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On CRDTs in Byzantine Environments
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Abstract: Conflict-free Replicated Data Types (CRDTs) allow updates to be applied to different
replicas independently and concurrently, without the need for a remote conflict resolution. Thus,
they provide a building block for scalability and performance of fault-tolerant distributed systems.
Currently, CRDTs are typically used in a crash fault setting for global scale, partition-tolerant, highly
available databases or collaborative applications. In this paper, we explore the use of CRDTs in
Byzantine environments. This exploration is inspired by the popular Matrix messaging system: as
recently shown, the underlying Matrix Event Graph replicated data type represents a CRDT that can
very well deal with Byzantine behavior. This “Byzantine Tolerance” is due to mechanisms inherent in
CRDTs and in the hash-based directed acyclic graph (HashDAG) data structure used in Matrix. These
mechanisms restrict Byzantine behavior. We, therefore, discuss Byzantine behavior in a context of
CRDTs, and how the notion of Byzantine tolerance relates to equivocation. We show that a subclass
of CRDTs is equivocation-tolerant, i.e., without equivocation detection, prevention or remediation,
this subclass still fulfills the CRDT properties, which leads to Byzantine tolerance. We conjecture that
an operation-based Byzantine-tolerant CRDT design supporting non-commutative operations needs
to be based on a HashDAG data structure. We close the paper with thoughts on chances and limits of
this data type.

Keywords: Dependable Distributed Protocols; Conflict-Free Replicated Data Types; Equivocation
Tolerance; Byzantine Fault Model; Matrix Event Graph

1 Introduction

Conflict-free Replicated Data Types (CRDTs) are maintained by replicas that run on multiple
processes of a distributed system.2 To keep all replicas up to date about local changes to
the CRDT, replicas repeatedly broadcast updates to all replicas. As the name suggests,
CRDTs provide powerful properties: in particular, updates can be applied without further
coordination of replicas, and recovery from network partitions can be done with ease. The
corresponding property that CRDTs provide, namely Strong Eventual Consistency (SEC),
ensures that correct replicas eventually converge to a consistent state, i.e., the same state,
regardless of the order in which updates were received. Therefore, CRDTs are popular

1 Karlsruhe Institute of Technology, KASTEL Institute of Information Security and Dependability, Am Fasanen-
garten 5, 76131 Karlsruhe, Germany

2 For simplicity, we typically assume a one-to-one correspondence between replicas and processes.
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for global-scale, partition-tolerant, highly-available databases or peer-to-peer collaborative
applications like shopping lists and collaborative text editors.

However, previous CRDT-related work mainly focused on crash fault settings. We are
interested in an understanding of CRDTs also in a Byzantine environment. In particular, we
are interested in the characterization of Byzantine-tolerant CRDTs as well as in the relevance
of these CRDTs. This interest is currently shared by various researchers [KH20, Au21] and
also inspired by the success of the Matrix messaging system [Th21] that is based on the
Matrix Event Graph replicated data type, a CRDT in a Byzantine environment [Ja21].

What does a Byzantine environment mean for CRDTs? Basically, we will call a CRDT
Byzantine-tolerant when Byzantine processes cannot induce a violation of the CRDT prop-
erties. To achieve Byzantine tolerance, recent work on CRDTs in Byzantine environments
have followed different paths. Some previous work makes use of classical assumptions of
an honest two-thirds majority [Zh16] or introduce coordination mechanisms (e.g., coordi-
nated Byzantine-tolerant causal-order broadcast [Au21]). Other recent publications study
coordination-free, Sybil-resistant CRDTs using broadcast based on the happened-before
relation as directed, acyclic graphs [KH20, Ja21].

In this paper, we take up the latter approach that does neither depend on additional
coordination mechanisms nor on a particularly strengthened broadcast. As a motivating
example, we look at the Matrix Event Graph replicated data type and its use of a hash-based
directed acyclic graph data structure. We show that Byzantine behavior targeted to violate
SEC essentially reduces to equivocation (and omission as a special case of equivocation)
and under which conditions a subclass of crash-tolerant CRDTs is equivocation-tolerant in
Byzantine environments. In particular, we show that, due to equivocation tolerance, all state-
based and a subclass of operation-based CRDTs in the crash fault model tolerate any number
of Byzantine processes. Further, we conjecture that the only non-trivial Byzantine-tolerant
CRDT design is a grow-only HashDAG as it is done in the Matrix Event Graph.

