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Abstract: Business processes are crucial in today’s companies. They define for the
different departments of a company the execution order of tasks as well as their inter-
action. Typically specific sections within a business process are essential for its suc-
cessful completion and therefore deserve special attention. Such a section is typically
associated with a completion constraint, e.g., a credit application has to be processed
within 24 hours in order to meet SLAs agreed with the customer. The business user is
highly interested in a real-time monitoring of those sections and constraints as it allows
him to immediately tackle potential problems during process execution. We present a
novel approach for tracking important sections of a business process using Complex
Event Processing coupled with an Event-Driven Architecture. While the business pro-
cess is executed, we continuously monitor its processing status to determine whether
such a section is completed and its associated constraints have been fulfilled or vio-
lated. To allow for a more proactive reaction of the business user, we also present an
early warning system which raises an alert if a not yet completed section runs the risk
of violating a constraint.

1 Introduction

In modern companies business processes play a vital role as they clearly define how tasks

in daily business are connected to each other and how they are processed. Business pro-

cesses are used in virtually every industry and each department of a company. For example,

there are processes that define the tasks for an approval of an insurance claim, an invitation

of a job applicant for an interview, the shipment of an order to the customer, the authoriza-

tion of a business travel. Each of those business processes consists of several tasks which

are connected to each other, thereby modeling the basic sequence of steps from start to end

of the process.

A business process can be defined in terms of a graphical model consisting of symbols and

connections in between them, using for example the well-established BPMN modeling

standard. The latter also defines how a model can be transferred into a process execution

language. There are also other approaches available for defining an execution of business

processes. Thus, business processes are available as models and transformed into exe-

cutable instances. The execution of those process instances can be monitored in order to

inform the business user about the current status of business processes he is interested in.
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In the area of business process monitoring tools Software AG has recently introduced the

notion of stages and associated milestones. A milestone is defined as one particular point

in a process occurring at a specific point in time. For example, an order has been received

at 15:25 or an email has been sent at 10:13. A stage is defined by a start and an end

milestone and a condition how these two milestones relate to each other. Most prominent

type of such stages is a temporal stage. The corresponding temporal condition demands

that the timespan between start and end milestone has to be either greater or less than a

predefined timespan. An exemplary stage could define that the timespan between receiving

an order, which denotes the start milestone, and shipping the goods, which denotes the end

milestone, has to be less than 12 hours. Thus, a stage allows the user to formally define

the most important sections of a business process and corresponding completion criteria.

In this work we tackle a real-time tracking of those stages. Prerequisite is that the IT com-

ponent executing the process instances emits status information in case of process instance

changes, e.g., the order step has been started at 5:00. By evaluating this process status in-

formation in a continuous fashion, a corresponding process stage tracking component can

directly inform the user that a stage has been started, breached, or completed. Using real-

time processing capabilities, this stage information can be derived with minimum latency,

e.g., the user is notified immediately if a stage has been breached. This enables the user to

monitor crucial sections of his business processes.

We introduce the notion of process stage tracking with a focus on the proactive handling of

stage violations. As described before the user is notified when a stage finally has breached

or completed. A further extension is to provide early warnings when a not yet completed

stage potentially might be violated.

The following enumeration sketches core problems a process stage tracking component

has to deal with and our proposed solutions:

Detection of stages at risk: Recent process tracking capabilities allow to send notifica-

tions of stages being started, breached or completed in a real-time manner. Thus, the user

knows immediately when a process stage has breached for instance. He can react to this

situation and trigger consecutive actions. However, the user can no more take corrective

actions to proactively avoid that a stage breaches in the near future. Therefore, the pro-

posal is to provide an early warning to the user that a successful stage completion is at

risk. While the process is executing and the current execution of a process instance is in

between start and end milestone of a stage, the probability that the remaining steps until

the end milestone take longer than the remaining time to stage completion is determined.

If that probability is too high, the corresponding stage is classified as being at risk and an

alert is sent.

Definition of potential stage violations: The detection of potential stage violations re-

quires to estimate the remaining time from the current position in the process execution to

the end milestone. For that purpose each step in the process has an associated statistical

model which models the timespan this step typically takes. These models are continuously

updated by incorporating recently measured step cycle times. By combining these step cy-

cle models we estimate the remaining time to the end milestone. These estimates provide

the user means to assess a potential violation of the stage.
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Real-time detection of potential violations: In order to ensure a maximum transparency

for the user potential stage violations are computed in a real-time manner. Provided that

the process execution engine reports process instance changes directly, Complex Event

Processing technology coupled with an Event-Driven Architecture [EN10], [SC09] can

be leveraged to determine stage violations in real-time. Each time a process instance

change occurs, the probability for violating the process stage is directly computed. Such a

result can then be forwarded to the user. For example, a corresponding visual cockpit can

highlight for a selected process model the corresponding stages being at risk. Additionally,

an email can be sent or other follow-up actions can be triggered.

