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Abstract: TH Köln provides a web-based e-learning platform edb4, where novices can do their 

first steps in SQL. The goal of this paper is to build a decision tree (manually) that classifies the 

novice's errors. To do so we logged data containing tasks, solutions, and wrong statements over 

seven months and got a table with 7533 rows as a training set. Each leaf node of the decision tree 

is a class of errors of similar type and generates an error message with feedback to help the user to 

solve the task. Interesting and surprising are the mistakes that SQL novices make. The result 

improves the first steps of learning SQL in a simple and personalized way and gives the teachers 

hints to improve their learning outputs. 

Keywords: Databases, SQL, web-based learning, e-learning, educational data mining, learning 

analytics, decision trees. 

1 Introduction 

A lot of different approaches to include e-learning components to a standard database 

lecture have been used in the last years. A short overview is given in Section 2 of this 

paper. Here, we report on our development, a decision tree approach to classify the 

mistakes that SQL novices make to generate hints helping them to avoid these mistakes. 

We include these hints in the SQL-Trainer of our e-learning platform. We collected 7353 

wrong statements over seven months in 2019/2020 and compared them with the correct 

statement to answer SQL SELECT questions. We use our edb web application mainly 

for database courses at the Computer Science Institute of TH Köln in the third semester 

consisting of roughly 300 students. However, the platform is open for other universities 

too. Five of the total two hundred fifty different SQL tasks are randomly selected in one 

session, executed, and logged anonymously when the user starts the SQL trainer in our 

database e-learning platform. 

 

 
1TH Köln/Fakultät 10/Institut für Informatik, Gustav-Heinemann-Ufer 54, 50968 Köln, heide.faeskorn-

woyke@th-koeln.de 
2 TH Köln/Fakultät 10/Institut für Informatik, Gustav-Heinemann-Ufer 54, 50968 Köln, 

birgit.bertelsmeier@th-koeln.de 
3TH Köln/Fakultät 10/Institut für Informatik, Gustav-Heinemann-Ufer 54, 50968 Köln, jan.strohschein@th-

koeln.de 
4 See https://edb2.gm.th-koeln.de, visited: 25.03.20 

mailto:heide.faeskorn-woyke@th-koeln.de
mailto:heide.faeskorn-woyke@th-koeln.de
https://edb2.gm.th-koeln.de/


 

212    Heide Faeskorn-Woyke et al.  

 

The following research questions are covered in this paper:  

Q1: How can we construct a decision tree to classify SQL errors that students make in 

       their first SQL steps?  

Q2: How can we derive useful hints and practice to avoid these errors?  

Q3: What are the main mistakes that students make?  

Q4: What are the main tips for teachers in SQL that they can apply to improve their 

        learning outputs and decrease dropouts? 

2 Related Works & History  

Automatic SQL e-learning applications are already in use over a long time. A good 

recent overview of related works can be found in Kleerekoper et al. [KS18]. They treated 

the automatic assessment of SQL and compared the results that students can reach by 

this method. Ahadi et al. [Ah15, Ah16a, Ah16b] categorized SQL statements and 

examined the errors the students make in these particular categories. They used the 

AsseSQL-Tool of Prior [Pr03], similar to Sadiq [Sa04]. Mitrovic et al. implemented the 

first constraint-based-tutor in 1998 and published a lot of similar works over time 

described in [MO16]. Brusilovsky et al. [Br10] combined several e-learning tools to an 

open architecture. Brass and Goldberg [BG05] made a classification of logical SQL 

errors with the aspect of logical and semantic error type. Taipalus et al. [TSV18] 

completed the approach of [BG05], considered an extensive system of logical errors and 

also complications. Cembalo et al. [CDU11] visualized the intermediate steps of a SQL 

query up to the final result. Saatz [Sa17] used an NLP approach to compare stored 

solutions and student solutions by the Levenshtein-Distance. The RelaX tool of the 

University of Innsbruck [KTS19] transformed SQL Queries into interactive operator 

trees, and vice versa, operator trees can be transformed into SQL queries. The e-learning 

databases portal edb5 exists since 2008, see [Fa13]. The new version has a SQL trainer, a 

trainer for normalization of relations, a trainer for SQL triggers, procedures and 

functions, and multiple-choice questions [RF19, Ra09]. Technically the Java 

Programming Language was replaced by the JavaScript library node.js, additionally 

using PHP and an Oracle Database in the background. It is a public web application, and 

registration is possible with any valid email address. 

3 METHOD AND DATA 

The decision tree was constructed manually by the error examples in the training set 

based on a student project work [HKM19]. The leaf nodes are placed regarding the 
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execution order of the clauses of a select statement (i.e. FROM clause with table list 

before SELECT list of columns and WHERE clause), the difficulty of the corresponding 

SELECT type or a significant amount of errors in the training data set. The decision tree 

is implemented as an Oracle PL/SQL function using regular expressions intensively and 

was tested on our training set. In the leaves, we have error messages and hints for the 

user to improve his statement. The leaf nodes, which are nearby the root, are executed 

first. These error messages and resulting hints are implemented in the SQL trainer of our 

database e-learning platform edb. The first step was to distinguish semantic (43%) and 

syntax errors (57%). In the background, we used an Oracle database, and so we decided 

to use the Oracle error messages for syntax errors. 