Do Byzantine-tolerant CRDTs matter? As “safety does not guard against faulty clients”
[Ca99, Section 3], even if Byzantine faults can be tolerated on a CRDT level, the application
itself on top of a Byzantine-tolerant CRDT has to cope with the provided SEC guarantee and
a potentially Byzantine behavior on application level. While this application-level Byzantine
tolerance is out of scope of our paper and cannot be achieved in many cases, in this paper we
like to start the discussion on chances and limits of Byzantine-tolerant CRDT deployments.

The structure of the paper is as follows: In Sect. 2, we provide the system model with its
terminology and assumptions as well as the relationship between Byzantine tolerance and
equivocation tolerance for CRDTs. In Sect. 3, we study the case of the Byzantine-tolerant
Matrix Event Graph that powers the Matrix messaging system. In Sect. 4, we provide the
general technical characterization of Byzantine-tolerant CRDTs as well as a conjecture. In
Sect. 5, we take up the question on the relevance of Byzantine-tolerant CRDTs based on the
technical characterization and address open issues.
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2 System Model: Terminology and Assumptions

Replicas run on processes of a distributed system and serve data to a (distributed) application.
It is, therefore, natural to consider the system under study on three layers: the network
layer for the communication between processes, the CRDT layer as the data layer, and the
application layer. The focus of this work is on the CRDT layer in the middle, in which
replicas execute operations to query or update the state of the CRDT. The replicas rely on
the network layer to provide broadcast in order to exchange information on their current
state or state changes. In this section, we will first review the guarantees to the application
layer that are provided by the replicas as well as their requirements for the network layer, for
the case of a crash fault setting. Afterwards, we move to Byzantine environments and the
notion of Byzantine-tolerant CRDTs.

Without coordination or conflict resolution between replicas, CRDTs ensure a notion of
“conflict-freedom” formalized as Strong Eventual Consistency (SEC). SEC consists of the
following properties [Sh11]:

Eventual Delivery: If an update is applied at some correct replica, it is eventually applied
at every correct replica.
Termination: Every operation that is executed by a correct replica eventually terminates.
Strong Convergence: Correct replicas that applied the same set of updates maintain the
same state.

CRDTs are either state-based or operation-based (see, e.g., [Sh11]). With state-based
CRDTs, all states of the CRDT form a semilattice. A semilattice is a partially ordered set,
and every possible CRDT state is one element of the set. Every pair of states has a least
upper bound, which is also called the join of two states. An update is valid if it is part of
the semilattice. If a replica 𝑟 receives a valid state from another replica 𝑝, 𝑝’s state can be
directly applied by merging 𝑟’s state with 𝑝’s state using the join operation of the semilattice.
To fulfill SEC, replicas repeatedly broadcast the current local state to the other replicas,
which merge the received state with their local state. Thus, eventual delivery is required as a
property of the underlying network layer.

Operation-based CRDTs differ from state-based CRDTs in the fact that replicas do not send
their whole new state as updates but only the operation that lead to the new state. To fulfill
SEC, the updates must either be applied in causal order or be commutative. In crash fault
environments, CRDTs usually require an underlying causal order broadcast on the network
layer to enforce the causal order [Sh11]. We follow a different approach (as it is done in
the Matrix Event Graph) to enforce the causal order by making use of the happened-before
relation that is used in the CRDT itself. We present the happened-before relation and the
corresponding causal order in Sect. 3.

Replicas only apply valid updates. The validity of an update is defined by the specific CRDT
when viewed on its own, e.g., in case of state-based CRDTs by the semilattice. An invalid
update violates locally verifiable properties and cannot be applied to the CRDT. A conflict
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would occur when two concurrent updates that may be individually valid but, when viewed
together, violate some invariant (cf. Sect. 4 and [Sh11, Footnote 1]). However, a CRDT
guarantees that a conflict on the CRDT layer will not occur, typically under the assumption
of a crash fault model.

We are now interested to analyze the conditions or restrictions under which a CRDT in the
crash fault model can tolerate Byzantine behavior on the CRDT layer. A Byzantine-tolerant
CRDT is defined as follows:

Byzantine-tolerant CRDT: A Byzantine-tolerant CRDT ensures that on correct processes
the SEC guarantee is provided to the application layer by tolerating Byzantine behavior
regardless of the number of Byzantine processes as long as the correct processes build a
connected component on the network layer.