Software AG offers a platform for Intelligent Business Operations (IBO) [Ope14] which

already includes parts of the proposed stage tracking functionality for business processes.

The paper is organized as follows. Section 2 discusses related work. Section 3 introduces

stages and milestones for business processes. Section 4 gives an overview of our solution,

while Section 5 presents its implementation. Section 6 addresses future extensions of our

approach. Finally, we conclude with a summary in Section 7.

2 Related Work

Some IT vendors offer BPMS functionality that relates to some extent to the notion of

milestones and stages for business processes.

With Business Monitor IBM provides a tool to monitor business process instances, in-

cluding their notion of milestones. A milestone is a collection of so-called monitoring

contexts. These milestones are used as single steps in a virtual process diagram. The user

can specify under which condition a milestone gets a different fill color or labeling in a

corresponding visual cockpit.

Oracle Business Process Management uses the notion of Guided Business Processes to

organize process activities in milestones. This approach concentrates on interactive ac-

tivities in a business process. The notion of milestones is focused on business processes

involving human interaction. Milestones can be equipped with expiration dates or times

and subsequent actions are triggered when milestones are breached.

The Appian BPM Suite for Designers provides capabilities for Intelligent BPMS Analytics

as well as Complex Event Processing. Intelligent BPMS Analytics combines particularly

BAM and Predictive Analytics. Business processes can be monitored using real-time per-

formance metrics. With the help of predictive analytics this real-time information can be

used to predict the process behavior.

SAP also provides capabilities to monitor milestones in a process context. The monitoring

process can use rules to decide whether a relevant exception situation has occurred.

[MFE12] discusses CEP- and statistics-based monitoring for the transport and logistics

domain, more precisely the standardized Cargo 2000 process. While this process con-

tains fixed milestones and seems to be linear, our approach works for arbitrary business

processes from arbitrary domains. Additionally we support more complex processes in-
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cluding branches and iterations etc. as well as arbitrary process milestones.

[BDR12] addresses prediction and root cause analysis of events against the background of

Business Activity Monitoring. Key performance indicators (KPI) and associated rules are

used for the analysis. Predictions are created for rules associated with KPIs. When the

associated prediction engine has finished a training phase, the predictions can be used to

forecast rule violations and provide warnings. This work concentrates on KPIs and rules,

while we address process stages and milestones. While databases for maintaining relevant

data as well as polling intervals for the evaluation of the current status are used, we use

Complex Event Processing technology in order to support real-time processing of large

volumes of process data.

[CK07] proposes a model-driven approach to enhance already present business perfor-

mance models with predictive modeling. So-called metamodels describe languages which

can be used to express models. These metamodels are extended by a notion of time in

order to allow for the prediction of metrics. Further trigger conditions are provided that

define when and how the predictive analytics tasks are executed. The tasks themselves

are provided as a service of a dedicated component, which gets the relevant data from a

data warehouse and also persists the forecasted metrics into the warehouse. This work is a

conceptual approach describing in a model-driven fashion how monitoring metrics can be

extended towards forecasting and how the resulting models are generated and processed.

It does not discuss notions of process stages and milestones as well as of an associated

real-time monitoring based on Complex Event Processing.

[CFLZ13] discusses prediction of metrics based on events. Within a training phase se-

lected events are stored in an intermediate storage. Then they are grouped and aggre-

gated with summary statistics. These summary statistics are used to detect patterns within

the events. A function selector then uses this information to select a suitable prediction

model which is finally used to predict metrics. This approach delivers a framework for

un-supervised prediction using events. The specific problem of monitoring stages and

milestones of a business process and raising early warnings in case of potential stage vio-

lations is not addressed.

[BBH+14] addresses the monitoring of business processes with Complex Event Process-

ing. A general framework is presented that describes how a business process environment

can be extended by a Complex Event Processing engine so that business processes can be

monitored. The focus of this paper is the discussion of the different components of such a

framework and the basic interaction patterns.

