An Overview of Current Approaches to Mashup Generation

Thomas Fischer and Fedor Bakalov Andreas Nauerz
University of Jena IBM Research and Development
07743 Jena, Germany 71032 Boblingen, Germany
{fischer.thomas|fedor.bakalov } @uni-jena.de andreas.nauerz@de.ibm.com

Abstract: Mashups allow users to bring together data and services from various web
applications in order to create a new integrated tool that serves their needs. In the
last few years, a variety of mashups frameworks has been proposed that promise to
simplify the mashup creation process so that every user is able to create mashups. In
this paper, we give an overview about these approaches and identify their limitations.
The main insight is that the average user will not possess the necessary skills to create
mashups that meet his needs with these tools. We therefore propose that a tool is
needed that allows for the automatic ad-hoc generation of mashups.

1 Introduction

A mashup can be defined as a situational Web application that extracts and combines data
and functionality from different sources to support user needs and tasks [Mer06]. In the
last few years, a number of frameworks have been proposed to simplify the mashup cre-
ation process so that users without programming background are able to create mashups.
In this paper, we compare these frameworks with respect to the skill requirements of the
user. The analysis is based on a representative overview of mashup frameworks that have
been proposed by business and research.

The rest of the paper is organized as follows. In Section 2 we describe the categorization
of the framework overview and provide the overview itself. In Section 3 we identify
limitations of the existing approaches. Section 4 concludes this paper with an overview
about the topics that should be addressed by future research on mashup frameworks.

2 Analysis

In this section, we give an overview about different mashup frameworks and their paradigm
to mashup development. Figure 1 depicts the mashup framework landscape in relation to
the development paradigm as well as the required skills of the user.

Mashup Framework Categorization Model. The user skills can be divided into the
categories developer, power user, and casual user. A developer should be familiar with
programming, web technologies, different APIs as well as the usage of development tools.
A power user has no programming skills, by definition of this paper, but does have de-

254

tailed functional knowledge about a specific tool or set of tools. Casual users only have
the skills to use the functionality of a web browser and are able to navigate through the
Web. The skill requirements of users depend on the development approach that is used
to create the mashup. The development approach of mashups can be based on manual,
semi-automatic or automatic creation. Manual creation means that the data sources and
functionality have to be integrated by programming or scripting. Semi-automatic cre-
ation covers spreadsheet based mashup creation, wire-oriented tools and programming by
demonstration. Automatic creation means that the mashup is generated without direct user
interaction. This means that resources (e.g. knowledge web services) are selected and in-
voked automatically. In addition, mashup creation can be called automatic and adaptive, if
this process generates mashups tailored to the changing user interests, tasks and experience
of a user, which means that it is based on a specific user model [BKNO7].

Astoratbe, Minkbog o Crepeion Fsi FRA L ol
- ot Bagamliis ™ [CRPRIY
iy M

TRMRA
Automatic Creslion Pernonainsel Maskeps. Dpparios md Chalseges for Ler bisceling* [FEET]

Durvelopar Power User Casual User

Figure 1: Overview about Mashup Frameworks

Frameworks based on the Programming Paradigm. A number of tools create mashups
based on an integrated development environment. IBM WebSphere sMash' is a develop-
ment and execution environment for dynamic web applications. It enables easy reuse of
web services and enables rapid integration of different web services. BungeeConnect® is
another platform that is offered as an online service enabling users to create comprehen-
sive web applications. Bungee automates the import of publicly available web services as
well as traditional databases and data warehouses. This manual development of mashups
is supported by a variety of other IDEs and can only be done by experienced developers.

Frameworks based on Scripting Languages. The development of mashups is supported

http://www-01.ibm.com/software/webservers/smash
2http://www.bungeelabs.com/

255

by various tools that are based on certain scripting languages such as Google Mashup
Editor’ (GME), Web Mashup Scripting Language (WMSL) [SHSGO07, p.1305], Dynamic
Fusion of Web Data [RTA07] [TARO7], WSO2 Mashup Server*. In general, it seems to be
too complicated for a non-developer to create such scripts in an appropriate time, because
more complex mashups will need a considerable amount of rather complex script code.

