
Switch! Recommending Artifacts Needed Next Based on
Personal and Shared Context

Alexander Sahm and Walid Maalej

Technische Universität München
Bolzmannstraße 3
85748 Garching
sahm@cs.tum.edu
maalejw@cs.tum.edu

Abstract: While performing a certain task software developers use multiple tools,
read different artifacts and change others. As software developers are often inter-
rupted during a task, they end up simultaneously using a vast set of tools and arti-
facts. They need to switch between those artifacts many times until a task is com-
pleted. In sum a lot of time gets wasted due to locating, reopening or selecting the
right artifact needed next. To address this problem we introduce Switch!, a context
aware artifact recommendation and switching tool for software developers. Switch!
recommends artifacts that are likely needed in the current situation, based on task
semantics, interaction history and community profile.

1 Introduction

Software engineers work on several tasks in parallel [KM06], and their work is often
interrupted [GM04]. Several studies have shown the fragmented nature of software engi-
neering work. In a survey with 800 software engineers [Ma09] we asked subjects how
frequent do they switch their work focus because of, e.g. a high priority request or re-
membering something. We found that about 60% of respondents change the focus at
least hourly. Other observational studies found that engineers switch their focus even
more frequently: every five minutes on average [MGH05, KDV07]. Mark, Gonzalez and
Harris observed 57% of tasks were interrupted. As a result work was often fragmented
into many small work sessions [MGH05] and engineers have to deal with many task
switches.

In order to perform a certain task, engineers usually use various tools, in average 5 tools
for a single task [Ma09] (such as source code editors, bug trackers or version control
systems). Moreover engineers read and change different artifacts, like source code files,
bug reports or diagrams. A case study done by Zou [ZG06] found that 8 code files are
read and 6 are changed during a task. As engineers typically spend only 50% of their
time for code creation [MH09], and as Zou only observed code files inside IDEs, it is
most likely that the overall number of used artifacts is even higher. Multiple tasks in

473



conjunction with multiple artifacts per task increase the amount of artifacts the engineer
has to deal with in parallel.

In this paper we introduce Switch!, a recommendation tool that supports software engi-
neers to switch artifacts by employing task semantics, engineer’s interaction history and
shared community profiles. The contribution of the paper is twofold. First, it introduces a
conceptual model for a context-aware artifact switching to support software engineering
(SE) work. Second, it presents a framework and user interface concept, which imple-
ments this model. In section 2 we describe the problems Switch! addresses. In section 3
we present our solution concept and the metrics required to recommend artifacts depend-
ing on engineer’s context. Section 4 introduces our tool and gives an overview of its user
interface concept and architecture. In section 5 we present a paper-prototype based
evaluation. Finally, section 6 discusses related work and section 7 summarizes the paper
and gives an outlook on future directions.

2 Switching Problems

Modern desktop environments use windows as a main abstraction for artifact switching.
Figure 1 shows the different implementations provided by Microsoft Windows and Mac
OS X. We identified four drawbacks of this approach.

Figure 1: Window switching on Mac OS X (top) and Microsoft Windows (bottom)

474



1. Mixture of task-specific windows: Different tasks involve different artifacts and
tools to use. While e.g. the debugger window is used for the bug fixing task, the
text editor is used for the documentation refinement task. Window management
systems are not aware of engineers’ tasks and usually show windows of all
tasks the engineer is working on. When switching artifacts, task irrelevant win-
dows create a screen clutter.

2. Window-centric instead of artifact-centric: Desktop environments provide
mechanisms to switch between open windows or running applications. How-
ever many applications display several artifacts in a single window. A web
browser window, e.g., might contain several tabs. Thus engineers are not able
to select one of these artifacts directly. Instead, first the window containing the
artifact has to be identified, then the artifact inside the window.

3. Task history is lost: Information on artifacts and tools used during past tasks is
not considered. If an engineer does not manually track the used artifacts in the
current task, this information will be lost. When resuming a postponed task or
working on a similar task in future the engineer will need to search and locate
the same set of artifacts again.

