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Abstract: The recent Covid-19 pandemic and the fact that wearing masks in public is now manda-
tory in several countries, created challenges in the use of face recognition systems (FRS). In this
work, we address the challenge of masked face recognition (MFR) and focus on evaluating the veri-
fication performance in FRS when verifying masked vs unmasked faces compared to verifying only
unmasked faces. We propose a methodology that combines the traditional triplet loss and the mean
squared error (MSE) intending to improve the robustness of an MFR system in the masked-unmasked
comparison mode. The results obtained by our proposed method show improvements in a detailed
step-wise ablation study. The conducted study showed significant performance gains induced by our
proposed training paradigm and modified triplet loss on two evaluation databases.
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1 Introduction

Computer vision tools have been successfully applied to face recognition (FR) in the

past [SKP15]. New challenging conditions, such as the face occlusion caused by the use

of face masks in public, mandatory during the SarsCov2 pandemic, raised limitations for

well-performing and established FR methods. The pandemic has also stressed the impor-

tance of hygienic and contactless biometrics [Go21], such as FR. Recently, the National

Institute of Standards and Technology (NIST), in the scope of the ongoing Face Recogni-

tion Vendor Test (FRVT), published a study on the effect of face masks on the performance

of vendor’s FR systems (FRVT -Part 6A). The NIST study concluded that the algorithm

accuracy with masked faces declined substantially. The Department of Homeland Security

has conducted an evaluation with similar goals, however on more realistic data5. They also

observed the significant negative effect of wearing masks on the accuracy of automatic FR

methods.

The lack of robustness of current systems to perform masked face recognition (MFR)

fostered an interest in the research community to address this challenge [Di20; Ge20;

Ho20; Li21]. Damer et al. [Da20] evaluated the verification performance drop in three
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face biometric systems when verifying masked vs not-masked faces compared to verifying

not-masked faces to each other. This study was extended [Da21a] to both synthetic and

real masks, pointing out the questionable use of simulated masks to represent the real

mask effect on face recognition. Furthermore, the performance of human inspectors in

face verification has been shown to have a drop, consistent with automatic FR systems,

when faces are masked [Da21b]. The effect of facial masks extends to other components of

biometric systems as it has been shown to largely change the behaviour of face presentation

attack detection [Fa21]. Recently, Boutros et al. [Bo21a] proposed a template unmasking

approach that can be adapted on top of any face recognition network aiming at creating

unmasked-like templates from masked faces by the proposed self-restrained triplet loss.

Other initiatives were also incited by the lack of systems capable of handling this task, such

as the “Competition on Masked Face Recognition” (IJCB-MFR-2021 [Bo21b]) and “The

International Workshop on Face and Gesture Analysis for COVID-19” (FG4COVID19)6.

The work proposed in this paper comprises the construction of a synthetic masked face

dataset based on the VGGFace2 [Ca18] and proposes a solution to address the challenge

of MFR. This solution is based on a proposed loss that combines the traditional triplet

loss and the mean squared error (MSE) intending to improve robustness in the comparison

between masked and unmasked samples.

The contributions of this work are: 1) A cascaded training paradigm that leverages the

benefits of both a conventional identity classification learning in the first stage and the

subsequent embedding optimization fine-tuning stage. 2) A specifically modified triplet

loss function (for the embedding optimization) that incorporates a mean square error mea-

surement to control the training process in a weighted manner. 3) A thorough ablation

study on multiple databases (including our own created database), showing, in a step-wise

manner, the benefit of our training paradigm and the specifically designed loss.

This paper is organised as follows. In this introductory section, we contextualise the chal-

lenge addressed within the related work and detail the contributions of the paper; and in

the conclusion, we reflect on the findings and future work possibilities. In Section 2 we

present the methodology used. Section 3 details the metrics, the datasets used (the creation

of the synthetic face masks and the dataset with real masks), the implementation details,

and finally, presents the results and its discussion.

2 Methodology

Performing the direct optimization of embedding predictions is often trickier than learning

a model capable of performing classification. Hence, we propose a constrained triplet loss,

specially crafted for masked face recognition (MFR), to be used after the classification

optimization. Our approach redirects the focus of learned embeddings towards unmasked

areas. In the embedding learning stage, the training focuses on comparing two images

against a reference (anchor) and distinguishing between images of the same person (pos-

itives) and from a different person (negatives). Together, the anchor, the positive, and the

6https://fg4covid19.github.io/index.html
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negative form a triplet. This will enable the model to capture the benefits of both strategies

and therefore be more flexible to inter-class variations, as we will experimentally illustrate.