Frameworks based on Spreadsheets. Spreadsheet-based tools such as Strikelron SOA
Express for Excel’, Extensio Excel Extender® focus on the remix of data. Unlike with
wire-oriented tools, the data is directly inserted into a spreadsheet. This means that the
outputs of a data source are written to cells that have been previously selected by the user.
The cell values then serve as inputs of subsequent data source queries. Strikelron SOA
Express and Extensio Excel Extender utilize SOAPful web services to create mashups. In
addition, Extensio Excel Extender can provide access to SAP, several databases as well as
flat files.

Frameworks based on the Wiring Paradigm. Wire-oriented tools such as Apatar [Khi08],
IBM Damia [SAM™T08], Marmite [WHO7], SABRE [MLAO8], JackBe Presto Wires, Mi-
crosoft Popfly, Yahoo Pipes, Openkapow, Proto Financial, Anthracite, Lotus Mashups 7,
remix and merge data, functionality, or presentation through a graphical wiring of basic
building blocks. This manual connection is sometimes called wiring or piping of different
modules, connectors, components or blocks. The available components provide different
functionality (e.g., data retrieval, data transformation, data presentation etc.) and have to
be connected to achieve the desired coordination of the mashups. The tools often support
different data source types such as RESTful and / or SOAPful (e.g. Openkapow, Proto
Financial, Anthracite) web services, database, spreadsheets and CSV files.

Frameworks based on Programming by Demonstration. Programming by demonstra-
tion enables users to learn a system by the provision of examples. The Internet Scrapbook
[SK98] system allows users with little programming skills to automate recurring brows-
ing tasks. The user is enabled to indicate the fragments from different web pages that are
interesting to him and aggregate them into a personalized mashed-up page. The extrac-
tion of the data is based on the HTML structure of the specific web page. Dapper?® is an
online service that is able to create an API for any web site. The source web site has to
be initially specified, then the user can select graphically from some sample outputs the
fields that should be extracted. Karma [TSKO8] utilizes programming by demonstration
to extract lists of data from web pages through simple drag-and-drop of elements of a web
page. The system leverages the DOM tree information of the browser and creates a table of
the data. The data can be automatically joined with other tables derived from other pages,
by a match of attribute name and value pairs. Huynh et al. propose the Potluck mashup
tool [HMKO7]. Potluck takes as input a set of URLs that contain the data that should be

3http://code.google.com/gme/

4http://ws02.org/projects/mashup

Swww.strikeiron.com/tools/tools_soaexpress.aspx

Sywww.extensio.com

Thttp://www.jackbe.com http://www.popfly.com/, http://openkapow.com/, http:
//pipes.yahoo.com/pipes/, http://www.protosw.com/, http://www.metafy.com/
products/anthracite, http://www—01.1ibm.com/software/lotus/products/mashups/

8nttp://www.dapper.net/

256

remixed. The datasets from the web pages are shown in a tabular environment. Fields that
represent the same semantic attribute can be set as equal through a simple drag and drop
of the field names. In this case, the presentation is automatically rearranged. Thus, the
mediation between the different semantic heterogeneities is done implicitly by the user,
while he is acting on the retrieved data. Furthermore, the system enables the user to clean
up and homogenize the data in a faceted browsing environment.

Frameworks based on Automatic Creation of Mashups. The automatic generation of
mashup applications has only recently started to gain interest in the research community.
Carlson et al. [CNPZ08] propose a mashup framework for automatic composite mashup
applications based on Lotus Expeditor. The framework focusses on mashups composed of
non-web service components (e.g., widgets). In our work [FBNO8], we have proposed an
adaptive and automatic approach for mashup creation. In this mashup framework, SOAP-
ful or RESTful knowledge web services are composed automatically by semantic web ser-
vice composition based on the interests, tasks, and experience of a user. The retrieved data
is merged and presented as a mashup. MaxMash is a framework that is directed towards
automatic generation. It promises to compose and select features of networked applica-
tions and generates automatically the mashup application [SMOS]. Instead of reusing the
existing APIs, it relies on the Extensible Messaging and Presence Protocol (XMPP), which
is used for instant messaging applications, and uses the underlying network traffic to create
the mashup application automatically.