4. Open vs. closed windows: Window management systems only consider open
windows and running applications when switching artifacts. If an artifact is cur-
rently represented by a window, it is open. The engineer in this case can switch
to it. If an artifact is not represented by a window, it is closed, and can not be a
switch target. Engineers first need to find the artifact and open it manually. This
interrupts the work-flow and can be time consuming.

3 Context-aware Artifact Recommendation

Our context model for a context-aware artifact recommendation consists of three dimen-
sions: the semantics of the task being performed, the personal interaction history of the
engineer and a shared community profile of co-workers. These dimensions respectively
represent the “universal”, the “personal” and the “social” perspective on SE work. We
first describe the two dimensions and then introduce the recommendation algorithm
combining them.

3.1 Task Semantics

SE tasks can be grouped based on the similarity of their goals and the software engineer-
ing activity they represent. Bug fixing tasks have a different goal than code-review or
requirement analysis tasks. We distinguish between the following types of SE tasks
(from [KDV07] and [MH09]): writing code, fixing bugs, reasoning about design, testing
a program, maintaining requirements, integrating components and maintaining aware-
ness. When working on one of these tasks (e.g. fixing a bug), engineers follow specific
workflows (e.g. read report, reproduce bug, debug, commit), by using specific tools (e.g.

475



bug tracker, debugger) and specific types of artifacts (e.g. bug reports, source code). We
annotate artifacts used during SE work with their semantic types. For example, a website
rendering a bug report is of type bug report, a text file describing a test case is of type
test case. The complete ontology describing the artifact and task types is available for
download on the teamweaver site1. The ontology associates different artifact types to
different task types. For example the engineer is likely to use a test case during testing,
but not during implementation. The ontology enables to determine a fuzzy set of artifact
candidates to be recommended, based on the type of current task.

3.2 Engineer’s Interaction History

Even when working on similar tasks, software engineers differ in their work habits, work
environments, work-flows, programming languages and tools. A need for a specific
artifact highly depends on any of those factors. In order to address these needs we use
the interaction history of the engineer. Analyzing engineer’s interaction history gives
insight on personal preferences. For example an engineer might use a specific folder for
storing stable system builds. By analyzing her interaction history this preference can be
detected and the folder can be recommended. We define three metrics to describe the
engineers interaction with a single artifact.

• Usage Duration (du): The time in seconds the artifact was used by the engineer.
Using includes reading as well as editing of the artifact.

• Usage Frequency (fr): The count how often an artifact has been used by the en-
gineer.

• Switched To (st): The number of times this artifact was switched to from an
other particular artifact. This value is relative to the current active artifact. The
number is incremented if the user switches from the current active artifact to the
given artifact.

These metrics are calculated for the artifact instances and the artifact types. While du
and fr apply to a single artifact, the st value applies to two artifacts. The value of st de-
scribes the direct relationship between two artifacts (resp. artifact types). For example, a
software engineer uses three different artifact types A, B and C. The engineer switches
most of the time between A and C, and between C and B, but never directly between A
and B. The st value is high for C when A or B is the active artifact type, or high for A
and B if C is the active artifact type.

3.3 Shared Community Profile

Software engineers work in teams and share common characteristics with other engi-
neers, i.e. members of particular communities. We argue that the context of co-workers

1 http://www.teamweaver.org/wiki/index.php/ontology

476



is also of interest for recommendations. To reason about the context of co-workers their
interaction history information is needed. To provide interaction history data, every
developer of a project team or organization can share parts of their own interaction his-
tory. Before being shared, the interaction history is condensed to a profile, containing
only abstract usage information. The data at this point cannot be traced to single tasks or
interactions. This community profile contains the same numeric criteria as the personal
interaction history described above. The client, depending on the profile provider’s team
role or experience level, aggregates the collected profiles.

By analyzing shared community profile team specific knowledge and best practices can
be used for recommendation. The project or organization dependent work environment
can also be detected. For example when the community profiles of the teammates are
shared, the recommendation for a developer new to the project will also contain the
project specific bug tracking system.