In this section, we start by describing the approach followed to train these models for

classification. Afterwards, we expose our proposed change to the triplet loss that improves

the representations learned by these models for MFR.

Classification Training: In our scenario, the number of classes and the universe of pos-

sible inputs is unknown once the model is deployed. Thus, supervised classification meth-

ods can only guide us up to a certain point. Nonetheless, they have been used as a tech-

nique to improve the convergence speed of the model for other tasks. Therefore, initially,

the problem is approached as a closed-set recognition. Afterwards, the pre-trained model

is fine-tuned towards learning meaningful embeddings.

The approach to train the classification model was based on minimizing the cross-entropy

(CE). This loss function is frequently used for the classification of the input as a single

class, which suits our use case since a picture can only belong to one subject. It attempts

to minimize the confidence of the model on erroneous classes while maximizing its con-

fidence in the correct class. The validation occurred after each epoch and it evaluated the

accuracy of the model in the classification of masked pictures unseen during the training.

And while these images were unseen, the network already knew the subject from past pic-

tures. To separate validation and training sets, we followed an 80%/20% data split. This

training process is similar to the one designed by Cao et al. [Ca18].

Embedding Optimization: Embedding optimization is a task that requires the network

to learn the representations of the inputs instead of classifying them. This is no trivial task,

and the hyperparameters search of this process has to be done carefully since this is an

expensive task when compared to the use of classification losses [Yu20]. For this, the fully

connected layer is removed, and another untrained embedding layer is added. Besides this

last layer, all the weights of the network are frozen, and thus, further training does not

update them. To train the embedding layer, which outputs an embedding vector with a size

of 512, the triplet loss is used, based on Equation 1.

TripletLoss = ∑
a,p,n

max(0,α −||xa − xn||
2
2 + ||xa − xp||

2
2) (1)

xi =W ′ φ(li))

||φ(li)||2
(2)

Equation 2 describes the embedding layer added after the last convolutional layer. It re-

ceives as input the output of the convolutional layer (represented by l on the equation) and

normalizes it in the euclidean space.

The triplet loss has some aspects that serve our goals, for instance, it relies on three inputs,

referred to as the “anchor”, the “positive” and the “negative”, which suits the structure of

our evaluation method. Moreover, this loss verifies the distances between the anchor and



Pedro C. Neto et al.

the positive and between the anchor and the negative. It penalizes the network if the last one

is smaller. The formulation of the triplet loss is given by Equation 1, where it is possible

to see that it penalizes the model if the distance between the negative and the anchor is

shorter than the one of the positive and the anchor. Moreover, the equation includes a term

α , which is the margin. The margin, which in this case is set to 0.2, helps the model to

define some separability between positives and negatives.

Unmasked Anchor      

             Masked Negative

Masked Positive

Unmasked Anchor           

Masked Negative

Masked Positive

Learning

Fig. 1: Triplet loss effect in the euclidean space
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             Masked Negative

Masked Positive

Unmasked Anchor         

Masked Negative

Masked Positive

Learning

                            Masked Anchor

Masked Anchor                             
 

Fig. 2: Proposed Triplet loss effect in the euclidean space

It is possible to see on Figure 1 the effect that optimizing with triplet loss has on the

embeddings. The anchor is a randomly selected image (without mask) to be used as a

comparison point. The positive image, is a masked image from the same identity as the

anchor image, whereas the negative is from a different identity. Our proposed approach,

TripletLossProp, constraints the loss of the original triplets, through the minimization of

the distance between the masked and unmasked anchor embeddings. Our loss is formulated

in Equation 3 and the effects of its optimization are visible on Figure 2.

TripletLossProp = ∑
a,am,p,n

TripletLoss(a, p,n)+MSE(am,a) (3)

Since the mask occlusions are always on the same facial area, it is known that the network

should focus its attention on areas that will not have occlusions. And thus, as seen on

Equation 3, a mean squared error term is added to the loss. This way, we introduce more

information to the model so that embedding optimization can be done more effectively.

3 Experimental Setup and Results

Evaluation Metrics: To report the results we present the false non-match rate (FNMR);

the FMR100 and FMR10 which are the lowest FNMR for a false match rate (FMR) < 1.0%
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and < 10.0%, respectively; the equal error rate (EER); and the area under the receiver

operating characteristic curve (AUC). We also report the genuine mean (GMean) and

impostors mean (IMean), which represent the mean distances between the embeddings of

the same individual and from different people respectively.

Face Data: The development of face recognition methods requires large and diverse datasets.

When the Covid-19 pandemic started and it became evident that the use of face masks had

a negative impact on FR systems there was no ready-to-use data for research. The creation

of synthetic data allows leveraging from existing data so that it fits the problem. Still, us-

ing real data is crucial as the ultimate test to the models and the community started to also

collect face samples of individuals using face masks. The creation of these two types of

data used in our method is described as follows.