A number of research initiatives are directed towards adaptive mashups. MashMaker is
a browser plugin that extends the normal process of browsing with mashup functionality.
MashMaker does not require the specification of the mashup in advance by the users, as
it is required by the workflow like tools [EG07]. The software guesses a mashup that
the user would find useful, based on the current browser content. PiggyBank® is able to
process RDF data, which is embedded in web pages. Manual development of web page
specific screen scrapers (e.g., for Flickr pages) allows the extraction of non-semantic data
and their transformation to RDF. An advantage of PiggyPank is that the user has not to
concern about retrieving and remixing of data, which is done automatically through the
merging of RDF triples.

3 Limitations

In this section we outline important limitations of the present mashup development ap-
proaches. Manual development (programming or scripting) of mashups requires exper-
tise in the fields of web technologies and programming to create complex mashups (see
also [TSKOS, p.140], [WHO7]. The difficulty of programming or scripting (even for ex-
perienced developers) is to transfer the problem domain representation into an abstract,
detailed, and technical language of the programming [SBDO03, p.287] or scripting environ-
ment. Therefore, it is difficult for casual users as well as power users to create personalized
mashup applications in an appropriate time. However, a relatively small set of developers

http://simile.mit.edu/piggy-bank/

257

is not able to create mashups that serve the changing and very different needs of a huge
mass of end-users.

Semi-automatic tools cover the creation of mashups by end-users. However, they still
require detailed background knowledge. In all semi-automatic tools (programming by
demonstration, wiring paradigm or spreadsheet paradigm) the end-user has to select man-
ually the data sources that should be remixed in the mashup application. Manual data
source selection does not only require the location (e.g. URL) of the data sources, but also
knowledge about the structure and semantics of the information that could be retrieved,
because otherwise the human agent could not evaluate if a specific data source is appro-
priate for the specific problem. In fact, it is likely that the end-user also does not know
many of the available sources and therefore is limited to a set of known ones, which may
not satisfy his requirements such as trust, reliability, security etc. in a specific situation,
which can influence the decision quality negatively.

In addition, wire-oriented tools specify mashups by a flow of different components that re-
trieve, transform, aggregate or present data from disparate sources. Users are overstrained
to select appropriate building blocks of wire-oriented frameworks, because the end-users
have to translate the problem and domain specific, high level representation of a problem
into an abstract, detailed, and technical flow of components, blocks etc., which is similarly
stated by Tuchinda et al. [TSKOS8, p.140] and Carlson et al. [CNPZ08]. In open systems
like Microsoft Popfly the count of blocks increases steadily, which makes it increasingly
difficult for a user to select building blocks from the cloud for complex mashups.

Another important limitation of manual or semi-automatic created mashups is the lack of
adaptivity. This means that if the data sources and functionalities of the provider change
their structure or behaviour the mashup application has to be reengineered by the end-
users. Due to the above investigation, we can state that manual and semi-automatic cre-
ation of mashups has some fundamental limitations. This goes in accordance with Wong
et al. [WHO7], who argue that most tools still require too much background knowledge
on web technologies and programming and focus mainly on lightweight user interfaces.
Therefore, we propose fully automatic and adaptive generation of mashups that considers
the user interests, tasks and experience. In an automatic generation of mashups the data
sources (e.g., knowledge web services) are selected automatically and the retrieved data
is merged without user interaction. Furthermore, the ad-hoc creation of mashups, which
involves an automatic selection of the data source close to usage, avoids time consuming
reengineering and automatically considers changed interests, tasks and experiences. Such
an automatic generation requires the extensive utilization of machine processable and rea-
sonable semantics, but promises to overcome the general limitations stated above.

4 Conclusion

In this paper, we have outlined the different types of development approaches that are uti-
lized by existing mashup frameworks. Especially semi-automatic tools that often provide
a graphical user interface have gained wide popularity in the last few years and promise
to allow end-users to create mashups. However, as explained in the previous section, the

258

existing approaches have several limitations. They lack a mechanism to select data sources
(e.g., information web services) efficiently. Furthermore, the composition of the different
components has to be done manually, which becomes more and more time consuming, if
the count of available components increases and the mashups become more complex. As a
consequence, we have started working on a tool for automatic generation of user sensitive
mashups within IBM WebSphere Portal [FBNOS]. The framework automatically selects
and combines information web services to create mashups. In our work, we also have
described a user model that stores knowledge about user interests and expertise, which are
used by the framework in order to generate mashups tailored to the needs of individual
users.

