
Towards Secure and Reliable Firewall Systems based on
Minix 3

Rüdiger Weis, Brian Schüler, Stefan Flemming∗

Beuth Hochschule für Technik Berlin, University of Applied Sciences
{rcw,bschueler,flemming}@bht-berlin.de

Abstract: Minix 3 is a real micro kernel operation system with a lot of remarkable
security features. Two of the main points are size and isolation. The Minix 3 kernel is
less than one thousand times the size of Linux. All drivers and the IP stack live in user
land. We show a port of the netfilter framework, which leads to a system with better
stability and security than the widely used Linux solutions [We07]. Additionally we
present some new ideas regarding virtualized systems.

1 Introduction

”your job is being a professor and researcher: That’s one hell of a good
excuse for some of the brain-damages of minix”, Linus Torwalds, 1992.

”I mean, sometimes it’s a bit sad and we’re definitely not the streamlined
hyper-efficient kernel that I had envisioned 15 years ago. The kernel is huge
and bloated”, Linus Torwalds, 2009.

Security flaws in modern Operating Systems

The security problems facing the current crop of operating systems, including Windows,
but also including Linux, are the result of design errors. The errors were inherited for the
most part from their predecessors of the 1960s.

Most of these problems can be attributed to the fact that developers aren’t perfect. Humans
make mistakes. Of course, it would be nice to reduce the numbers and mitigate the effects;
however, designers have frequently been far too willing to compromise security and a
clean design for speed. Tanenbaum refers to this as a ’Faustian pact’.

In addition to the issues related to sheer size, monolithic designs are also prone to inherent
structural problems: Any error is capable of endangering the whole system. A funda-
mental design error is that current operating systems do not follow the Principle Of Least

∗Supported by the Projekt Forschungsassistenz from Europäischer Sozialfonds.



Authority (POLA). To put this simply, POLA states that developers should distribute sys-
tems over a number of modules so an error in one module will not compromise the security
and stability of other modules. They should also make sure that each module only has the
rights that it actually needs to complete its assigned tasks.

The Minix way

Minix is often viewed as the spiritual predecessor of Linux, but these two Unix cousins
could never agree on the kernel design. Minix 3 has been designed to reduce the lines of
kernel code. With less than 5.000 loc the Minix 3 kernel is less than one thousand times
the size of the Linux kernel.

Minix 3 runs on 32-bit x86 CPUs, as well as on a number of virtual machines including
Qemu, Xen, and VMware. The operating system includes an X Window System (X11), a
number of editors (Emacs and Vi), shells (including bash and Zsh), GCC, script languages
such as Python and Perl, and network tools such as SSH. A small footprint and crash-
resistant design make Minix a good candidate for embedded systems, and its superior
stability has led to a promising new role as a firewall system.

2 The MinixWall

Packet filters are an endangered system component. Despite the pretty good quality of the
Linux Netfilter implementation, a number of security issues have surfaced in the past. If
a subsystem of this kind is running on the Linux kernel, it will endanger system security.
Building on work by the Tanenbaum group, the Technical University of Applied Science
Berlin ported the widespread Netfilter framework to Minix 3.

In Minix 3, a single user process could crash without compromising system security. In
most cases the reincarnation server would simply restart the process. The differences
become even more apparent if an attacker succeeds in executing code. In Minix, a hijacked
user process is still a problem, but the effect is far less serious thanks to isolation.

The fact that security-relevant programs such as network packet filters are executed di-
rectly inside the kernel space intensifies the problem. This is the cause why a vulnerability
in the firewall code does not only effect the filter routines but also influences the whole
Linux kernel. A crash of the process thereby not only has an impact on the overall system
stability but can be also used in attacks to circumvent system security mechanisms.

2.1 Operating a firewall in Linux and Minix systems

Due to the highly security enhanced and stable design, Minix is predestinated to be run
in security critical systems such as firewalls. Figure 1 shows the operation of a packet

86 Towards Secure and Reliable Firewall Systems based on MINIX3



Linux System

Firewall

Linux Kernel

MINIX 3 System

MINIX3MikrokernelMinix UserspaceMinix Userspace

Minix MicrokernelMinix Microkernel

Firewall

Firewall coupled with Kernel Firewall decoupled from Kernel

Vulnerable Area Secured Area Network Packets

Figure 1: Vulnerability comparison - Linux versus Minix

filter on Linux, compared to one running on Minix. While faulty firewall code in Linux
is directly executed inside the kernel space, an exploit will result in an unstable system or
even a kernel panic. Beyond that it can be used to hijack the whole kernel. In Minix the
execution inside the userspace effectively separates the firewall code from the rest of the
system. A crash caused by the packet filter will so only effect the userspace process itself
and neither the kernel nor other processes.

2.2 MinixWall - A secure packet filter for Minix

In 2007 the project MinixWall [Sc07] started at the Beuth University of Applied Sciences
Berlin. MinixWall ist a port of the iptables/netfilter firewall framework, which is normally
part of the Linux kernel. All required sources have been taken from the Linux kernel and
freed from Linux-specific structures to make it more portable.