[WZM+11] discusses an event-based monitoring of process execution violations. While

we focus on violations of stages, these execution violations refer to deviations from the

control-flow during execution of a process, i.e., is the current execution sequence compli-

ant with the associated normative process model.

In comparison to these related approaches, our novel approach combines the following

benefits: Our framework provides the business user means to monitor business processes

in a very fine-granular manner as it allows him to concentrate on the crucial parts of the

process and define meaningful monitoring criteria for these parts. This is encapsulated

within the concept of stages and milestones being tracked. Additionally the user is alerted
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proactively in case the process parts being monitored run the risk of failing the specified

criteria. In order to provide maximum transparency to the user, the framework is based

on EDA and CEP principles. This approach guarantees instantaneous results as well as

scalability for the case of massive data volumes.

3 Preliminaries

In the subsequent discussions we use the following running example: An insurance com-

pany uses business processes to handle the processing of incoming insurance claims. The

execution of such a process consists of automated steps, like sending the client a rejection

or triggering the loss payment, as well as of manual steps requiring human interaction,

like reviewing material documenting the damage or approving a payment estimate. Sim-

ilar process steps can also be found in many other domains, e.g. handling calls in a call

center or processing credit applications.

Such business processes are to be monitored by tracking associated milestones/stages. For

this business process a process model is available that formally defines the tasks and their

execution orders. The business process is executed by one or more process instances in

a process execution environment. Within that execution environment sensors are used

to monitor the process instances so that changes of a process instance are captured and

directly populated to follow-up consumers for further analysis. For that purpose an Event-

Driven Architecture (EDA) can be leveraged. Each time a process instance change takes

place, a corresponding process instance change event is built and published. Such an event

carries the information that a process instance change has taken place at a given point in

time, e.g., the task ’Approve claim’ of process instance 4711 has been completed at 14:23.

Thus, during process execution all running process instances continuously emit informa-

tion about their latest changes. For publishing and consuming those events the Event Bus

within the EDA is used. That Event Bus allows multiple participants to publish events on

event channels and also consume events from event channels they have subscribed to.

The process instance change events can be used to monitor running process instances

by evaluating the status of stage and milestone completion. A milestone refers to one

specific position within a process, e.g., the task ’Review damage documentation’ has been

started. A stage consists of a start and an end milestone and a stage condition. The stage

defines that the steps between completion of start and end milestone have to meet the

stage condition. A common class of stage conditions is of temporal nature. For example,

the timespan between start of the task ’Review damage documentation’ and start of the

task ’Request additional information from client’ has to be less than one day. Other stage

conditions refer for example to the number of iterations of process steps.

Using the aforementioned process instance change events, which are continuously emitted,

the stages can be continuously tracked. Such a tracking requires sending, analyzing, and

receiving of corresponding process events in a real-time fashion.

531



4 Overview of Stage Tracking Framework

This overview introduces a framework for tracking stages of running business process

instances, followed by a detailed discussion of the implementation in the next section. The

framework comprises the following layers and components:

Stage configuration layer: On that layer the user can configure process stages for a given

business process model. This includes defining the start and end milestone of the stage as

well as the associated stage condition. The user can also define whether potential stage vi-

olations are to be checked. If that functionality is enabled, the user can optionally provide

input for the initial setup of the statistical models used to determine stage violations. Once

the stage plus its monitoring options has been defined, it can be uploaded for execution,

i.e., the stage is actively monitored for currently running process instances.

Process data acquisition layer: On that layer the relevant data for evaluating stage com-

pletion status as well as potential stage violations is acquired. The process engine ex-

ecuting the process instances is equipped with sensors. These sensors trigger a process

instance change event each time a process instance changes its status. These streams of

process runtime events are directly forwarded to subsequent consumers using the EDA.

Stage analysis layer: That layer hosts the main logic to determine stage completion sta-

tus and potential stage violations. While process instance change events are streaming

in, the completion of stages is continuously monitored using a Complex Event Processing

engine. For each incoming event all stages defined for the associated process model are

determined. For each of those stages it can be derived when the milestones of a stage have

been completed. That information is then used to check whether the stage condition is

fulfilled. Depending on the result corresponding result events are published that indicate

whether the stage has been breached or completed. Additionally the stage analysis layer

determines potential stage violations. For that purpose it maintains for each process model

statistical models of the process steps involved. Such a statistical model models the cycle

time of a process step based on knowledge from previous and current process instance

executions. Additionally the analysis layer is connected to the process data acquisition

layer and thus receives the streams of process instance change events in a real-time fash-

ion. Each time a new process instance change event arrives, the statistical model of the

associated process step is updated. Given the current step of the process and the process

model, all potential paths from that step to the end milestone are determined. For each of

those paths the probability that the time from current step to end milestone takes longer

than the remaining time to expected stage completion is determined. For the computation

of that probability the statistical models are exploited. Then the computed probability for

potential stage violations is forwarded as result event for further consumption.