References

[BKNO7] P. Brusilovsky, A. Kobsa, and W. Nejdl, editors. The Adaptive Web, Methods and Strategies of Web
Personalization, volume 4321 of Lecture Notes in Computer Science. Springer, 2007.

[CNPZ08] M. P. Carlson, A. H.H. Ngu, R. Podorozhny, and L. Zeng. Automatic Mash Up of Composite
Applications. In Int. Conf on Service-Oriented Computing (ICSOC-08), 2008.

[EGO07] R. Ennals and D. Gay. User-Friendly Functional Programming for Web Mashups. In R. Hinze and
N. Ramsey, editors, ICFP, pages 223-234. ACM, 2007.
[FBNOS] T. Fischer, F. Bakalov, and A. Nauerz. Towards an Automatic Service Composition for Generation

of User-Sensitive Mashups. In LWA 2008 - Workshop-Woche: Lernen, Wissen & Adaptivitiit,
Wiirzburg, Germany, October 2008.

[HMKO7] D. F. Huynh, R. C. Miller, and D. R. Karger. Potluck: Data Mash-Up Tool for Casual Users. In
ISWC/ASWC, volume 4825 of Lecture Notes in Computer Science, pages 239-252. Springer, 2007.

[Khi08] A. Khizhnyak. Apatar Connector Guide. Website, 2008. Available online at http://www.
apatarforge.org/wiki/display/GUI/Apatar+Connector+Guides; visited on
August 8th 2008.

[Mer06] D. Merrill. Mashups: The new breed of Web app. Website, 08 2006. Available online at http://
www.ibm.com/developerworks/library/x-mashups.html; visited on March 28th
2008.

[MLAOS] Z. Maraikar, A. Lazovik, and F. Arbab. Building Mashups for The Enterprise with SABRE. In Int.
Conf on Service-Oriented Computing (ICSOC-08), 2008.

[RTAO7] E. Rahm, A. Thor, and D. Aumueller. Dynamic Fusion of Web Data. In XSym, pages 14-16, 2007.

[SAM108] D. E. Simmen, M. Altinel, V. Markl, S.Padmanabhan, and A. Singh. Damia: data mashups for
intranet applications. In SIGMOD Conference, pages 1171-1182. ACM, 2008.

[SBDO3] E. Schwarzkopf, M. Bauer, and D. Dengler. Towards intuitive interaction for end-user program-
ming. In IUI ’03: Proceedings of the 8th international conference on Intelligent user interfaces,
pages 287-289, New York, NY, USA, 2003. ACM.

[SHSG07] M. Sabbouh, J. Higginson, S. Semy, and D. Gagne. Web Mashup Scripting Language. In WWW
'07: Proceedings of the 16th Intl. Conf. on World Wide Web, pages 1305-1306, New York, NY,
USA, 2007. ACM.

[SK98] A. Sugiura and Y. Koseki. Internet Scrapbook: Automating Web Browsing Tasks by Demonstra-
tion. In ACM Symp. on User Interface Software and Technology, pages 9—18, 1998.
[SMO08] M. Shevertalov and S. Mancoridis. A Case Study on the Automatic Composition of Network

Application Mashups. In ASE, pages 359-362. IEEE, 2008.

[TARO7] A. Thor, D. Aumueller, and E. Rahm. Data Integration Support for Mashups Sixth Int. Workshop
on Information Integration on the Web, IIWeb, Vancouver, Canada, 2007.

[TSKOS8] R. Tuchinda, P. A. Szekely, and C. A. Knoblock. Building Mashups by example. In J. M. Bradshaw,
H. Lieberman, and S. Staab, editors, Intelligent User Interfaces, pages 139-148. ACM, 2008.

[WHO07] J. Wong and J. I. Hong. Making Mashups with Marmite: Towards End-User Programming for the
Web. In Mary Beth Rosson and D. J. G., editors, CHI, pages 1435-1444. ACM, 2007.

259