On the Minix side, the network stack daemon inet required to be modified by an additional
interface that is responsible for the redirection of all network packets to the network filter
process. This filter is part of a newly introduced sub-layer for packet filtering tasks. While
the filter functions in Linux are executed as sub-routines within the TCP/IP stack, the
MinixWall filters network packages by a single filter process in user mode and enables to
transport them using a device file. In Linux an exploit in the filter is executed inside a
sub-routine of the TCP/IP stack and will provoke a kernel panic. A security leak in Minix
on the other hand will only crash the single user process without compromising the system
stability. In many cases the restart of the service by the reincarnation server brings the
system again into working state.

Towards Secure and Reliable Firewall Systems based on MINIX3 87



To ease the configuration of the netfilter, the userspace application iptables, which is well
known on Linux environments has been included into the MinixWall distribution in forms
of a separate application. This helper tool uses simple device control sequences (ioctl) to
configure the firewall rule information. The corresponding filter device is published by
/dev/netfilter and can be made accessible to a specific user and a group that is allowed to
administrate the rule set.

Two additional sets of functions have been implemented to deal with the Minix network
stack, the inet daemon.

• The first set of functions are for exchanging network packet data between the inet
daemon and the firewall process and are called the backend functions.

– The functions inetEthIn(char *ethname) and inetEthOut are for
telling the filter which ethernet input and/or output devices are concerned for
a network packet (i.e. IN=eth0 and OUT=eth1 in the case of a forwarded
packet). One of these functions must be called to initialize the filter state ma-
chine that is responsible for the different network packet headers.

– The functions inetSetPackSize() and inetSetDataSize() are used
to define the total packet size and the data size of the upcoming header respec-
tively.

– The inetData() function transfers a buffer filled with the network packet
data to the firewall to be processed later with inetProcess().

• The second set of functions are frontend functions and are designed for setting up
and editing the firewall rule set.

– The command line tool iptables from Linux is used here as a frontend. A
new filter table is created with iptablesNewChain(...) function for
example.

– iptablesSelectTable(...) and iptablesSelectChain(...)
are used for selecting tables and chains.

– Rules can be appended with iptablesAppendRule() to an existing chain.

All these comfortable backend and frontend functions are translated into ioctl’s sequences
that are used for the firewalling device file. The header files which MinixWall uses are
similar to these on Linux.

The following example code in the inet daemon is passed when a network packet arrives
the local machine and performs a full filtering in the INPUT direction:

88 Towards Secure and Reliable Firewall Systems based on MINIX3



Protocol Linux include file Minix include file
IP header /usr/include/linux/ip.h /usr/include/net/gen/ip hdr.h
ICMP header /usr/include/net/icmp.h /usr/include/net/gen/icmp hdr.h
UDP header /usr/include/net/udp.h /usr/include/net/gen/udp hdr.h
TCP header /usr/include/net/tcp.h /usr/include/net/gen/tcp hdr.h
Routing
information /usr/include/net/route.h /usr/include/net/gen/route.h

Table 1: networking include files

3 Virtualization

A Minix based system is a reliable and secure platform for the operation of firewalls, but
often it is meaningful to take full advantage of the hardware by hosting additional network
services on the same machine. Operating all these services directly under Minix already
offers several key benefits compared to other operating systems that are not as stable,
secure and resource-friendly. Whenever a service crashes, it will only affect one userspace
server process that will be restarted immediately.

The classical way to deal with these problems is to operate the MinixWall on a standalone
network host and forward all filtered traffic to a second computer that is running a different
operating system with all required network services such as a mail-, web-, ftp- or file-
server. This topology clearly separates the systems with the advantage that exploits do
not effect more than one machine but also the disadvantage that additional hardware is
required.

3.1 Operation of complete networks on one hardware

An interesting approach is the combination of a Minix 3 based MinixWall with other oper-
ating systems using virtualization. As shown in figure 2, the hardware of a router is hosting
two independent virtualized guest systems. One guest can so operate the MinixWall packet
filter while the other one serves additional network services. An important advantage of
this approach is the need for only one computer while both operating systems are kept sep-
arated. Beyond that the user is free to select the best fitting operating system for a specific
task.

In respect to the security and stability it is apparent that the virtualized design has advan-
tages caused by this separation. Whenever one guest fails, it can be restarted independently
from other systems. If one guest is compromised by an attack, it can be replaced using an
image without affecting the other ones. This approach not only enables the separation of
critical services in its own virtualization containers but also offers the operation of virtu-
alized guests with different operating systems at the same time. Several combinations of
servers and virtualized firewalls are conceivable such as complete networks with DMZs
and multiple differently filtered subnets.