Result processing layer: The result processing layer continuously receives events from

the stage analysis layer describing completion status of stages as well as potential stage

violations. These events include details like the process instance id, the stage id, and the

violation probability. This information is combined with the process model and process

execution in a visual cockpit so that the user can quickly assess the impact of stage com-

pletions and potential violations on his current business.
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The following figure 1 shows an example stage that has been successfully completed.

Evaluating the completion of the start milestone and the completion of the end milestone

reveals that the stage condition has been met and thus that the stage has been successfully

completed for that process instance.

Figure 1: Example for successful completion of a stage

The following figure 2 illustrates the main idea of stage violation monitoring with an ex-

ample. Using the estimated time till completion of the end milestone and comparing it to

the time left for successful stage completion reveals that in this case the risk for a stage

violation is very high.

Figure 2: Example for potential violation of a stage
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5 Implementation of Stage Tracking Framework

Based on the previous overview this section discusses how the corresponding layers can

be implemented. Software AG offers in its platform for Intelligent Business Operations

already the tracking of stages and milestones.

5.1 Stage Configuration Layer

The user utilizes the stage configuration layer to define and configure process stages for

processes. As already described the user can select a process model and define start and

end milestone of a stage as well as the associated stage condition. Next he can activate

the monitoring of potential stage violations. This monitoring component relies on statis-

tical models of the process steps, which describe their cycle times. More precisely, such

a statistical model consists of a probability density function which describes the distribu-

tion of the cycle time. These models can either be learned automatically using process

runtime data or can be specified by the user, thereby leveraging the expert knowledge of

the user. For the latter option the configuration layer offers different parameterized statis-

tical models. The user selects the model that fits best and then specifies the corresponding

parameters of that model. Examples for such parameterized models are:

• Discrete single point distribution: Only one value has to be provided, which has a

probability of 100% to occur.

• Discrete multiple point distribution: A set of values has to be provided, each value

having assigned a probability. A special case is the discrete uniform distribution

where each of the possible values has the same probability.

• Continuous uniform distribution: This distribution consists of two values, which

are minimum and maximum. Between minimum and maximum the probability is

uniform and 0 otherwise.

• Normal distribution: The normal distribution is identified by mean and variance.

If the user enables automatic learning of the statistical models, the models are learned

using process runtime data. If the process instances have been freshly started, these models

are not yet available. Therefore the user can either select to wait or to specify and use

intermediate models until the learned models are available. For these intermediate models,

again, the user can select from a list of parameterized models and set the corresponding

parameter values.

Additionally the user can define different visualization options and follow-up actions de-

pending on the severity of the stage violation. For example, if the probability is above

90%, the corresponding visual cockpit highlights that stage, e.g., by filling it with color

red, and additionally an email is sent or a follow-up process is triggered. If the probability

is below 30%, the stage is marked as green.
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As a final step the process models, the defined stages as well as the configured monitoring

options are uploaded for execution.

In the Software AG suite the Process Designer is used to specify process models and

stages/milestones. Within that modeling tool the user can build and upload a process

model for execution once the modeling and configuration of the model has been com-

pleted. During that upload step the Process Engine transforms the incoming process mod-

els into executable processes. Additionally the stage definitions are written to a database.

Figure 3 summarizes the main steps for the configuration of stage violation monitoring.

Figure 3: Main steps for configuration of stages

5.2 Process Data Acquisition Layer

Process Engine executes the process instances for uploaded process models. In the exe-

cution environment of these process instances internal triggers are registered, which listen

for process initializations and step transitions. The registration of these internal triggers is

done automatically; the user does not need to configure how and where process instance

information is acquired during execution. No additional steps are required other than those

already done in the process modeling step; Process Engine configures the internal triggers

within the model upload and execution step. During runtime Process Engine reports each

status change of a process instance and generates an internal document with detail infor-

mation like process instance id, process model id, step id, point in time when the change

took place etc. Each process model has a corresponding trigger associated, which listens

to those generated documents with execution details of instances of that model. Therefore
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the corresponding trigger executes every time Process Engine reports a status change of a

process instance. This approach allows for a fine-granular monitoring of a process model

as every transition of all process instances is reported.