A CRDT in the crash fault model already provides strong means against Byzantine behavior:
an invalid update according to the CRDT definition will not be accepted anyhow. Whether
the CRDT guarantees are sufficient for an application is a different aspect on which we
comment later. Thus, a Byzantine replica cannot attack the system with invalid updates with
respect to the CRDT definition, and Equivocation and Omission remain as the only options
for an attack on CRDT layer. Equivocation is the act of sending different valid updates to
different recipients, where a replica should have sent the same update [Ch07]. Omission can
be seen as a special case of equivocation where an update is not sent to a subset of replicas
or even to all other replica. In contrast to an invalid update, which is detectable when viewed
on its own, equivocated updates can only be detected globally or with both equivocated
updates. Equivocated updates always originate from a Byzantine replica and do not exist in
the crash fault model. Please note that in the scope of this paper, equivocated updates are
not necessarily conflicting, i.e., with respect to the invariants of the technical CRDT layer.

We can, therefore, check the Byzantine tolerance of a CRDT by checking whether a CRDT
is equivocation-tolerant as defined as follows:

Equivocation-tolerant CRDT: A CRDT is equivocation-tolerant if it neither needs to
detect, prevent, nor remedy equivocation to ensure its provided guarantees beyond what is
needed to cope with omission.

Through our assumptions, the relevant Byzantine behavior is restricted to the network and
CRDT layer in form of equivocation and omission, as Byzantine behavior on the application
layer cannot harm SEC and is thereby out of scope. In Sect. 4, we present a characterization
of subclasses of CRDTs that are equivocation-tolerant and, thus, Byzantine tolerant.

For the network layer, we assume an asynchronous network with a static set of processes
participating in the system. The processes are connected with authenticated channels
and all correct processes form a connected component1 in the communication graph, so
that Byzantine processes can neither forge message senders nor block communication

1 No fully connected mesh is required.
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between two sets of correct processes. Every update that is sent over a channel can be
arbitrarily delayed, but is received eventually on the other side of the channel. The requested
connected component can, therefore, be built based on a Best-Effort Broadcast as, e.g.,
defined in [CGR11] (also cf. Appendix A). In the case of state-based CRDTs, one has to
require periodic broadcasts of all correct replicas to ensure ‘connectedness’, i.e., liveness.
Correspondingly, in the case of operation-based CRDTs, we will require eventual response
to a request when a replica requests information from another replica.

A different question is which applications would work reasonably well with the guarantees
provided by Byzantine-tolerant CRDTs — and whether Byzantine behavior can be dealt
with on application layer. We will take up this discussion in Sect. 5. In short, one would
either stick to grow-only CRDTs or one has to add (policy-based) mechanisms that are
based on access control (or both). As grow-only CRDTs only support ‘append’ operations,
they are susceptible to application-layer spamming if not prevented via access control. The
Matrix Event Graph, as illustrated in the following section, represents a grow-only CRDT
and serves an instant messaging application.

3 Matrix Event Graph

As of today, Matrix is primarily used for decentralized instant messaging, e.g., by the French
public sector, by the German military forces, and as upcoming standard in the German
healthcare sector [Ho21b]. As of October 2021, the public Matrix federation consists of
more than 35 million users and 70 thousand servers [Ho21a].

The Matrix Event Graph (MEG) represents the CRDT at the core of Matrix. It provides a
grow-only history of messages to the publish/subscribe messaging application layer. The
MEG is conflict-free not only in the crash fault model, but also in the Byzantine fault
model [Ja21]. Therefore, the MEG serves as our prime example for Byzantine-tolerant
operation-based CRDTs in this paper. From the network layer, the MEG only requires a
best-effort broadcast and a connected component of all correct processes. We present a
short introduction to the MEG concept, and outline why neither Byzantine equivocation nor
omission can ‘hurt’ the MEG.

The data structure of a MEG is a directed, acyclic graph (DAG) [Ja21]. A new message 𝑒

is appended to a replica of the MEG by an update operation that takes the set 𝐿 of all
currently known forward extremities (intuitively: messages without ‘children’), adds a unique
identifier 𝑤 for the operation and sends the tuple (𝑒, 𝐿, 𝑤) to all replicas (including itself).
Each (correct) replica now adds the new vertex (𝑒, 𝑤) to the DAG as well as corresponding
edges from (𝑒, 𝑤) to all ‘parents’ in 𝐿, provided all vertices in 𝐿 exist at this replica. If not,
the replica requests information of missing vertices from other replicas. For a formalization
of the CRDT definition please consult Algorithm 1 in Appendix B.