3.4 Recommendation Algorithm

The recommendation process is divided into two steps. First the number of possible
artifacts to recommend is reduced by using the task semantic and focusing on a subset of
the artifact types. In the second step artifacts of this types are ranked based on engineers
interaction history. This reduces the number of rankings to be calculated and improves
the performance of recommendation creation.

I. Artifact Type Suitability In order to identify the artifact type subset to use, we cal-
culate a value representing the importance of each type. Only the artifact types with an
importance rating higher than a given threshold are used. The used criteria refer to the
interaction data: du, fr and st. The values are all normalized to be between 0 and 1, with
0 being unimportant and 1 being very important. Since the st is the only value directly
linked to the current active artifact type, it is considered to be a higher relevance indica-
tor and hence has a factor 2. The suitability of an artifact type t is calculated as follows:

3.4 Recommendation Algorithm

The recommendation process is divided into two steps. First the number of possible ar-
tifacts to recommend is reduced by using the task semantic and focusing on a subset of
the artifact types. In the second step artifacts of this types are ranked based on engineers
interaction history. This reduces the number of rankings to be calculated and improves the
performance of recommendation creation.

I. Artifact Type Suitability In order to identify the artifact type subset to use, we cal-
culate a value representing the importance of each type. Only the artifact types with an
importance rating higher than a given threshold are used. The used criteria refer to the
interaction data: du, fr and st. The values are all normalized to be between 0 an 1, with
0 being unimportant and 1 being very important. Since the st is the only value directly
linked to the current active artifact type, it is considered to be a higher relevance indicator
and hence has a factor 2. The suitability of an artifact type t is calculated as follows:

Suitability(t) = du(t) + fr(t) + st(t) ∗ 2

II. Artifact Ranking All artifacts of suitable types are ranked according to their rele-
vance. In contrast to the first step, here we calculate the relevance of concrete artifacts.
The same interaction data is available for the artifacts themselves. Interaction data is avail-
able for the following time slots:

• Current Session (cSe): The artifact interaction data collected during the current
session (sessions result from postponing and resuming a task).

• Current Task (cTa): The artifact interaction data during the whole task (i.e. sev-
eral sessions belonging to the same task).

• Similar Tasks (sTa): Artifact interaction data during tasks of the same type.

II. Artifact Ranking All artifacts of suitable types are ranked according to their rele-
vance. In contrast to the first step, here we calculate the relevance of concrete artifacts.
The same interaction data is available for the artifacts themselves. Interaction data is
available for the following time slots:

• Current Session (cSe): The artifact interaction data collected during the current
session (sessions result from postponing and resuming a task).

• Current Task (cTa): The artifact interaction data during the whole task (i.e. sev-
eral sessions belonging to the same task).

• Similar Tasks (sTa): Artifact interaction data during tasks of the same type.

477



• External Tasks (eTa): Summarized artifact interaction data from co-workers
during tasks of the same type than the current task.

The sTa adds the task semantics to the ranking of the artifacts while eTa represents the
social aspect. The ranking overall is the combination of the universal task semantics, the
personal interaction history and the social community profiles. We assume that recent
interaction data is more important than old interaction data and personal interaction data
is more important than universal or shared interaction data. We therefore assign the im-
portance factors 2 for cSe, 1 for cTa, 0.5 for sTa and 0.25 for eTa. The artifact ranking
can be calculated as follows:

• External Tasks (eTa): Summarized artifact interaction data from co-workers dur-
ing tasks of the same type than the current task.

The sTa adds the task semantics to the ranking of the artifacts while eTa represents the
social aspect. The ranking overall is the combination of the universal task semantics, the
personal interaction history and the social usage profiles. We assume that recent interaction
data is more important than old interaction data and personal interaction data is more
important than universal or shared interaction data. We therefore assign the importance
factors 2 for cSe, 1 for cTa, 0.5 for sTa and 0.25 for eTa. The artifact ranking can be
calculated as follows:

du(a) = 0.25 ∗ du(eTa, a) + 0.5 ∗ du(sTa, a) + du(cTa, a) + 2 ∗ du(cSe, a)
fr(a) = 0.25 ∗ fr(eTa, a) + 0.5 ∗ fr(sTa, a) + fr(cTa, a) + 2 ∗ fr(cSe, a)
st(a) = 0.25 ∗ st(eTa, a) + 0.5 ∗ st(sTa, a) + st(cTa, a) + 2 ∗ st(cSe, a)

Rank(a) = du(a) + fr(a) + st(a) ∗ 2

4 SWITCH!

We introduce Switch!, a tool that uses the described context model in order to recommend
artifacts needed next. We present a short scenario on how Switch! is used. Then we
describe its user interface and architecture.