After a trigger has received such an internal document describing a process instance change,

that information is extracted and encapsulated into a new process instance change event.

This event is to be published so that follow-up consumers, e.g., a visual cockpit or the

aforementioned process tracking component, can be informed about recent changes of

process instances. For that reason Process Engine is EDA-enabled, i.e., it is connected

to the Event Bus, which is the general transport layer for arbitrary events in the Event-

Driven Architecture. Process Engine can therefore be publisher as well as consumer within

the EDA. In this context, Process Engine directly emits the newly built process instance

change event to a dedicated channel of the Event Bus. Over that channel all process in-

stance change events are published, i.e., that design also allows to capture information of

multiple process engines. A corresponding tracking component subscribes to that chan-

nel and gets the events in an event-driven manner. This approach ensures a minimum

time between change of a process instance and analysis of that information with respect to

affected stages.

The results provided by the stage tracking component are processed in the same manner.

Directly when new insights have been derived, a new result event is built and published on

the Event Bus so that subsequent consumers like visual cockpits can process that informa-

tion directly. Figure 4 summarizes the main flow of events.

Figure 4: Event flow

Enabling such a monitoring of process instances for a process engine introduces some

overhead as process instance change information has to be captured and published as an
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event. That overhead will be manageable in most cases as the Event Bus bears the main

burden of processing and publishing these events to follow-up consumers and the CEP

engine bears the burden of analyzing the events. However, in cases where huge numbers

of process instances change with a high frequency, the additional step of generating and

sending process instance change events can adversely affect the performance of the process

engine. Such a problem can be alleviated by distributing the process execution load over

multiple process engines.

5.3 Stage Analysis Layer

The stage analysis layer is responsible for receiving process change events, determining

status and potential violations of registered stages, and publishing the results to follow-up

consumers. The main components of that layer are summarized in Figure 5.

Figure 5: Main components of stage analysis layer

5.3.1 Processing of Incoming Events

The process stage tracker continuously receives process instance change events from one

or more process execution engines. A process instance change event denotes for a particu-

lar process instance that either a process step has changed or a process transition has taken
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place. A process step can change its status from started to completed. Besides started and

completed more complex cases are possible like expired, waiting, interrupted etc. In the

course of this work we focus on the case of status started changing to status completed.

A process transition is the transition from one step being completed to the start of the

subsequent step.

For each those incoming events the following actions are executed: First, the event is used

to determine stages being registered for the associated process model. More precisely, the

event is joined with the database that stores the stage definitions. Second, the stage status

is derived. For each of those stages, it is checked whether start or end milestone of that

stage is completed. If the latter is the case, the stage condition is checked. If the condition

has been met or failed, a result event is published on a dedicated event channel. This

functionality is implemented by means of Complex Event Processing queries to ensure a

minimum processing latency. For example, a continuous query joins the incoming events

against the stages database. The third step is to detect potential stage violations and publish

corresponding stage violation events. The process instance change event is utilized to

update the statistical model for the associated process step or transition. Combining these

statistical models of the process cycle times for the different process steps and transitions,

the probability for failing the stage condition can be computed, as will be discussed next.

5.3.2 Statistical Modeling of Cycle Times

Given a process model a statistical model for the cycle time of each step and transition is

computed. This cycle time is defined as the elapsed time between start of a step/transition

and completion of that step/transition. According to the previous considerations the cycle

time can be computed by evaluating the streams of process transition events. For that

purpose a continuously running CEP query can be used which joins the start of a process

step/transition with its completion. Using the temporal information of these two events the

cycle time can be derived. Thus, the query emits a stream of cycle times of steps/transitions

of the running process instances.

This information is used to derive a statistical model. The cycle time of a step/transition

is modeled as a univariate random variable X . Thus, X has a probability density function

f which defines the distribution of the cycle time. This probability density function is

unknown. Therefore, the measured cycle times are interpreted as a random sample of

independent and identically distributed random variables following X . This iid. sample

can then be used to estimate the probability density function of X . The resulting density

estimate f̂X can be utilized to determine the characteristics of X . More specifically, the

probability that the cycle time is in a given range [a, b] can be estimated by

P (X ∈ [a, b]) ≈

∫
b

a

f̂Xdx

For instance such a statistical model can be used to answer questions like:

• What is the probability that the cycle time of ’Receive claim request’ is between 10

and 15 minutes?
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• What is the probability that the transition from ’Store claim request’ to ’Review

claim information’ takes more than 5 hours?