Towards Secure and Reliable Firewall Systems based on MINIX3 89



nf_ioctl(IOCTL_NF_ETH_IN,(void*)ifin);
nf_ioctl(IOCTL_NF_ETH_OUT,(void*)ifout);
nf_ioctl(IOCTL_NF_PACK_SIZE,(void*)pack_size);
nf_ioctl(IOCTL_NF_CONTAINS,(void*)NF_LAYER_IP);
/* sending all buffer parts to the filter */
for (i=0, temppack=pack, count=pack_size; temppack && count>0;)
{
nf_ioctl(IOCTL_NF_SIZE,(void*)temppack->acc_buffer->buf_size);
nf_ioctl(IOCTL_NF_DATA,
(void*) (((vir_bytes)temppack->acc_buffer->buf_data_p)
+temppack->acc_offset)
);
i++; count-=temppack->acc_buffer->buf_size;
temppack=temppack->acc_next;
}
nf_ioctl(IOCTL_NF_HOOK,(void*)NF_IP_LOCAL_IN);

/* do the filtering work */
if (nf_ioctl(IOCTL_NF_PROCESS,NULL)==1)
{
if (broadcast)
ip_arrived_broadcast(ip_port, pack);
else
ip_arrived(ip_port, pack);
}
nf_ioctl(IOCTL_NF_GETDATA,NULL);

Table 2: example filter code

3.2 Cascaded firewalls

Figure 2 illustrates that all incoming and unfiltered traffic is forwarded to one MinixWall,
when it enters the host system. This traffic is guided through the MinixWall to be filtered
by the packet filter before it is redirected to the Linux guestsystem that acts as a host for
all services.

The other way around the packages generated by the Linux guest for the outside world can
be filtered again by the MinixWall, before they leave the router host.

For all router scenarios Minix is equipped with two virtual network interface cards for the
internal and external network traffic. One card is directly bridged to the network interface
card of the host system while the other one is used for the internal traffic. The hostsystem
itself does not require more than one network interface card but can be equipped with a
second card if the filtered traffic should be made available to an external system.

90 Towards Secure and Reliable Firewall Systems based on MINIX3



Router Hardware

MINIX3
Firewall

Incoming unfiltered
network traffic

Fi
lte

re
d

ne
tw

or
k

tr
af

fic Harmless Packets

Malicious Packets

Virtualization Layer

LINUX

Figure 2: Virtualization of the Minix Packetfilter

While figure 2 shows a solution with only one firewall, it can be extended by additional
packet filters to a cascaded firewall solution. Multiple virtualized firewalls can so filter
traffic in series to provide redundant security. The risk that an attacker is able to compro-
mise the system is so efficiently reduced, because an attacker needs to break all involved
firewalls.

4 Conclusion and Outlook

We have presented a firewall system based on Minix 3 which provides higher security
and better reliability by design. Combined with the very low hardware requirements this
system has a wide range of applications in the field of embedded hardware and on virtual-
ized systems. It is clear that security researchers would prefer putting the firewall systems
onto dedicated hardware, but our solution can be used without additional hardware costs
in many scenarios. We are also working on improvements for virtualized networks on one
system (e.g. DMZ). All our software is published under der GNU Public Licsence and can
be downloaded from: http://wiki.beuth-hochschule.de/˜minixwall.

Towards Secure and Reliable Firewall Systems based on MINIX3 91



References

[Mi05] Minix 3: The official Minix3 web page. http://www.minix3.org.

[He06] Herder, Jorrit N.: TOWARDS A TRUE MICROKERNEL OPERATING SYSTEM.
http://www.minix3.org/doc/herder_thesis.pdf, 2006.

[Sc07] Schüler, Brian : Analysis and Porting of a network filtering architecture on Minix-3,
Diplomarbeit, TFH Berlin, 2007.

[We07] Weis, Rüdiger : Linux is obsolete 2.0, CCCamp 2007,
http://public.beuth-hochschule.de/˜rweis/vorlesungen/
ComputerSicherheit/WeisLinuxIsObsolete2.pdf, 2007.

[We09a] Weis, Rüdiger : Smart Kernel, Linux Magazine, 2009.
http://www.linux-magazine.com/w3/issue/99/Minix_3_Review.
pdf

[We09b] Weis, Rüdiger : Mit Schutzmantel, Linux Magazin, 2009.
http://www.linux-magazin.de/Heft-Abo/Ausgaben/2009/01/
Mit-Schutzmantel?category=0

[Ke06] Kelly, Ivan: Final Year Project.
Porting Minix to Xen, 2006.

[Ta06] Tanenbaum, Andrew. S. : Introduction to Minix3.
http://www.osnews.com/story/15960/Introduction-to-Minix-3,
2006.

[He06] Herder, J.N. and Bos, H. and Gras, B. and Homburg, P. and Tanenbaum, A.S.: Minix
3: A highly reliable, self-repairing operating system. ACM SIGOPS Operating Systems
Review, 2006.

[THB06] Tanenbaum, AS and Herder, JN and Bos, H.: Can we make operating systems reliable
and secure?. Computer Journal Volume 39 Number 5, 2006.

[He07] Herder, J. and Bos, H. and Gras, B. and Homburg, P. and Tanenbaum, A.S.: Roadmap
to a failure-resilient operating system.
https://www.usenix.org/publications/login/2007-02/
openpdfs/herder.pdf, 2006.

[Ko09] Van der Kouwe, E.: Porting the QEMU virtualization software to Minix 3, 2009.

This work has been supported by the Projekt Forschungsassistenz from Europäischer
Sozialfonds (ESF) and the Senat of Berlin.

92 Towards Secure and Reliable Firewall Systems based on MINIX3