4 SWITCH!

We introduce Switch!, a tool that uses the described context model in order to recom-
mend artifacts needed next. We present a short scenario on how Switch! is used. Then
we describe its user interface and architecture.

4.1 Usage Scenario

Alice is implementing a new feature to a existing subsystem. She uses Switch! which
monitors her interactions and the used artifacts and tools in the background. While trying
to understand how the subsystem she is extending is designed, she presses the Switch!
keyboard shortcut. Switch! evaluates her interactions and creates a recommendation of
artifacts that Alice want to use next. The recommendation contains PDF files of UML
diagrams, the email communication about this subsystem with a co-worker, as well as
some web pages Alice looked at providing additional framework information. Alice can
navigate through the offered artifacts by mouse or keyboard. Alice selects the artifact she
wants to switch to. If the respective document is already open it will be brought to front,
if it was not, it will be opened.

4.2 User Interface Concept

The user interface of Switch! is used by the engineers very often but only for short peri-
ods of time. Thus the user interface needs to be designed to foster fast recognition of the
offered artifacts. We present the recommendations using a visual graphical interface
instead of textual ones. This gives the engineer the ability to select the needed artifact
quickly on a visual basis. Figure 2 shows the concept of Switch! user interface. We de-

478



signed and implemented the user interface for the Mac OS X operating system. Though,
its concepts can be implemented on different platforms as well.

Figure 2: Switch! user interface showing a recommendation

Artifacts with similar types and usually manipulated with similar applications, are
grouped together. A group is visually identified by composing icons from its most im-
portant applications. Every group contains a maximum of seven artifacts ordered by
importance from bottom to top. In order to take advantage of the user’s spatial memory,
these groups are positioned in a same order according to their importance for the SE
work from left to right.

For a quick overview of recommended artifacts each artifact is displayed using a pre-
view image of its content. Every artifact of currently selected group has a bigger size and
includes a title. Besides special functions enable the engineer to fulfill common tasks
directly from Switch!, like creating a new class or searching in the address book.

The user can move a selection along the offered elements either by hovering over the
elements with the mouse or by using the keyboard. The selection can thereby be moved
between the groups or between the recommended group artifacts. The artifact being
active before starting Switch! is not displayed as switching the same artifact is senseless.
The engineer then either clicks the needed artifact or presses the enter key while it is
selected. The Switch! window is hidden and the artifact is shown in front of other win-
dows.

4.3 Framework and Architecture

Switch! is build on top of the knowledge sharing framework TeamWeaver [MH08]. The
two main layers of TeamWeaver we are using are the Context System and the Distributed
Knowledge Model layer. The Context System layer monitors and interprets the engineers’

479



behavior while the Distributed Knowledge Model layer stores and exchanges the behav-
ioral model. An architecture overview is shown in Figure 3. We shortly describe the
main components and how they are used inside Switch!. The TeamWeaver Ontologies
describe the semantic model of tasks and artifacts and the relationships to each other.
The ontologies incorporate the task semantics. The Context Monitor contains various
sensors to existing tools and information sources - such as email clients, web browsers
and development environments. These sensors monitor the raw interaction events trig-
gered by the engineer and their semantic representations. This component builds the
personal interaction history. The Context Interpreter then classifies the current task
based on the interaction history data monitored by the Context Monitor. The Local
Metadata Store manages metadata about the artifacts and the tasks of the engineer. In
order to use the social aspects, in particular the sharing of community profiles the P2P
Infrastructure component is used. It enables the sharing of own interaction history data,
as well as the receiving of community profiles shared by co-workers. The Profiler com-
ponent creates the own profile to share and aggregates received ones. Switch! uses the
collected and analyzed interaction data provided by the Context System and integrates it
with the universal assumptions and the metadata provided by the Distributed Knowledge
Model. The result is used to create the recommendation by selecting and ranking suitable
artifacts.