• What is the probability that ’Approve claim’ completes in less than 2 hours?

5.3.3 Estimation of Probability Density Function

For the estimation of the probability density function using a sample mathematical statis-

tics offers various techniques. Most prominent categories are parametric and nonpara-

metric techniques. Parametric techniques assume that the density belongs to a class of

parametrized density functions. Then the sample is used to estimate these parameters.

A commonly used parametric density estimate assumes a normal distribution, which is

parametrized by mean and standard deviation. Thus, the sample is used to estimate those

two parameters. Nonparametric techniques make no assumption on the underlying distri-

bution. A commonly used nonparametric density estimation technique are Kernel Density

Estimators [Sil86].

Given the stream of cycle time events the density estimates for the different steps and tran-

sitions of the processes are continuously computed. For that purpose CEP queries are used.

For example, if the statistical model is based on the normal distribution, the CEP query

computes mean and standard deviation of the cycle times. These values are then used to

derive the density estimate. If the statistical model is based on Kernel Density Estimators,

the CEP query has to maintain the Kernel centers and the bandwidth. In both cases the

queries refer to a sliding time window, i.e., only the events in the current time window are

used to compute the density estimates. This approach ensures that the estimates focus on

recent trends in the development of the cycle times. Additionally, it confines the memory

required for maintaining internal states. For the case of very large windows, e.g. weeks

or months, Cluster Kernels [HS08] can be used for kernel density estimation as they allow

the online computation of density estimates over streaming data. As mean and standard

deviation require for an online computation only a constant amount of memory, also the

normal distribution can be computed for very large windows.

Overall, the CEP queries continuously derive statistical models of the associated cycle time

distributions from the stream of measured step and transition cycle times. The resulting

statistical models for each transition and step are maintained in a model database/cache.

Besides the latest model, that layer also can store histories of the models in order to allow

for comparisons between recent and past behavior. This history is particularly relevant

for storing significant changes in the cycle time distributions which occur only seldom

or periodically. For example, in summer season the number of insurance claims related

to lightning strokes is typically higher. These claims are more difficult to process as the

payment amount is typically high, on-site investigations of the damages are necessary, etc.

Therefore the cycle times for processing these claims are higher.
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5.3.4 Statistical Models for Two Process Changes

So far we have only discussed the cycle time distribution for a single step/transition. Ad-

ditionally, a model is required for a sequence of subsequent steps and transitions. Given

a step and a subsequent transition, the question is how long the combined cycle time for

those two is. According to the previous discussion we have for both a separate statistical

model. Let X1 be the random variable underlying the step cycle time and X2 the random

variable underlying the transition cycle time. Then the combined cycle time can be mod-

eled as the distribution of the sum of X1 and X2. Given the densities for X1 and X2 the

density of that sum is defined as

f̂X1+X2
(x) =

∫
∞

−∞

f̂1(y)f̂2(x− y)dy

Thus, the density estimates for X1 and X2 can be used to derive an estimate for the sum

of those two random variables. Regarding evaluation of that formula, in some cases this

integral can be resolved with a closed formula, e.g., for the sum of two normal distributed

variables. If that is not the case, numerical integration techniques can be used for an

approximate closed formula.

Thus, this approach can be utilized to derive a statistical model for the cycle time of a step

followed by a transition. The same holds for a transition followed by a step.

5.3.5 Statistical Models for Multiple Process Changes

Next case is that multiple transitions, not only one, end in one step. In that case the

maximum of the transition cycle time distributions is considered first. The statistical model

for that maximum distribution can be derived by using the product of the density estimates

of the contributing transition cycle times as overall density estimate. That density estimate

for the transitions is combined with the density estimate for the subsequent step. The

overall cycle time is the sum of the maximum cycle time of the transitions plus the cycle

time of the step. Again the two density estimates for the transitions and the step are

combined with the above formula to derive a density estimate for the overall cycle time of

multiple transitions ending in one step.

Overall, these mechanisms allow to estimate the cycle time of two subsequent process

changes. This can be generalized so that the cycle time for more than two subsequent

process changes can be estimated. This in turn provides the means to estimate a process

stage violation. Given two arbitrary positions A and B in a process, the models can be

used to determine the probability that getting from A to B requires a certain amount of

time, e.g., the probability that the time from A to B is between 15 and 20 minutes is 73%.

Figure 6 illustrates that approach for the cycle time from ’Receive claim request’ being

completed to ’Assess claim documentation’ being started.

