
 

Static Safety Analysis of UML Action Semantics for 
Critical Systems Development 

Zsigmond Pap, Dániel Varró 

Dept. of Measurement and Information Systems 
Budapest University of Technology and Economics 

H-1521 Budapest, Magyar Tudósok krt.2. 
[papzs,varro]@mit.bme.hu 

Abstract. The Action Semantics for UML provides a standard and platform 
independent way to describe the behavior of methods and executable actions in 
object-oriented system design prior to implementation allowing the development 
of highly automated and optimized code generators for UML CASE tools. In the 
paper, we evaluate the use of Action Semantics in the model driven development 
of reactive and safety critical systems. Finally, we propose a static safety analysis 
technique to identify incompleteness, non-determinism and inconsistencies in 
behavioral specifications using Action Semantics descriptions.  
Keywords: Action Semantics, safety criteria, UML, safety critical systems 

1 Introduction 

Recently, the Unified Modeling Language (UML) [WC03] has become de facto 
standard visual object-oriented modeling language. It is used in systems engineering 
with a wide range of applications. Its major success is originating in the fact that UML 
(i) is a standard (uniformly understood by different teams of developers) and visual 
language (also meaningful to customers in addition to system engineers and 
programmers).  

Many applications demonstrated the usability and adaptability of UML ranging from 
small, embedded systems to large scale distributed systems to safety critical applications. 
In the current paper, the main focus will be put on the design of safety critical reactive 
systems (which is a prospering application field of UML as demonstrated e.g., by [0]) 
using UML Action Semantics specifications.  

Action Semantics defines the running sequence of actions and action groups in UML. 
This methodology allows defining inter-object relations and simple algorithms. It 
became the part of UML in version 1.5. UML 2.0 has reviewed it. The complete 
description can be found in [WC03]. 

Unfortunately, writing incorrect specifications in Action Semantics turns out to be 
disturbingly easy which is unacceptable and dangerous for critical applications. 
Therefore, we evaluate to what an extent Action Semantics fulfills the famous 47 formal 
criteria of Nancy G. Leveson [OMG03, HL98] which is considered to be the most 
widely accepted guidelines that should be satisfied to avoid flaws in the specification of 
safety critical applications.  

57



 

2 Basic Safety Criteria 

A safe system is free from accidents or unacceptable losses. Safety analysis should 
identify hazards based on the (formal) model of the system. Accidents related to 
computers are frequently resulted from flaws in the specification (model). In [OMG03] 
and [HL98] 47 formal criteria were defined by Nancy G. Leveson that should be 
satisfied to avoid inconsistent and ambiguous specifications. These criteria cover general 
aspects of the specification of control systems, including also peculiar ones like 
environmental capacity and data age. 

The most important desired properties of specification are completeness and 
consistency. Completeness with respect to an embedded control system means that a 
response is specified for every possible input sequence, including also timing variations 
(early, late, delayed etc. signals). This means that, there are no “forgotten” relations, 
transitions, or other elements in the specification. Consistency of the specification 
implies that there are no conflicting requirements and no (unintentional) non-
determinism.  

ON(In a) previous paper, we formalized the safety criteria of Leveson in terms of the 
UML Statecharts and presented an approach to check them automatically in [Pa03, 0]. In 
(the) current paper, our objective is to apply and formally check these criteria on UML 
Action Semantics specifications.  

3 Safety Problems in Action Semantics 

In the current section, we evaluate Action Semantics from a safety point of view and 
identify contradictions with the safety criteria of Leveson. 
Traditionally, the main philosophy of the Action Semantics is the avoidance of “over-
specification” [0]. According to the UML standard, the software specification is 
complete if contains all information necessary to solve the task, but not more. For 
example, if the task is to initialize two variables, the specification must contain the 
initialization values, but should not specify the sequence of the two memory writes. This 
allows the compiler program to make optimizations in the final code. For example using 
a multi-processor environment, the two initializations can be processed in parallel, which 
is better than the sequential processing.  