The edges represent a happened-before relation as defined by [La78], and the corresponding
potentially causal order provides the causal order for the CRDT. Of course, the potentially
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Fig. 1: (a) MEG state of one replica with messages from itself ( ) and from other replica ( ). It
receives two updates from a third replica ( ): The update 𝜁 can be applied immediately, since its
causal parent 𝜖 is already known. The update 𝜗 cannot be applied (yet) since 𝜂 is not part of the
replica’s state. (b) An example for an equivocation performed by replica 𝑟2.

causal order does not refer to the actual ‘real’ causality of the messages, but to the potential
causal order given by the selection of the set 𝐿. In the following, we simply refer to the
‘causal order of the CRDT’. Fig. 1a shows a simple example of a causal history of a replica.

To be able to cope with Byzantine behavior, integrity needs to be protected: it should neither
be possible to change a message’s content in an undetectable manner once the message is
added to the MEG, nor should it be possible to change the causal order in the MEG. For
integrity protection, content identifiers are used based on cryptographic hashes to bind both
the identity as well as the causal order of operations in a way that is locally verifiable for
correct processes, but unforgeable for Byzantine processes. Let ℎ1 be a cryptographic hash
function that provides for the content identifier ℎ1 (𝑒) of message 𝑒. Assume that 𝑤1, . . . , 𝑤𝑛

are the unique identifiers of the operations that added the elements of 𝐿 to the DAG. Then
the content identifier (and unique identifier) for the operation that adds message 𝑒 is given
by ℎ2 (𝑤1, . . . , 𝑤𝑛, ℎ1 (𝑒)), for a cryptographic hash function ℎ2. Thus, content and structure
of the DAG is protected using cryptographic hashes: when the content identifier for adding
message 𝛽 contains the hash of the content identifier for adding message 𝛼, 𝛼 must have
happened before 𝛽. Through these hash-based content identifiers, in analogy to a hash chain
in blockchains, the MEG builds up a Hash-based DAG (HashDAG) data structure.

As depicted in Fig. 1a, the happened-before relation allows replicas to detect faults: If
the parents of a new message are not yet known, it is not appended to the graph. Instead,
other replicas can be queried for the missing operations. Through the hash-based content
identifiers, replicas can verify the integrity of replies to their query even from Byzantine
replicas, and will eventually receive the operation if any correct replica received it. Thus,
messages with made-up parents will never be added to the graph maintained at a correct
replica. As shown in Fig. 1b, a Byzantine replica (𝑟2) can perform equivocation: It sends
an update with message 𝛽 to 𝑟1 and an update with message 𝛾 to 𝑟2 where it should have
sent the same to both 𝑟1 and 𝑟3. As different updates have different content identifiers, as
soon as correct replicas 𝑟1 and 𝑟3 communicate with each other, they can reliably detect that
their graphs differ by comparing content identifiers of received updates. Because the DAG
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only implies a partial order, the MEG can treat and merge two equivocated updates as two
causally independent, concurrent updates, and consistency is restored.

4 CRDTs: Equivocation Tolerance and Byzantine Tolerance

In this section, we analyze under which conditions CRDTs in the crash-fault model are
Byzantine-tolerant as defined in and under the assumptions from Sect. 2. As presented
in Sect. 2, to check Byzantine tolerance, we have to check equivocation tolerance as well
as handling of omissions. Equivocation itself mainly threatens the Strong Convergence
property. A Byzantine replica can equivocate using two updates trying to attack the notion
of which updates are the same, or the application order of updates of correct replicas. Thus,
we have to address these identity and ordering aspects of updates. As we will also see below,
omission faults will not threaten the property of Termination.

4.1 State-based CRDTs

Proposition 4.1. All state-based CRDTs in the crash fault model also trivially provide
equivocation tolerance in Byzantine environments.