< < c o m p o n e n t > >

Distr ibuted Knowledge Model

< < c o m p o n e n t > >

P2P Infrastructure

< < c o m p o n e n t > >

Local Metadata Store

< < c o m p o n e n t > >

TeamWeaver Ontologies

< < c o m p o n e n t > >

Context System

< < c o m p o n e n t > >

Profi ler

< < c o m p o n e n t > >

Context Interpreter

< < c o m p o n e n t > >

Context Monitor

< < c o m p o n e n t > >

Switch!

< < c o m p o n e n t > >

Context Monitor

< < c o m p o n e n t > >

Context Interpreter

< < c o m p o n e n t > >

Profi ler

< < c o m p o n e n t > >

TeamWeaver Ontologies

< < c o m p o n e n t > >

Local Metadata Store

< < c o m p o n e n t > >

P2P Infrastructure

Figure 3: Switch! architecture overview

5 Evaluation

We present the results of a paper prototype study conducted to evaluate the Switch! con-
cepts and user interface. Then we discuss the prototypical implementation.

5.1 Paper Prototype Study

To evaluate our recommendation approach, we conducted an experiment with experi-
enced software engineers by using a paper-based prototype. This prototype was created
based on the user interface concepts shown in Figure 2.

480



The elements of the user interface are separately printed on paper to simulate needed
combinations. If a participant selects an artifact the appropriate screenshot is presented
to simulate the desktop environment. The prototype is presented by the experiment su-
pervisor on a table, with the participant sitting in front. The supervisor simulates the
recommendations depending on the participant input and the algorithm introduced
above. Each experiment session is recorded by a video camera to track the physical ac-
tions and participants’ verbal reactions. Participants should use the paper prototype, as
they would work in their everyday environment. They should “think loudly” [Sea99] and
express in words what they are doing and why. Each participant has to perform one
implementation, one bug fixing and one documentation tasks. The concrete task instruc-
tions can be downloaded from the teamweaver site2.

Since Switch! is developed for Mac OS X we focused on engineers primarily working on
this platform. We recruited seven engineers from a Munich-based company specialized
on Mac OS X development and from the TUM Mac development Lab. While XCode is
used as main IDE by 2 participants, 5 participants mostly use Eclipse. In average each
simulation session lasts 40-60 minutes including the procedure explanation and discus-
sion.

Six participants claimed that with current environments, is difficult to keep an overview
of the needed artifacts and distinguish them from the ones not needed next. Our solution
presented to them was rated positively. Five stated they would use a tool with the pre-
sented functionality. We observed that all seven participants were not sure what to do
and how the artifacts are arranged, when introduced to the Switch! user interface. But as
they started pointing with the mouse or pressing the cursor keys, the concept of interac-
tion was understood by all of them. It took participants in avg. 4-5 min. to get familiar
with the interface. Participants identified the instant magnification and tool reaction to be
very useful in such situation. Five engineers recognized the artifacts they should select
very quickly by their icon (< 2 sec.). The other two needed to take a closer look at the
titles or asked the supervisor for help. Participants did not understand the recommenda-
tion criteria quickly. Four participants asked the supervisor several times why the par-
ticular artifacts are recommended. Three engineers asked what to do if the needed arti-
fact is not included. Two engineers stated artifact switching using Switch! would be too
complicated for daily use. These two engineers exclusively use Eclipse during the work.

Overall the purpose of Switch! and its features were quickly understood. But the reason
why a particular artifact is recommended is not sufficiently understood by the engineers.
Additional graphical presentation of most relevant relationships and recommendation
criteria might considered. Providing a detailed rationale for a recommendation would
increase confidence in the recommendation, but increases the information overload as
well [RWZ10]. Furthermore engineers wanted to be able to select artifacts not recom-
mended by Switch! if necessary. During a discussion at the session end, participant men-
tioned a) the accuracy of the recommendation, b) performance and c) the possibility to
customize artifact groups as additional requirements.