Synthetic masked face data (SMFD): Here we describe the synthetic masked face data

(SMFD) creation process. Adding a facial mask requires information regarding facial land-

marks. Moreover, the position and inclination of the face affect the positioning of the mask.

Due to the lack of large-scale pairs of masked and unmasked identities, in this work, we

synthetically generate different types of masks and adjust them on the unmasked samples

of the VGGFace2 dataset [Ca18]. The dataset includes 3,310,000 face images from 8,631

train identities and 500 disjoint identities for the test, and includes a diverse set of samples

regarding the various poses, ages, and ethnicity. Mask generation is carried out using the

proposed algorithm by NIST [NGH20]. The algorithm exploits the Dlib C++ toolkit to

obtain 68 facial landmarks for each image; afterward, using the extracted facial landmarks

and interpolation between the points, various synthetic masks are generated. The details

of the landmark extraction and mask generation are described in [Ki09; NGH20]. Due to

variability regarding shape (Wide vs. Round) and face coverage (High, Medium, Low) we

obtained six possible combinations. Figure 3 shows the result of applying the mask gen-

eration algorithm on a randomly selected sample from VGGFace2. Both the shape of the

mask and its colour are randomly selected, for each image, while generating the masks.

(a) Wide,

high

(b) Wide,

medium

(c) Wide,

low

(d) Round,

high

(e) Round,

medium

(f) Round,

low

Fig. 3: Examples of face landmarks obtained from one image with different types of masks added.

These masks vary in shape and face coverage.

Real masked face dataset: We evaluated our proposed solution using masked face recog-

nition competition dataset (MFRC-21) [Bo21b]. MFRC-21 dataset was collected on 3 dif-

ferent days from 47 subjects. The first day is considered as a reference session, while the

second and third sessions are considered probe sessions. In each session, 3 (two with mask

and one without) videos are recorded using a webcam, while the subjects are requested to

look directly into their camera. An overlapping database, and the same capture and frame

selection procedure is describe in [Da20; Da21a]. In total, the references contain 470 un-

masked images and 940 masked images. The probes contain 940 unmasked images and
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1880 masked images. We evaluate our proposed solution under two evaluation scenarios.

The first is between unmasked references and masked probes (U-M) and the second is

between masked references and masked probes (M-M).

(a) Example from the test set of a reference image with-

out a mask

(b) Example from the test set of a probe image with a

mask

Fig. 4: Examples of images from the real masked faces dataset: images of the same individual with

(a) and without a mask (b) (from [Da20]).

Implementation Details: To implement the mask FR model, we exploit ResNet50 archi-

tecture [He16] to extract the features from masked/unmasked facial samples. We trained

the model by making use of cross-entropy (CE). The training of this model required around

150 thousand iterations. It trained with an initial learning rate of 0.1. It was decreased by a

factor of 10 whenever the validation accuracy decreased. Stochastic gradient descent was

used, with a batch size of 400, momentum of 0.9, and 0.0005 weight decay. We did not use

any face alignment of the VGGFace2 dataset, giving as input of the model 224x224 im-

ages. After achieving convergence, it was fine-tuned with triplet loss and the combination

of triplet loss with the mean squared error. Triplets were randomly generated at training

time, and thus, it was unlikely to have them seen by the network more than once. Further-

more, we did not use any triplet mining. The models trained for 65 thousand iterations

with a batch size of 200. And thus, 13 million triplets were created and used for the weight

updates. The margin hyper-parameter α in Triplet loss is empirically determined as 0.2.

Results and discussion: We evaluated our method on two distinct datasets. One evalua-

tion used synthetic masked face data (SMFD), with all the identities used for testing being

disjoint from the training identities. We also evaluated the model with real masked face

data (RMFD). Evaluating on these datasets allows us to infer the generalization capabil-

ities of the model for unknown identities and images with different characteristics from

the gallery images (e.g.real masks). The results are provided using the already mentioned

metrics: GMean, IMean, AUC, EER, FMR100, and FMR10.

Our method is evaluated through a detailed step-wise ablation study that allowed us to

understand the impact of the proposed modification of the triplet loss. Hence, we evaluate

the model, in both datasets, with different training frameworks. This allows us to capture

information regarding the impact of individual components of the model, such as, training

with triplet loss, or not optimizing the embeddings. Besides, we also included the results

of the method referred to in the tables as “VGG Face” [Ca18; SKP15] consisting of an

Inception-ResNet pre-trained on the original VGGFace2 datasets.
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In Table 1, it can be observed that good performance is achieved with just cross-entropy

training (CE). Nevertheless, optimizing the produced embeddings with triplet loss (CE+TL)

led to significant improvements in performance, lower distances for impostors, and higher

distances for genuines. Moreover, our proposed adapted triplet loss resulting from the ad-

dition of the MSE constraint (CE+TL+MSE) lead to even more significant improvements,

for example, approaching the AUC to 0.99, besides improvements in all the other metrics.