Sketch of proof. State-based CRDTs are based on a defined join-semilattice of all valid
states. Replicas of a state-based CRDT in the crash fault model only send their current
state without metadata, which means that an update is valid if and only if it is part of the
semilattice, which is locally verifiable. Due to the commutativity of the join relation and
the partial order of the semilattice, any two valid updates cannot conflict with each other,
as both can be merged in an arbitrary order with the same result. Thus, in case a replica
wants to equivocate, all the replica can do is to send different valid updates that will not
conflict, by definition of the state-based CRDT in the crash fault model. Accordingly, an
equivocation consisting of 𝑑 differing updates can be treated as 𝑑 independent updates for
which omission has occurred.

Corollary 4.2. State-based CRDTs in the crash fault model also ensure Strong Eventual
Consistency for all correct replicas and are thereby Byzantine-tolerant.

Sketch of proof. Due to Proposition 4.1, we can treat equivocation as omission, i.e., an
update was not sent to all other replicas. State-based CRDTs broadcast their current state
regularly to all other replicas. With the given system model, every update that is sent to
another replica is received eventually by this replica. As the replicas’ current state indirectly
contains all updates they have received and merged before, updates not sent directly to a
specific replica will eventually reach that replica indirectly via correct replicas. Thus, also
Eventual Delivery and Termination are not violated.
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4.2 Operation-based CRDTs

While state-based CRDTs need no further assumptions to be Byzantine-tolerant, only
certain operation-based crash-tolerant CRDTs are also Byzantine-tolerant, and they need
the following two additional assumptions or invariants.

Operation-based CRDTs require that non-commutative updates are applied in causal order.
A CRDT provides an inherent ordering when all information that a correct replica needs
to apply an update in correct causal order is part of the update and cannot be equivocated.
In other words, the updates are either commutative or are integrity protected as it is the
case for a HashDAG as outlined in Sect. 3: when inherent ordering is implemented via
hash-based content identifiers as in the MEG, Byzantine attackers cannot tamper with the
happened-before relation, as hashes verifiably prove the order of the updates.

Hash-based content identifiers also provide an inherent identity for update operations: An
update has an inherent identity when all information a correct replica needs to distinguish
two updates (or to decide that two updates are identical) are part of the update and cannot
be equivocated. Thereby, identical updates are not applied twice when received twice.

Proposition 4.3. Operation-based CRDTs in the crash fault model require inherent identity
of updates and inherent ordering of updates to be equivocation-tolerant in any Byzantine
environment.

Sketch of proof. Operation-based CRDTs rely on update metadata, especially on content
identifiers of update operations. The uniqueness of content identifiers of update operations
represents an invariant whose violation by Byzantine replicas would violate Strong Con-
vergence, and thereby SEC. Without inherent identity, a Byzantine replica can equivocate
by sending two different updates with the same identifier to different replicas. Without
inherent ordering, a Byzantine replica can equivocate by sending two versions of two
non-commutative updates with converse causal order. In both cases, the conflicting updates
would be applied and lead to an inconsistent state, without a coordination-free way for the
receiving replicas to detect or remedy. With inherent identity and inherent ordering, one of
any pair of conflicting updates that would violate identifier uniqueness resp. happened-before
correctness is invalid, i.e., can be locally detected and rejected by correct replicas without
coordination. It follows that both inherent identity as well as inherent ordering is required
for operation-based CRDTs to be equivocation-tolerant.

Without periodic broadcasting of state-based CRDTs, operation-based CRDTs need to be
able to handle omissions to ensure Eventual Delivery. If a happened-before relation is
included in updates, then Omission Handling can rely on the relation to detect missing
updates. Using hash-based content identifiers, those missing updates can be requested
from other replicas. Alternatively, CRDTs can periodically gossip the set of all received
updates. The gossiping approach can be formalized and made more efficient through the
happened-before relation and hash chaining [KH20]. We note that this approach essentially
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uses a state-based set CRDT to synchronize all updates, benefiting from the Byzantine
tolerance of all state-based CRDTs shown in Corollary 4.2.

Corollary 4.4. Omission-handling, equivocation-tolerant operation-based CRDTs ensure
Strong Eventual Consistency for all correct replicas and are thereby Byzantine-tolerant.

Sketch of Proof. Proposition 4.3 allows to treat equivocation as omission. For CRDTs
that use an omission handling mechanism (e.g., one of the approaches explained above),
Byzantine replicas cannot prevent that updates they sent to at least one correct replica are
eventually delivered to all correct replicas, i.e., they cannot harm the Eventual Delivery
property through omission.

