -
Workshopband
Fachtagung des GI-Fachbereichs
Softwaretechnik

P-123 Michael H. Breitner, Martin Breunig, Elgar
Fleisch, Ley Pousttchi, Klaus Turowski (Hrsg.)
Mobile und Ubiquitäre
Informationssysteme – Technologien,
Prozesse, Marktfähigkeit
Proceedings zur 3. Konferenz Mobile und
Ubiquitäre Informationssysteme
(MMS 2008)

P-124 Wolfgang E. Nagel, Rolf Hoffmann,
Andreas Koch (Eds.)
9th Workshop on Parallel Systems and
Algorithms (PASA)
Workshop of the GI/ITG Speciel Interest
Groups PARS and PARVA

P-125 Rolf A.E. Müller, Hans-H. Sundermeier,
Ludwig Theuvsen, Stephanie Schütze,
Marlies Morgenstern (Hrsg.)
Unternehmens-IT:
Führungsinstrument oder
Verwaltungsbürde
Referate der 28. GIL Jahrestagung

P-126 Rainer Gimnich, Uwe Kaiser, Jochen
Quante, Andreas Winter (Hrsg.)
10th Workshop Software Reengineering
(WSR 2008)

P-127 Thomas Kühne, Wolfgang Reisig,
Friedrich Steimann (Hrsg.)
Modellierung 2008

P-128 Ammar Alkassar, Jörg Siekmann (Hrsg.)
Sicherheit 2008
Sicherheit, Schutz und Zuverlässigkeit
Beiträge der 4. Jahrestagung des
Fachbereichs Sicherheit der Gesellschaft
für Informatik e.V. (GI)
2.-4. April 2008
Saarbrücken, Germany

P-129 Wolfgang Hesse, Andreas Oberweis (Eds.)
Sigsand-Europe 2008
Proceedings of the Third AIS SIGSAND
European Symposium on Analysis,
Design, Use and Societal Impact of
Information Systems

P-130 Paul Müller, Bernhard Neumair,
Gabi Dreo Rodosek (Hrsg.)
1. DFN-Forum Kommunikations -
technologien Beiträge der Fachtagung

P-131 Robert Krimmer, Rüdiger Grimm (Eds.)
3rd International Conference on Electronic
Voting 2008
Co-organized by Council of Europe,
Gesellschaft für Informatik and E-
Voting.CC

P-132 Silke Seehusen, Ulrike Lucke,
Stefan Fischer (Hrsg.)
DeLFI 2008:
Die 6. e-Learning Fachtagung Informatik

P-133 Heinz-Gerd Hegering, Axel Lehmann,
Hans Jürgen Ohlbach, Christian
Scheideler (Hrsg.)
INFORMATIK 2008
Beherrschbare Systeme – dank Informatik
Band 1

P-134 Heinz-Gerd Hegering, Axel Lehmann,
Hans Jürgen Ohlbach, Christian
Scheideler (Hrsg.)
INFORMATIK 2008
Beherrschbare Systeme – dank Informatik
Band 2

P-135 Torsten Brinda, Michael Fothe,
Peter Hubwieser, Kirsten Schlüter (Hrsg.)
Didaktik der Informatik –
Aktuelle Forschungsergebnisse

P-136 Andreas Beyer, Michael Schroeder (Eds.)
German Conference on Bioinformatics
GCB 2008

P-137 Arslan Brömme, Christoph Busch, Detlef
Hühnlein (Eds.)
BIOSIG 2008: Biometrics and Electronic
Signatures

P-138 Barbara Dinter, Robert Winter, Peter
Chamoni, Norbert Gronau, Klaus
Turowski (Hrsg.)
Synergien durch Integration und
Informationslogistik
Proceedings zur DW2008

P-139 Georg Herzwurm, Martin Mikusz (Hrsg.)
Industrialisierung des Software-
Managements
Fachtagung des GI-Fachausschusses
Management der Anwendungs entwick -
lung und -wartung im Fachbereich
Wirtschaftsinformatik

P-140 Oliver Göbel, Sandra Frings, Detlef
Günther, Jens Nedon, Dirk Schadt (Eds.)
IMF 2008 - IT Incident Management &
IT Forensics

P-141 Peter Loos, Markus Nüttgens,
Klaus Turowski, Dirk Werth (Hrsg.)
Modellierung betrieblicher Informations -
systeme (MobIS 2008)
Modellierung zwischen SOA und
Compliance Management

P-142 R. Bill, P. Korduan, L. Theuvsen,
M. Morgenstern (Hrsg.)
Anforderungen an die Agrarinformatik
durch Globalisierung und
Klimaveränderung

P-143 Peter Liggesmeyer, Gregor Engels,
Jürgen Münch, Jörg Dörr,
Norman Riegel (Hrsg.)
Software Engineering 2009
Fachtagung des GI-Fachbereichs
Softwaretechnik

P-144 Johann-Christoph Freytag, Thomas Ruf,
Wolfgang Lehner, Gottfried Vossen
(Hrsg.)
Datenbanksysteme in Business,
Technologie und Web (BTW)

P-145 Knut Hinkelmann, Holger Wache (Eds.)
WM2009: 5th Conference on Professional
Knowledge Management

P-146 Markus Bick, Martin Breunig,
Hagen Höpfner (Hrsg.)
Mobile und Ubiquitäre
Informationssysteme – Entwicklung,
Implementierung und Anwendung
4. Konferenz Mobile und Ubiquitäre
Informationssysteme (MMS 2009)

P-147 Witold Abramowicz, Leszek Maciaszek,
Ryszard Kowalczyk, Andreas Speck (Eds.)
Business Process, Services Computing
and Intelligent Service Management
BPSC 2009 · ISM 2009 · YRW-MBP 2009

P-148 Christian Erfurth, Gerald Eichler,
Volkmar Schau (Eds.)
9th International Conference on Innovative
Internet Community Systems
I2CS 2009

P-149 Paul Müller, Bernhard Neumair,
Gabi Dreo Rodosek (Hrsg.)
2. DFN-Forum
Kommunikationstechnologien
Beiträge der Fachtagung

P-150 Jürgen Münch, Peter Liggesmeyer (Hrsg.)
Software Engineering
2009 - Workshopband

P-151 Armin Heinzl, Peter Dadam, Stefan Kirn,
Peter Lockemann (Eds.)
PRIMIUM
Process Innovation for
Enterprise Software

The titles can be purchased at:

Köllen Druck + Verlag GmbH
Ernst-Robert-Curtius-Str. 14 · D-53117 Bonn
Fax: +49 (0)228/9898222
E-Mail: druckverlag@koellen.de

