
Model-based Middleware for Embedded Systems

Christian Salzmann, Martin Thiede

BMW Car IT GmbH
München, Germany

christian.salzmann@bmw-carit.de
martin.thiede@bmw-carit.de

 Markus Völter

voelter – ingenieurbüro für
softwaretechnologie

Heidenheim, Germany
voelter@acm.org

Abstract: In this paper we describe the advantages of a model-based approach to
embedded component middleware. Component infrastructures such as Enterprise
JavaBeans, Microsoft’s COM+ and CORBA Components have become a de-facto
standard for enterprise applications. Reasons for this success are the clean separa-
tion of technical and functional concerns, COTS containers (applications servers),
and the resulting well-defined programming model and standardization. To benefit
from these advantages in the domain of embedded systems, the same concepts can
be used, but a different implementation strategy is required. First we describe the
characteristics of automotive software and explain why the implementation strate-
gies used in enterprise systems can not simply be applied to the automotive do-
main. Then we present a brief outline of the design and implementation of a
model-based embedded component middleware.

1 Introduction

Why is software development for embedded Electronic Control Units (ECU) so much
more complicated than for example developing software for a PDA? One reason is that
the software in the automotive domain is more or less developed from scratch each time
around. There is very little reuse compared to desktop IT. But why is this? What differ-
entiates automotive software and the way it has to be developed from other domains,
such as business software or aerospace? In order to answer these questions we first out-
line some of the characteristics of automotive software that lead us to proposing a differ-
ent approach for automotive middleware implementation. The different kinds of charac-
teristics of automotive software, which include technical, organizational as well as
economical issues, also serve to illustrate the broad variety of challenges found. Among
them are Heterogeneity, Emphasis on Software Integration, and Unit based cost structure
and resource optimization.

An important part of software engineering is structuring a system in a way that helps to
cope with the inherent complexity, making it easier to handle, cheaper to produce and
faster to develop and adapt. In business IT component middleware has proven to be
useful in this context. So the goal must be to make this approach applicable to the auto-
motive domain. This requires an adaptation of the implementation strategy to fit the
constraints of automotive software development.

3

2 Components & Middleware

Component infrastructures such as Enterprise JavaBeans, Microsoft’s COM+ and
CORBA Components [OMGb] have become a de-facto standard for enterprise applica-
tions. Reasons for their success are the clean separation of technical and functional con-
cerns, COTS containers (applications servers), and the well-defined programming
model. To benefit from these advantages in the domain of automotive embedded sys-
tems, the same basic concepts can be used, but a different implementation strategy is
required: monolithic application servers are not suitable because of the limited resources
regarding computing power, memory, etc. on the device. Instead, the container needs to
be customized exactly to the needs of the ECU and the application. Model-based code
generation is an efficient means to do this.

2.1 Our understanding of Components

Our definition of components and component infrastructures is based on the Server
Component Patterns book [VSW02]. The following paragraph summarizes the essential
building blocks.

A component encapsulates a well-defined piece of the overall application functionality.
Component instances execute in a container which handles technical, typical cross-
cutting concerns for the components.

A system is assembled from collaborating components as well as one or more containers.
Components access each other through a well-defined component interface. Components
can be reused in several applications. Since the functionality of a component and the
way to access it is well-defined and self-contained, the preexisting interface is techni-
cally separate from the component implementation which can be exchanged without
affecting clients.

The strict separation of interface and implementation allows the container to insert com-
ponent proxies into the call chain between the clients and the implementation. On behalf
of the container, these proxies handle technical concerns. The lifecycle callback interface
of a component is used by the container to control the lifecycle of a component instance.
This includes instantiating components, configuring instances, activating and passivating
them over time, checking their state (running, standby, overload, error, …) or restarting
one in case of severe problems. Because all components are required to have the same
lifecycle interface, the container can handle different types of components uniformly.
Annotations are used by the component developer to declaratively specify technical
concerns (i.e. which of a container’s services are needed by a component and in which
way). A component context is an interface passed to the component implementation that
allows it to control some aspects of the container (e.g. report an error and request shut-
down).

4

A component is not allowed to manage its own resources. It has to request access to
managed resources from the container, allowing the container to efficiently manage
resources for the whole application (i.e. several components). These resources also in-
clude access to other component interfaces (required interfaces). All the resource a
component instances wants to use at runtime must be declared in the annotations to al-
low the container to determine if a component can correctly run in given context, and
prepare accordingly.

When operations are invoked on instances, the invocation might carry an additional
invocation context that contains, in addition to operation name and parameters, data
structures which the container can use to handle the technical concerns (such as a secu-
rity token). Last but not least, a component is not just dropped into a container; it has to
be explicitly installed in it, allowing the container to decide (based on the annotations
and required resources) if it can host the component in a given environment.

2.2 Benefits & Drawbacks

The approach outlined above has the following benefits: Portability, Container-based
Optimization, Standardized, Simplified Programming Model, and Clearly defined devel-
oper roles. On the other hand, traditional implementations of component infrastructures
also have a couple of drawbacks: Performance Overhead, Loss of control, Large and
heavy, Complexity.

These drawbacks prevent a traditional approach from being used in the automotive do-
main. In order to remedy these drawbacks we propose using model-based software de-
velopment.