4.3 Uniqueness Conjecture

In Byzantine environments, a CRDT with non-commutative operations has to record the
happened-before relation of updates in the data structure to locally ensure the causal order
independently of the broadcast order. Ensuring that some update happened-before some
other update in a locally verifiable way in the presence of Byzantine processes directly points
to hash-chaining the corresponding updates with a cryptographic hash function guaranteeing
preimage resistance. The happened-before relation being a partial order inherently leads
to a directed, acyclic graph (DAG) of all updates. To efficiently ensure Eventual Delivery,
one can employ the happened-before relationship recorded in the graph by requesting
missing parent operations from other replica. In combination, these considerations lead to a
grow-only HashDAG. The presented line of thought was independently followed in [KH20]
as well as in [Th21, Ja21], which leads us to the following conjecture:

Conjecture. The only Byzantine-tolerant operation-based CRDT design that supports
non-commutative updates is a grow-only HashDAG.

5 Discussion and Conclusion

We analyzed the reasons why and under which conditions a subclass of CRDTs is not only
crash-tolerant, but also Byzantine-tolerant. For the analysis we made use of the notion
of equivocation tolerance and its relation to conflict freedom of CRDTs. We showed that
regardless of the number of Byzantine processes, this subclass can keep the characteristic
traits of CRDTs, like efficiency, low coordination effort, and Strong Eventual Consistency.
On the network layer, only a best effort broadcast, i.e., eventual delivery, is required.

We now like to take up the question of “do Byzantine-tolerant CRDTs matter?” by looking
to the current practical relevance and limitations of Byzantine-tolerant CRDTs as well as to
potential combinations with access control and/or further coordination mechanisms. First
of all, the Matrix Event Graph with its grow-only HashDAG design proves the practical
relevance of Byzantine-tolerant CRDTs for the use case of instant messaging. But is there
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a relevance for other use cases than the Matrix one? The Matrix example also points to
limitations: while a grow-only data structure avoids the need of handling of deletion events,
it brings up the issue of garbage collection and spamming. Furthermore, one has to rethink
the applicability to other application scenarios which we will discuss in the following.

State-based CRDTs are easy to deploy in Byzantine environments because of their uncondi-
tional equivocation tolerance we showed in Corollary 4.2. However, the identity of updates
gets lost since only states are propagated in the system. It is not possible to reconstruct the
update that led to a new state, which makes it impossible to prove which replica performed
which CRDT updates and whether it was allowed to do so. Hence, access control on
the different operations of state-based CRDTs, giving different permissions to different
participating replicas, cannot be enforced. Therefore, state-based CRDTs might be suitable
for decentralized systems in the spirit of the Newsgroup system where any user can write
new articles and reply to old ones.

In contrast to state-based CRDTs, with operation-based CRDTs the original caller of an
update operation can be determined and verified with authentication mechanisms like digital
signatures. Therefore, operation-based CRDTs provide the necessary prerequisites for access
control, which makes them easier to deploy in more demanding systems.

In general, CRDTs forfeit consensus and coordination (cf. the example of SEC but no
consensus in Appendix C) in favor of availability and partition tolerance. Without Sybil
countermeasures like controlled membership, the space of solvable application-layer
problems is the class of invariant-convergent problems, i.e., invariants for which local,
uncoordinated replica decisions are sufficient to preserve the invariants globally [KH20].
While this takes cryptocurrencies out of question, the typical CRDT use cases for which
Strong Eventual Consistency suffices, e.g., collaborative applications like shopping lists,
text editors or whiteboards, are also invariant-convergent and, therefore, uses cases for
Byzantine-tolerant CRDTs.

When the application layer requires stronger guarantees, e.g., strong consistency, Byzantine-
tolerant CRDTs can obviously only serve as part of a solution and need to be combined
with other, stronger mechanisms. While the combination ‘technically’ inherits the stronger
assumptions, from a practical deployment perspective, a hybrid mode of operations might
make sense: an application can make use of the Byzantine-tolerant CRDT to collect data only
requiring corresponding weak assumptions on the system. Whenever stronger assumptions
like synchronous operation are fulfilled at certain phases in time, more demanding tasks
like consensus can be performed, which also allows for garbage collection in the CRDT
layer. Thus, the resulting hybrid system would fall into the category of partially synchronous
system [DLS88], reaching agreement on previously aggregated updates.