2 http://www.teamweaver.org/wiki/index.php/switchExperiement

481



5.2 Prototypical Implementation

The current version of Switch! uses the described algorithm to create, visualize and rec-
ommend the following artifact types: source code, PDF files, XCode documentation,
emails, web pages and plain text files. When hitting a global keyboard shortcut the main
switching window is shown. It includes (both open and closed) artifacts identified by
Switch! to be relevant. The artifacts are categorized into the tool groups and sorted inside
the groups according to calculated ranks. The preview images are created using the
Quicklook service of Mac OS X. Quicklook by default has the ability to create preview
images from many different file formats. In this version Switch! supports the task types
bug fixing, testing and documenting. For well-defined tasks with a limited set of possible
artifacts, the current version provides suitable recommendations. We are using Switch!
when dealing with several bug fixing and testing tasks at once.

6 Related Work

Several related systems have been proposed to address engineers information needs as
well as the encountered information overload. These can roughly be separated into three
categories: Application Launchers, Recommender Systems for software development
and Window Switchers.

Application launchers like Quicksilver [qui] and LaunchBar [lau] for the Mac OS X
platform or Launchy [Kar] for Windows, enable the user to quickly start applications,
open files or execute predefined commands. These tools usually work by pressing a
shortcut and typing short queries containing a few letters. The results of possible docu-
ments to open or tools to launch are immediately listed. Frequently used commands are
rated higher for the next similar query (equal prefixes). Application launchers allow
users to efficiently execute common tasks (e.g. open document, send email). However,
these tools do not consider users’ context. Users still need to know exactly the artifact
they want to switch to, its name and its path.

Recommender Systems for software engineering offer a more advanced functionality.
Their goal is to address the current information needs of the engineer by recommending
suitable artifacts [RWZ10]. A landscape of recommendation systems used in software
development is described in [HM08]. Dhruv [ASH06], for example, is a tool that pre-
sents information on a bug report taking into account the information given by the bug
report itself. Mylyn [KM06], hides not needed classes and methods from the Eclipse
IDE, by considering previously selected and edited ones. Other recommendation systems
such as Malibu [Sh08] and TaskTracer [DDJ05] are not tightened to software develop-
ment. They recommend windows depending on the current user activity. Thereby, the
activity needs to be recorded manually. TaskPredictor2 [Sh09] applies machine learning
mechanisms to detect unrecorded activities.

Operating systems often use open windows as basis for switching artifacts, assuming
that windows represent artifacts. They are designed to offer the open windows in a way
the user is able to find the needed ones more easily. The GroupBar [Sm03] assigns sev-

482



eral windows to one task. SWISH [Ol06] groups similar windows by using the semantics
of the titles and interaction history. A similar approach is implemented by Taskpose !
[BSW08] which groups miniature images of the open windows according to their relat-
edness. Artifacts not represented by a single window - such as a method of a class -
cannot be considered by these systems.

7 Conclusion

Driven by the problems software engineers face when working simultaneously on multi-
ple tasks and using a large number of artifacts, we designed and implemented a context-
aware artifact switching tool, called Switch!. First evaluations based on simulations and
short usage sessions are promising. Our approach seems to protect engineers from “inter-
ruption noise” and reduces the time needed for locating and reproducing needed infor-
mation. The current version is able to handle source code documents, PDFs, emails and
web pages. For the next step we plan to evaluate Switch! in a large industrial setting, by
measuring saved context switching time. For this Switch! requires refinements and ex-
tensions to other artifact and task types. At the same time we use this earlier version to
identify further heuristics and fine-tune the recommendation approach. Future directions
are to investigate graph based artifact relationships modeling for work-flow matching
and to integrate community aspects by accessing social media platforms.

References

[ASH06] Ankolekar, A.; Sycara, K.; Herbsleb,J. et al.: Supporting online problem-solving com-
munities with the semantic web. In Proceedings of the 15th international conference on
World Wide Web, 2006.