2.3 Concepts of Model-based Software Development

Model-based Software Development (MDSD, see [OMGa, Sa02]) aims at automatically
constructing software programs from domain specific, abstract models. The “intent” of
the application developer is captured in specifications (or models) that consist of con-
cepts related to the problem domain; they are thus based on a domain-specific language
(DSL).

A generator then reads the specification/model and verifies the model against the domain
meta model available to the generator. In a second step, source code for the respective
runtime platform is generated. It is important to understand that the focus of MDSD is
not to generate dumb class skeletons from UML class diagrams. Rather, the generator
automatically creates all of the infrastructure code needed to run a piece of pure applica-
tion logic on a certain runtime platform. Additionally, it is responsible for realizing do-
main-specific optimizations for the respective platform.

5

2.4 Benefits of Using MDSD to Develop Component Middleware

Generated containers implemented using model-based software development techniques
can even improve some of the benefits while reducing most of the drawbacks of compo-
nent middleware as described above:

• Optimizations can be implemented directly in the generated code. Since domain-
specific models are more expressive than code, more domain-specific optimiza-
tions are possible.

• The programming model can be simplified even further, since generated code
and the development process based on modelling guides developers when im-
plementing application logic. Using code generation in combination with a tradi-
tional compiler (for a language such as C) even allows to enforce some aspects
of the programming model, violations of which could otherwise not be pre-
vented.

• The tradeoff between footprint and performance overhead can be adjusted over a
wide range since the generator is free to implement features statically (faster, but
typically more footprint) and dynamically (usually slower, but smaller).

• By adding only those features to a container that are actually necessary for a
given scenario, the overall footprint and performance overhead of a system can
be significantly reduced.

2.5 Applicability of the solution

Considering the different architectures for embedded systems the question is: in which
architecture can the proposed approach be used sensibly? Let’s look at each of these
architectures in turn.

• No operating system: In these very small systems, the proposed architecture is
very suitable. First of all, software on these devices typically is very static, not
featuring dynamic aspects. Efficiency and small code size is important, while we
still need some flexibility regarding different hardware platforms/devices (be-
cause there is no OS). Also, because there is no OS, there is a lot of use for reus-
able, cross-cutting technical concerns handling of the container. The container
thus serves as an efficient implementation of an abstraction layer – providing
flexibility while still being efficient.

• With (real time) operating system: real time operating systems (as any operating
system) typically provide APIs on a very low level. Also, there is no handling of
domain- (or software system familiy-) specific technical concerns. Containers
can provide this higher-level abstractions. The container can also serve as a
means of integrating different tools, systems, middlewares, etc. For example, the
container can provide remoting based on CAN or Flexray.

6

3 Conclusion: Embedded Middleware – more than reuse

In this paper we sketched the basic concepts of a model-based embedded component
middleware for automotive systems. We showed that a middleware-based approach
reduces complexity of the systems which makes software cheaper to produce, faster to
develop and more flexible to adapt. Traditional middleware approaches such as those
used in enterprise systems are not applicable in the automotive domain, due to unit based
cost structures and resource constraints. Here the approach of model-based software
development is a promising approach.

4 Related Work

The AUTOSAR standard [AS] aims at standardizing a communication middleware and
reference architecture for automotive ECUs. While it does not prescribe a specific im-
plementation strategy, the requirements stated in the standard suggest an approach in the
spirit of what has been described above.

5 ACKNOWLEDGEMENTS

Many of the concepts described above were made concrete by the embedded middleware
team at BMW Car IT, namely Paul Hoser and Michael Rudorfer.

REFERENCES

[AS] AUTOSAR GbR: Automotive Open System Architecture, http://www.autosar.org
[Be01] von der Beeck; Braun; Rappl; Schröder: Modellbasierte Softwareentwicklung für auto-

mobilspezifische Steuergerätenetzwerke, VDI Tagung Elektronik im KFZ, BadenBaden,
VDI Berichte Nr. 1646, 2001

[CiA] CiA: Controller Area Network (CAN), an overview, http://www.can-cia.de/can/
[Ma] Mathworks: Matlab / Simulink, http://www.mathworks.com/products/tech_computing
[OI01] Objective Interface: Realtime and Embedded CORBA discussion forum,

http://www.realtime-corba.com/
[OMGa] OMG: Model-Driven Architecture, http://www.omg.org/mda
[OMGb] OMG: Minimum CORBA Specification, http://doc.ece.uci.edu/CORBA/formal/02-08-

01.pdf
[Sa02] Salzmann, C.: Modellbasierter Entwurf spontaner Komponentensysteme, PhD Thesis

Munich University of Technology, 2002.
[SS03] Salzmann; Schätz: Service-Based Systems Engineering: Consistent Combination of

Services In: Proceedings of ICFEM 2003, Fifth International Conference on Formal En-
gineering Methods. Springer LNCS 2885, 2003

[VSW02] Voelter; Schmid; Wolff: Server Component Patterns - Component Infrastructures illus-
trated with EJB, Wiley, 2002

[Za99] Zave, P.: Systematic Design of Call Coverage Features technical Report AT&T Labs
1999.

7