We hope the characterization of Byzantine-tolerant CRDTs we presented in this paper
provides a basis for further exploration.
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A Best-Effort Broadcast

For convenience and to avoid misunderstanding, the definition of best-effort broadcast as
presented in [CGR11, Section 3.2] is reproduced here. An example best-effort broadcast
algorithm implementation can also be found there.

Abstraction 1 Best-effort Broadcast Interface and Properties
Events:

〈𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡, 𝑚〉: Broadcasts a message 𝑚 to all processes.
〈𝐷𝑒𝑙𝑖𝑣𝑒𝑟, 𝑝, 𝑚〉: Delivers a message 𝑚 broadcast by process 𝑝.

Properties:
Validity: If a correct process broadcasts a message 𝑚, then every correct process
eventually delivers 𝑚.
No duplication: No message is delivered more than once.
No creation: If a process delivers a message 𝑚 with sender 𝑠, then 𝑚 was
previously broadcast by process 𝑠.

B Conflict-free Replicated Data Types

The following formalization and example of Conflict-free Replicated Data Type (CRDT)
implementations, i.e., replicated objects that belong to one of the two CRDT families, is
based on the original CRDT paper [Sh11] and on the paper [Ja21] that analyzes the Matrix
Event Graph. A state-based replicated object is defined as a tuple (𝑆, 𝑠0, 𝑞, 𝑢, 𝑚). 𝑆 is the
space of possible per-replica states; the replica at process 𝑝𝑖 has state 𝑠𝑖 ∈ 𝑆. The initial
state of every replica is 𝑠0. The query method 𝑞 returns the current state of the replica. The
update method 𝑢 modifies the current state. The merge method 𝑚 merges the state from a
remote replica with the current local state. If Eventual Delivery and termination is ensured,
an state-based replicated object provides SEC and thereby is a state-based CRDT if the set
of possible states 𝑆 with the merge function 𝑚 is a join-semilattice.

An operation-based replicated object is defined as a tuple (𝑆, 𝑠0, 𝑞, 𝑡, 𝑢, 𝑃). Again, 𝑆 is the
space of possible states and 𝑠0 the initial state. The query method 𝑞 returns the current
state. The update method is composed of a side-effect-free generator step 𝑡 and an effector
step 𝑢 that performs the state change. The generator step is executed by the source replica
and returns an operation that is then broadcast to all replicas. Then, every replica executes
the effector step of the update, which applies the operation to their current state. The
effector may contain a precondition 𝑃, which must be fulfilled before an operation is applied.
If causal delivery of updates and termination is ensured, an operation-based replicated
object provides SEC and thereby is a operation-based CRDT if all concurrent updates are
commutative, and the delivery precondition 𝑃 is satisfied by causal delivery.

As an example, we provide the definition of the Matrix Event Graph (MEG) grow-only
HashDAG as operation-based replicated object in Algorithm 1, which was shown to be a
Byzantine-tolerant, operation-based CRDT in [Ja21]. Each vertex is a tuple (𝑒, 𝑤) with 𝑤
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Algorithm 1 Matrix Event Graph Operation-based Replicated Object
state set 𝑆 = (𝑉, 𝐸) ⊲ vertices are of form 𝑉 = (event 𝑒, uid 𝑤), 𝐸 represents edge 𝐸 ⊆ (𝑉 ×𝑉)
init ({𝑒0, 𝑤0}, ∅)
query lookup (uid 𝑤) : boolean

return ∃(𝑒′, 𝑤′) ∈ 𝑉 : 𝑤′ == 𝑤

query hasChild (vertex (𝑒, 𝑤)): boolean
return ∃((𝑒′, 𝑤′) ∈ 𝑉) : ((𝑒′, 𝑤′), (𝑒, 𝑤)) ∈ 𝐸

query getExtremities () : list of vertices
return 𝐿 =

⋃
(𝑒,𝑤) ∈𝑉 :!hasChild( (𝑒,𝑤)) {(𝑒, 𝑤)}

query getState () : set
return 𝑆

update append
generator

let 𝐿 = getExtremities()
let 𝑤 = unique(𝐿, 𝑒)
return append, (𝑒, 𝐿, 𝑤)

effector event 𝑒, list of vertices 𝐿, uid w
pre ∀(𝑒𝑝 , 𝑤𝑝) ∈ 𝐿 : lookup(𝑤𝑝)
𝑉 = 𝑉 ∪ {(𝑒, 𝑤)}
𝐸 = 𝐸 ∪⋃