If the control flow (or sequence) relations are not defined between two actions, they 
can run concurrently. Although the UML 2.0 [0] extended the methodology with the 
elements inherited from activity diagrams, which much better visualize the execution 
process, but the basic rule remains the same: if two actions are ready to run at the same 
time, they are still allowed to operate concurrently. However, from a safety point of 
view, this means that, if the designer accidentally forgets to define a sequence relation 
between two actions, they may run in parallel resulting undesired errors that are 
frequently context sensitive with unpredictable behavior (see Figure 1). As an Action 
Semantics description is usually large and complex, it is very hard to detect a missing 
sequence relation prior to compilation. In a safety-critical system a specification with a 
hidden error is unacceptable, so additional formal criteria and analysis is necessitated. 
The second basic static safety criterion is consistency. Unfortunately, the designer can 
define invalid rule sequences, and the UML tools (generally) do not check this. The 

58



 

result is an inconsistent specification, which will probably run to a deadlock situation. 
To find these situations, automated analysis methods are necessary. 

 

Action1

Action2

Action3

Action4

Action5

 
Figure 1. Example: order specification of Action 1-

4 is missing. 

The third elementary safety criterion 
is the requirement for the lack of non-
determinism to avoid ambiguities. In a 
safe system, the random or undefined 
behavior should be avoided, since the 
operation of the software is 
unpredictable and/or ambiguous. 

According to the philosophy of UML, if two operations are in conflict, then the result 
is undefined and the Action Semantics provides no built-in solutions for the problem of  
mutual exclusiveness on shared resources such as object attributes or variables.  

4 Structural Model Extensions for Safety Analysis 

The first problem, the missing explicit declaration of the parallel operation can be 
solved defining a new inter-action association type. This association shows that the two 
activities can be executed in parallel as no causal ordering is defined between them. 
Unlike the fork construct, the “parallel” association does not specify additional sequence 
information.  

The new type of association forces the designer to think about the possible parallelism 
in the model or specification. Instead of the original rule that says, “all actions without 
explicit order information can work concurrently”, a new one should be used: “all 
allowed parallel operation must be explicitly marked using the fork and the join 
construct, or the new “parallel” association”. In this case, if there are two independent 
actions without control or data flow ordering or parallelism defined between them, it is 
considered to be a specification incompleteness error.  

Static inconsistency problems are caused if the causal and parallel relations, 
introduced between actions, are contradictory. The first inconsistency problem can be 
detected automatically by searching causal cycles in the Action Semantics model.  

Concerning the other case of static inconsistency, if there is an explicit concurrency 
definition but the two actions are causally ordered, it is an inconsistency error. After 
mapping the parallelism relations, an analysis tool can examine the variables and 
memory manipulation actions. 

5 Static Safety Analysis Methods 

As Action Semantics is part of the UML standard, it is defined with the well-known 
semi-formal techniques using a metamodel, well-formedness rules, and informal textual 
descriptions of the semantics. In this respect, concrete Action Semantics expressions can 
straightforwardly be represented as well-formed instance graphs of type graphs [CM96].  

Regarding the Action Semantics model to be analyzed as a graph allows us the use of 
all the rich methodologies designed for the graph manipulation. For safety analysis 
purposes, we exploit graph matching and graph transformation as implemented in the 
VIATRA system [CSHMP02, VVP02]. 

59



 

(The) graph transformation provides a rule-based manipulation of graphs over 
metamodels defined as type graphs [CM96, Ro97]. During (the) graph transformation 
process, the pattern defined by the left-hand side (LHS) of the rule is first tried to be 
matched to the instance graph representing the system model. In case of success, the 
image of the LHS graph pattern is replaced by an image corresponding to the pattern 
defined by the right-hand side of the transformation rule.  

Naturally, an entire transformation process requires several rules. In this case, a single 
transformation step is repeated as long as an applicable rule can be found. If no rules are 
applicable, the transformation process terminates. 

To find safety errors, at first we build a transitive closure of “successor” relations 
between pairs of action nodes. This can be performed by the following graph 
transformation rule (Figure 2). 

B

C

A

Left side Right side
B

C

A

 
Figure 2: rule to build the transitive closure of the causal 

dependencies (if no direct order-specification between A and 
C, the rule generates it.) 

Applying the rule as long as 
it is possible to the input 
action graph, we obtain an 
extended graph as result,  
where every action node is 
connected to all other nodes 
following it in the causal 
ordering, so it is possible to 
decide if the two nodes are in a 
common sequence or not.  

Two nodes are independent of each other thus they can be operated in parallel, if none 
of them is the successor of the other according to the action graph (i.e., thus none of 
them is connected to the other with a “successor” relation). 

A,
A1

A2X

X
X

A2

A1

B,
A1

A2X

X
X

A2

A1

B,

 
Figure 3: incompleteness (A) and inconsistency (B) 

checking: graph patterns to match. 