[BSW08] Bernstein, M.; Shrager,J.; Winograd,T.: Taskposé: exploring fluid boundaries in an
associative window visualization. In Proceedings of the 21st annual ACM symposium
on User interface software and technology, 2008.

[DDJ05] Dragunov, A.; Dietterich, T.; Johnsrude, K.: TaskTracer: a desktop environment to
support multi-tasking knowledge workers. In Proceedings of the 10th international
conference on Intelligent User Interfaces, 2005.

[GM04] González, K.; Mark,G.: "Constant, constant, multi-tasking craziness": managing mul-
tiple working spheres. In Proceedings of the SIGCHI conference on Human factors in
computing systems, 2004.

[HM08] Happel, H.J.; Maalej, W.: Potentials and challenges of recommendation systems for
software development. In RSSE ’08: Proceedings of the 2008 international workshop
on Recommendation systems for software engineering, 2008.

[Kar] Karlin, J.: Launchy. http://launchy.net.
[KDV07] Ko, A.; DeLine, R.; Venolia, G.: Information needs in collocated software develop-

ment teams. In Proceedings of the 29th international conference on Software Engineer-
ing, 2007.

[KM06] Kersten, M.; Murphy, G.: Using task context to improve programmer productivity. In
Proceedings of the 14th ACM SIGSOFT international symposium on Foundations of
software engineering, 2006.

[lau] LaunchBar. http://www.obdev.at/launchbar/.

483



[Ma09] Maalej, W.: Task-First or Context-First? Tool Integration Revisited. In Proceedings of
the ACM/IEEE International Conference on Automated Software Engineering. IEEE
Computer Society, 2009.

[MGH05] Mark, G.; Gonzalez, V.; Harris, J.: No task left behind?: examining the nature of frag-
mented work. In Proceedings of the SIGCHI conference on Human factors in comput-
ing systems, 2005.

[MH08] Maalej, W.; Happel, H.: A lightweight approach for knowledge sharing in distributed
software teams. In Proceedings of the 7th International Conference on Practical As-
pects of Knowledge Management, Jan 2008.

[MH09] Maalej, W.; Happel, H.: From work to word: How do software developers describe
their work? In Proceedings of MSR ’09. 6th IEEE International Working Conference
on Mining Software Repositories, 2009.

[Ol06] Oliver, N.; Smith, G.; Thakkar, C.; Surendran, A: SWISH: semantic analysis of win-
dow titles and switching history. In Proceedings of the 11th international conference
on Intelligent user interfaces, 2006.

[qui] Quicksilver. http://docs.blacktree.com/quicksilver/what_is_quicksilver.
[RWZ10] Robillard, M.; Walker, R.; Zimmermann, T.: Recommendation Systems for Software

Engineering. IEEE Software, 2010.
[Sm03] Smith, G.; Baudisch, P.; Robertson, G.; Czerwinski, M.: GroupBar: The TaskBar

Evolved. In Proceedings of OZCHI, 2003.
[Sea99] Seaman, C.: Qualitative Methods in Empirical Studies of Software Engineering. IEEE

Trans. Softw. Eng., 25(4):557–572, 1999.
[Sh08] Shen, J.; Geyer, W.; Muller, M.; Dugan, C.; Brownholtz, B.; Millen, D.: Automatically

finding and recommending resources to support knowledge workers’ activities. In Pro-
ceedings of the 13th international conference on Intelligent user interfaces, 2008.

[Sh09] Shen, J.; Irvine, J.; Bao, X.; Goodman, M.; Kolibaba, S.; Tran, A.; Carl, F.; Kirschner,
B.; Stumpf, S.; Dietterich, T.: Detecting and correcting user activity switches: algo-
rithms and interfaces. In Proceedingsc of the 13th international conference on Intelli-
gent user interfaces, 2009.

[ZG06] Zou, L.; Godfrey, M.: An Industrial Case Study of Program Artifacts Viewed During
Maintenance Tasks. In Proceedings of the 13th Working Conference on Reverse Engi-
neering, 2006.

484