The database/cache for the statistical models has an additional access layer for the latest

statistical models. It basically offers the following query functionality:
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Figure 6: Computation of combined statistical model

• Input: A process model id, two positions A and B in the process, a time interval

[a, b]

• Output: All paths from A to B plus the probability for each path that the time for the

path traversal is in the time interval [a, b]

Regarding the actual computation of the statistical models while process instances are

being executed, different phases are distinguished. When the process instances are initially

started, the learning of the step cycle time models using measured cycle times as previously

described requires some time. Therefore as discussed in the configuration chapter the user

can specify initial statistical models based on his expert knowledge. In the initial learning

phase these models are used. Once the statistical models have been learned, the system

starts to use them instead of the user-specified models, provided the user has activated

automatic model learning. For the learned statistical models different statistical techniques

have been presented to determine the corresponding density estimates. By default a normal

distribution is assumed for the following three reasons: First, the required parameters mean

and standard deviation can be efficiently computed by means of simple Complex Event

Processing queries using aggregates. Second, the parameters can be stored with minimum

effort. Third, the sum of these statistical models can be computed with a closed formula.

Even though a considerable amount of real-world phenomena can be suitably modeled

with a normal distribution, in many cases it does not fit. For example, the insurance com-

pany receives a significantly higher number of insurance claims due to a recent hailstorm.

To deal with that overload also teams so far not familiar with that class of claims are as-

signed to these claims. Most likely, these team members will need more time for process-

ing a claim than members familiar with those claims. So the cycle times of corresponding

process steps more likely have a bimodal instead of a unimodal distribution. Similar ef-

fects can arise after sending some team members to trainings to improve their skills in

handling more complex claims. In order to deal with these cases and to prevent decisions

being made on the basis of an inadequate statistical model, the suitability of this normal

distribution assumption is periodically checked by the system. A statistical test, e.g. the
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Kolmogorov-Smirnov-Test, is used to test whether the measured cycle times, on which

the model is based, are normal distributed. If that is not the case, the system switches to

a nonparametric statistical model, which comes at the expense of higher complexity for

model computation and combination of models, but fits better to the actual data.

5.3.6 Detection of Potential Stage Violations

The continuously computed statistical models are leveraged to detect potential stage vio-

lations. For each incoming process instance change event it is checked whether associated

stages may be violated. Thus, for an incoming event the first task is to retrieve all stages

that are registered for the associated process model. From these stages only those are se-

lected where the current process state lies between start and end milestone. For each of

those stages the start and end milestone as well as the associated temporal condition are

determined. The process instance change event gives information on the current step or

transition as well as when the change took place. This point in time is combined with the

stage information to determine the remaining time to reach the end milestone. This re-

quires additionally the time when the start milestone has been completed. Given the start

milestone completion time, the current time of the event, and the temporal condition, the

remaining time to stage completion can be derived. In the example in Figure 2 the stage

definition requires that the time from the start of ’Receive claim request’ to the comple-

tion of ’Assess claim documentation’ is less than 5 hours. The start milestone, namely

’Receive claim request’ has been completed, was reached at 9:00. The current event states

that ’Store claim request’ has been started at 12:40. Thus, the end milestone, completion of

’Assess claim documentation’, has to be reached within 80 minutes in order to not violate

the stage. The remaining time to end milestone completion as well as the current process

state are then combined with the statistical models. As described in the previous section

the probability that the time from current process state to end milestone completion is less

than the remaining stage completion time is computed. This delivers the probability for

violating that stage. For example, a process instance change event stating that process in-

stance 4711 has completed ’Store claim request’ at 12:40 may result in two events stating

that Stage1 is violated with 70% probability and Stage2 with 17% probability.

Up to now stages with ’less than’ conditions have been described, i.e., the stage condition

demands a completion in less then a specified timespan. Analogously the same approach

can be used to detect violations of ’greater than’ stages, i.e., the stages have to take at

minimum the specified amount of time.

Regarding the implementation of that functionality, again CEP queries are used. Each time

a new process instance change event arrives, events describing potential stage violations

are computed and directly published to follow-up consumers. Such a stage violation event

provides information about

• Process model

• Process instance

• Current process step
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• Stage

• List of paths to the end milestone

– Steps of each path

– Violation probability for each path

5.3.7 Result Processing Layer

The final layer processes the results produced by the stage analysis layer. It receives con-

tinuously events describing stage status as well as potential violations. These results are

presented to the user in a suitable UI. This UI is real-time enabled, i.e., each time a new

violation event is received, the corresponding components of the UI are directly updated.