 

Fig. 1: Syntax errors versus Semantic errors 

Compared with Ahadi [Ah16b], we found that the ORACLE syntax errors were more 

specific than the Postgres errors they used. Most of the errors were misunderstandings of 

the data model or the correct structure of a simple SQL SELECT statement. Some of the 

mistakes result from the misunderstanding of the character of the relational database 

when a set is, for example, compared with a single value (ID 920 and 979). 

ID % HINT 

904 17,8 A column of your query does not exist in the referenced table. 

936 11,3 Fundamental syntax error of a select-statement 

942 5,7 One of the specified tables or views does not exist. 

918 5,5 Please define your columns uniquely by using a table alias! 

920 3,7 Incorrect use of comparison operators (<,> =, is) or logical operators (or, and, not) 

923 2,9 Missing from-clause 

979 2,2 All columns in the select list that do not contain group functions must also be listed 

in the group by clause. 

908 1,1 Operator "is" can only be used with "null" 

103 0,1 SQL injection: Other SQL-statements than select are not allowed here 

Table 1 Oracle Errors and their frequency of occurring 

To distinguish semantic errors, we have two different syntactically correct query results 

of the wrong statement and the correct statement. Both were executed in the database 

itself. A user statement is evaluated wrong if the two results differ. As Saatz [Sa17] 

mentioned, this is only a heuristic method but with 95% accuracy. First, we made a 

classification of the wrong statements regarding the SELECT-type of the question. Here 

we expanded the seven SELECT-types of Ahadi [Ah15] to 17 SELECT-types. 
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Compared with Ahadi [Ah16a], we found similar results. Correlated subqueries, 

divisions, set operators, recursive SELECTS, WHERE clauses with date column, natural 

joins, GROUP BY, and ORDER BY clauses have an error quote of larger than 80%. We 

decided to use the SELECT types with high error quotes and the difficulty of finding 

errors with text analysis as the first step in our decision tree.  

 

Fig. 2: Decision tree with SELECT types, left side of semantic errors 

The next step to construct our decision tree was to make a text analysis with regular 

expressions to find the errors in comparison to the wrong statement and the correct 

statement. This is the part under the leaf node "Similar number of rows" in figure 2. 

4 Results 

Regarding our previous questions from section 1, we have the following results: 

Q1: We used a heuristic and manual manner of constructing such a decision tree. We 

programmed an Oracle PL/SQL-function that implements the decision tree and classifies 

all errors of our training set for future use. 

Q2: From each leaf node of the decision tree, we can derive automatically hints that 

allow the SQL novice to improve his/her SQL SELECT statements. This is now installed 

in the public databases e-learning platform edb of our university TH Köln.  

Q3: We found that most of the errors were due to insufficient knowledge/studying of the 

data model regarding the table names, the required columns, and the fundamental 

statement of a SELECT-Statement.  

Q4: The main problem was, that it is difficult for SQL novices to think in sets. No other 

programming language is using this kind of rather unusual but straightforward kind of 

mathematical thinking. Therefore, SQL teachers should spend more time on this type of 

errors in their lectures to enable student to get more acquainted with this type of structure.  



 

A Decision Tree Approach for the Classification of Mistakes of Students Learning SQL    215 

 

 

Fig. 3: Decision tree right side for semantic errors 

Compared with other works like SQL Tutor of Mitrovic we have a rather simple 

approach with good results focused on the hints that are generated in our edb platform. 

In [MO16] about 700 unique constraints were used. In our approach, we needed only 

106 leaf nodes and a rather simple program that quickly classifies the wrong solution to 

an error class and gives the end-user useful hints to avoid those errors. 

5 Future Work 

One possibility for future work is to sample all errors, not only one error, that are 

concerned with a specific wrong statement. Then the position of the error in the tree does 

not influence the final result. We will intensively test our algorithm that implements the 

decision tree, improving the algorithm, and adding more nodes if necessary. For some 

examples, the oracle errors are not specific enough. We could make a special 

consideration for those cases, including text analyses. Additionally, we plan to expand 

our SQL trainer to other SQL DML statements (INSERT, UPDATE and DELETE) as 

we have done with stored procedures, triggers, and functions and publish the result as an 

open-source project. A long version of this article and editorial materials like all errors 

and hints and the decision tree implementation are available on Researchgate6.  

 
6 https://www.researchgate.net/project/edb-das-ELearning-Datenbankportal 

https://www.researchgate.net/project/edb-das-ELearning-Datenbankportal
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