(𝑒𝑝 ,𝑤𝑝) ∈𝐿{((𝑒, 𝑤), (𝑒𝑝 , 𝑤𝑝))}

being a unique identifier and 𝑒 the actual event. Edges represent the causal relationship
between a child and a parent vertex. Then, the state is a DAG which is defined through
vertices and edges. The types of methods are indicated with query and update. The
precondition of the effector step is indicated with pre. When appending a new event 𝑒 to the
graph, the generator returns operation in the form (𝑒, 𝐿, 𝑤), where 𝐿 is the list of current
forward extremities, i.e., vertices without children. Let ℎ1 be a cryptographic hash function
that provides for the content identifier ℎ1 (𝑒) of message 𝑒. Assume that 𝑤1, . . . , 𝑤𝑛 are
the unique identifiers of the operations that added the elements of 𝐿 to the DAG. Then the
content identifier (and unique identifier) 𝑤 for the operation (𝑒, 𝐿, 𝑤) that adds message
𝑒 is given by unique(𝐿, 𝑒) = ℎ2 (𝑤1, . . . , 𝑤𝑛, ℎ1 (𝑒)), for a cryptographic hash function ℎ2.
After validation, the operation (𝑒, 𝐿, 𝑤) is applied by the effector which first verifies that
the parent vertices from 𝐿 are already part of the current state, and then adds the new vertex
and the edges between the new vertex and the parent vertices from 𝐿.

C Example of an Equivocation tolerated by the MEG while being an
Application-Layer Conflict

In Sect. 3, we showed that the Matrix Event Graph (MEG) is a Byzantine-tolerant CRDT,
and can thereby guarantee the notion of ‘conflict-freedom’, defined as Strong Eventual
Consistency (SEC) in Sect. 2, in face of equivocation. However, this ‘conflict-freedom‘ on
the CRDT layer does not mean that the equivocation does not also present a conflict on the
application layer that might even require consensus, which is out of scope for our work. As
an example, in Fig. 2, we show an equivocation that contains the classical “Attack!” and
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On CRDTs in Byzantine Environments
Fig. 2: Evolution of a MEG over time in face of replica 3 running on a Byzantine faulty process
performing equivocation on replicas 1 and 2 running on correct processes. Messages associated to
operations 𝛽 and 𝛾 are an application-layer conflict, and replica 3 equivocates by sending 𝛽 → 𝛼 to
replica 1 but 𝛾 → 𝛼 to replica 2. The MEG, guaranteeing the SEC formalization of ‘conflict-freedom’
to the application layer, eventually provides converged current states of the causal history at both
replica 1 and 2, and contains both equivocated operations 𝛽 and 𝛾. To solve the remaining application
layer conflict based on the synchronized causal history is left to the application.

“Retreat!” conflict of the Byzantine Generals Problem [LSP82] on the application layer,
while the MEG still provides SEC to the application layer.

All replicas start with initial state 𝑠0 = 𝛼. Replica 3 then creates the messages “Attack!”
with operation 𝛽 and “Retreat!” with operation 𝛾 that conflict on the application layer, and
performs equivocation by sending an update attaching 𝛽 to 𝛼 at replica 1, while sending the
different update to replica 2 that instead attaches 𝛾 to 𝛼 there. The current state of replica 1
and 2 is thereby momentarily inconsistent. When replica 1 now broadcasts 𝛿 → 𝛽, replica 2
notices that it is missing the operation containing 𝛽, and re-requests it from replica 1 and 3.
While replica 3 pretends not to know about 𝛽, replica 1 returns 𝛽 → 𝛼 and thereby enables
replica 2 to apply both 𝛿 → 𝛽 and 𝛽 → 𝛼. The respective procedure repeats with 𝜂 → 𝛾, 𝛿

broadcast by replica 2. After both replica 1 and 2 added 𝜂 to their graphs, their current states
are consistent again.

The example shows that while the application layer still has to deal with conflicts, it can at
least rely on SEC in the way that both 𝛼 = “Attack!” and 𝛽 = “Retreat!” end up as parallel
events in the current state of both replica 1 and 2, no later than when those current states
have eventually reached consistency again.
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