Tab. 1: Results obtained for the synthetic masked face data (EER, FMR100, FMR10 in %).

Method GMean IMean AUC EER FMR100 FMR10

VGG Face[Ca18; SKP15] 0.505 0.325 0.951 11.8 38.2 13.5

CE Loss 0.528 0.426 0.941 13.2 38.5 21.5

CE + TL 0.601 0.320 0.977 7.8 28.9 11.9

CE + TL + MSE (Ours) 0.596 0.319 0.985 6.2 18.5 4.1

In Table 2, can be observed that, the model’s performance degrades when compared to

the previous table. Regardless of that, for the targeted comparison mode - U versus M -

the results show the superior performance of our proposed loss. The distance of impostors

increases as the distance of genuines increases too. Furthermore, it is possible to conclude

that the model is competent in the task despite being trained only on synthetic data.

Tab. 2: Results obtained for the real masked face data (in the column “Mode”: U and M stands for

unmasked and masked data, respectively; EER, FMR100, FMR10 in %).

Method Mode GMean IMean AUC EER FMR100 FMR10

VGG Face[Ca18; SKP15]
U-M

M-M

0.523

0.616

0.426

0.461

0.769

0.847

29.419

23.552

90.587

68.979

58.959

38.159

CE Loss
U-M

M-M

0.610

0.702

0.475

0.503

0.931

0.936

11.687

9.002

32.041

16.628

12.852

8.791

CE + TL
U-M

M-M

0.647

0.699

0.396

0.414

0.943

0.945

11.213

10.806

34.744

26.457

11.874

11.249

CE + TL + MSE (Ours)
U-M

M-M

0.649

0.699

0.383

0.390

0.957

0.959

9.799

9.292

28.252

23,507

9.678

9.035

It should be noted that, the M-M mode experimental results do not keep up with the U-M

one, in order words while our method improves the U-M, it offers no improvements for

M-M recognition. This can be due to the fact that the embedding optimization process is

made in a way that the model is trained to minimise the distance between masked and

unmasked (U-M) genuine pairs, thus aiming at making it greater than the distance be-

tween imposter pairs. However, this was performed because the main application scenario

commonly would contain unmasked references, such as automatic border control with an

unmasked passport-stored reference and a possible masked live probe.

Besides the quantitative evaluation of the proposed method, a more qualitative approach

was also studied. In order to infer the importance of each pixel for the overall embedding

produced we used the Smooth Grad-CAM++method. The output of this gradient-based

method was computed for each of the 512 features. Afterwards, all the map outputs were

summed and divided by 512, thus generating a final map with the average importance of
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Fig. 5: Output of the Smooth Grad-CAM++ computed for each of the 512 features of the feature

vector and normalized. Subfigures (a)-(f) computed from the cross-entropy model; (g)-(l) computed

from the triplet loss model; and (m)-(r) computed from the mean squared error and triplet loss model.

the pixels to the overall embedding. Figure 5 displays the outputs for three of the studied

methods, from the top to the bottom we have the CE, the TL and the TL+MSE methods.

While the first is already capable of ignoring the masks, it still constructs the embedding

of the unmasked images based on the chin area. Between the other two models, the main

difference seems to be that the model with the MSE uses a wider area of pixels to construct

the embedding, thus, capturing more information.

4 Conclusion and Future Work

In this work we addressed the challenge of masked face recognition motivated by the recent

Covid-19 pandemic causing that wearing masks is now essential to prevent the spread of

contagious diseases and has been currently forced in public places in many countries.

However, recent research has shown that the performance, and thus the trust in contactless

identity verification through face recognition, can be impacted by the presence of a mask.

The scenario addressed is the evaluation of the verification performance in face recognition

systems when verifying masked vs not-masked faces compared to verifying not-masked

faces to each other. It was already noted in the literature, that the effect of masks was

stronger on genuine pairs decisions in comparison to imposter pairs decisions. In this work,

we proposed a methodology that targeted that observation and aimed at improving the
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performance of MFR systems in the comparison of unmasked versus masked faces. The

results obtained by our proposed method showed consistent improvements in a detailed

step-wise ablation study. The ablation studies performed showed that our proposed triplet

loss modification improved the performance of the models in the addressed scenario.
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