To check if all possible concurrent 
action nodes are connected with the 
“parallel” association (completeness 
analysis), the analysis tool must not 
find a counterexample, defined by the 
(negative) pattern that consists of two 
action nodes that are not connected 
with neither a “parallel” nor a 
“successor” edge.  

Figure 3a graphically depicts the corresponding pattern.  
If a matching of the pattern is found, then this matching is exactly the place of the 

incompleteness in the model. 
If there are two nodes connected with a “parallel” and a “successor” association at the 

same time, the model is ambiguous or inconsistent. This is an error like the cycle in the 
model. Figure 3b shows the pattern of the error where both types of relations are present 
between action nodes A1 and A2. 

A similar sort of inconsistency is a cycle composed of "successor" edges. To detect 
sharing violations variable dependencies should be first converted into data flow 
associations, then into a standard sequence ordering edge. This technique converts the 
non-determinism into inconsistency error, which can be found by the checker.  

60



 

6 Conclusion 

In the paper, we dealt with the design of safety critical systems where the behavior of the 
system is specified by UML 2.0 Action Semantics expressions. The famous safety 
criteria of Leveson [OMG03] were first adapted and extended to UML Action 
Semantics. Then a method using graph transformation was proposed for the automated 
safety analysis of Action Semantics expressions. 

To give broader environment of the current paper, it is part of the verification and 
validation framework [CSHMP02], where UML descriptions are transformed into 
various mathematical domains (such as Petri nets, SPIN, etc.) to carry out dynamic 
safety and dependability analyses [LMM99, PA01, PA02] (which were out of scope for 
the current paper). For this model transformation purpose, we also used graph 
transformation as implemented in the VIATRA tool [CSHMP02, VVP02]. In this 
respect, graph transformation provided a general theoretical and implementation 
framework for various (static and dynamic) sorts of mathematical analysis.  

References 

[CM96] A. Corradini, U. Montanari, F. Rossi: Graph processes, Fundamenta Informaticae, 
26(3,4), 1996, 241–266. 
[CSHMP02] Gy. Csertán, G. Huszerl, I. Majzik, Zs. Pap, A. Pataricza and D. Varró: VIATRA - 
Visual Automated Transformations for Formal Verification of UML Models. Accepted to the Int. 
Conference on Automated Software Engineering (ASE 2002), Edinburgh, Scotland (2002) 
[HL98] M. P. E. Heimdahl and N. G. Leveson: Completeness and Consistency Checking of 
Software Requirements. IEEE Trans, on Software Engineering, Vol. 22. No. 6 (1996) 
 [Le95] N. G. Leveson: Safeware, System Safety and Computers. Addison-Wesley Publishing, 
USA, 1995 ISBN 0-201-11972-2 
[LMM99] D. Latella, I. Majzik, M. Massink: Automatic Verification of a Behavioral Subset of 
UML Statechart Diagrams Using the SPIN Model-checker. Formal Aspects of Computing, Vol. 11 
No. 6 pp 637-664, Springer Verlag, (1999) 
[OMG03] Object Management Group: Unified Modeling Language Specification v 2.0. (2003). 
[PA01]A. Pataricza: Semi-decisions in the validation of dependable systems. In: Suppl. Proc. DSN 
2001: The International IEEE Conference on Dependable Systems and Networks. Göteborg, 
Sweden, 2001, pp. 114–115. 
[PA02]. Pataricza: From the general resource model to a general fault modeling paradigm? In: 
Workshop on Critical Systems Development with UML at UML 2002. Dresden, Germany, 2002. 
[Pa03] Zs. Pap: Methods of checking and using safety criteria. 2003. Budapest. Polytechnica 
Periodica, ISSN 0324-6000. 2003/9 
[PMP01] Zs. Pap, I. Majzik, A. Pataricza: Checking General Safety Criteria on UML Statecharts. 
In U. Voges (editor): Computer Safety, Reliability and Security (Proc. SAFECOMP-2001, 
Budapest, Hungary), pp 46-55, LNCS-2187, Springer Verlag (2001) 
[Ro97] G. Rozenberg (ed.). Handbook of Graph Grammars and Computing by Graph 
Transformations: Foundations. World Scientific, 1997. 
[VVP02] D. Varró, G. Varró, A. Pataricza: Designing the Automatic Transformation of Visual 
Languages. Science of Computer Programming, 44(2), pp. 205-227, 2002. 
[WC03] Workshop on Critical Systems Development with UML. October, 2003, San Francisco, 
USA.   

61