This is implemented by means of the underlying Event-Driven Architecture.

There are different ways to visualize stage violations. Some of them are exemplary dis-

cussed. A table can visualize all recently received stage violations. In order to limit the

size of that table, events can be discarded depending on the severity of the violation, e.g.,

all violations with probability below 20% are discarded. Additionally that table can sort

and highlight stage violations with respect to their severity. A stage violation event may

comprise different paths to the end milestone with each path having a violation probability.

In that case the maximum of those probabilities is used to determine the overall severity

of the stage violation. The user can select an entry in the table to get more details. The

complete information of that stage violation is then displayed, including in particular the

paths to the end milestone. Additionally the process model is visualized. If the user selects

a path to the end milestone, this path is highlighted in the process model, i.e., the current

process position is highlighted and the subsequent steps to the end milestone. For each of

those steps and transitions the user can also examine the associated statistical models to

gain more insights into the actual behavior of the process steps.

The following example screenshot in figure 7 combines these components. The user se-

lects a stage violation and gets details on the selected stage, the different paths to the end

milestone, the associated process model with the selected path being highlighted, and the

statistical models for each step on that path.

Besides visualizing the stage violations other actions can be triggered for an incoming

event. For example, a follow-up process is triggered, a call is executed, or a SMS is sent.

Again, these actions can be triggered dependent on the severity of the stage violation.

6 Extensions

The presented framework for tracking important sections of business processes can be

extended in different areas:

Inclusion of intra-process dependencies in cycle time models: In the previous discus-

sions on modeling the cycle times a separate model has been established for each step,
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Figure 7: Example for a Process Stage Tracker Cockpit

with the assumption that the cycle time of one step does not interfere with the cycle time

of the previous step. If we skip this independence assumption, a conditional cycle time

model has to be used that copes with the dependencies of step executions.

Inclusion of inter-process dependencies in cycle time models: So far we have discussed

cycle time distributions for a process step being estimated using data from instances of

the corresponding process. A more complex model would include also the dependen-

cies between different processes and their effects on the cycle time distributions. These

inter-process dependencies correlate the information of process instances from multiple

processes.

Notification of exceptionally long cycle times: The statistical model of a step cycle time

provides a well-defined estimate of the distribution. This model can be used to detect

exceptionally long cycle times. By comparing a measured cycle time with the latest model,

the probability for the occurrence of that cycle time can be derived. If this probability is

very low, that value can be marked as outlier. The user is then informed about that outlier

as it affects the estimation of the remaining time to end milestone, which will most likely

be higher due to that outlier.

Other tracking targets: Besides using stages associated with temporal conditions, other

types of stages can be examined in a similar fashion. These stages could for example be

based on the number of process step iterations. Besides the case of process steps chang-

ing from status started to status completed, the framework can also be adapted to deal

with more complex statuses like waiting, interrupted, expired etc. Also other important

exceptions in the execution of process instances can be implemented within the presented

framework, e.g., detection of out-of-sequence events, process timeouts.
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7 Conclusions

This work discusses an extension of business process management and execution with

respect to a fine-granular real-time monitoring of crucial parts of business processes. A

novel framework for tracking stages of business processes in an event-driven manner is

introduced. This framework allows the business user to track in real-time whether con-

straints associated with those stages are fulfilled or violated. The framework relies on an

Event-Driven Architecture (EDA) coupled with a Complex Event Processing (CEP) en-

gine. The process engine executing the business process instances emits process status

events within the EDA. The CEP engine receives those events and uses queries to deter-

mine whether registered stage constraints are met or not. Additionally, statistical models

of the cycle times of process steps and transitions are continuously determined. These

models are used to derive the probability that a stage constraint is violated, i.e., that the

successful completion of a stage is at risk. This combined stage tracking functionality

delivers the business user real-time insights into the execution of his business processes,

with a focus on the most important sections so that he can directly or even proactively act

in case of problems.

In our future work we will continue to incorporate more sophisticated business process

monitoring functionality within the Intelligent Business Operations platform of Software

AG. We will investigate the effectiveness and efficiency as well as the scalability of our ap-

proach in different application domains consisting of a multitude of concurrently running

process instances. In the course of this investigation we will also assess the application of

our process tracking solution within the context of iPRODICT [iPR14], an ongoing Ger-

man research project which tackles a forecast-based adaptation of business processes in

real-time.
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