Identifying Semantic Dimensions of (UML)
Sequence Diagrams

Jan Hendrik Hausmann, Jochen Malte Kiister, and Stefan Sauer

University of Paderborn
Department of Mathematics and Computer Science
D-33095 Paderborn, Germany
{corvette|jkuester|sauer } Quni-paderborn.de

Abstract: Although UML sequence diagrams are widely used in practical
software development, there is still a great demand for improvements. Their
use both within and outside the standard interpretation of the UML specifi-
cation is not seldom confused because different interpretations for sequence
diagrams exist without means to distinguish between them. Furthermore,
alternative sequence diagram notations with more syntactical features and
different semantics still have a big influence and are readily used (explic-
itly as well as implicitly) alongside UML’s sequence diagrams. Without
necessary clarification, the meaning of sequence diagrams remains vague.
Hence they are not suited for providing a common understanding of inter-
object behavior which is a prerequisite for their deployment within rigorous
software development processes. Additionally, model quality assurance by
consistency checking and validation is not well supported. In this paper,
we survey, structure, and classify syntactic and semantic alternatives that
appear in sequence diagrams in practice. We thereby identify scope of inter-
pretation, level of abstraction, composition and refinement, ordering, time,
and represented function as the essential semantic dimensions of sequence
diagrams. The spanned semantic space is suited as a basis for discussing and
proposing extensions of UML sequence diagrams to precisely determine the
semantic interpretation of modeled sequence diagrams.

Keywords: UML sequence diagrams, semantic space, semantic variation points,
semantic dimensions, extensions, syntactic transformations

1 Motivation

UML sequence diagrams [OMGO1] are one of the most widely used UML behav-
ioral diagrams in practical software engineering. Their very intuitive presentation
of message sequences along a time axis qualifies them as the diagram of choice for
depicting scenarios or protocols of behavior. According to the UML specification,
interaction diagrams (i.e., sequence and collaboration diagrams) are intended to
describe the realization of operations or classifiers (e.g. use cases). In general, their
use is not restricted to certain communities or methodologies, but is rather common
among the users of the UML. Although this widespread use would indicate that

142

the UML community has reached (at least partially) a common understanding of
what is expressed by a sequence diagram, this does indeed not seem to be the case.
When surveying scientific publications [0e99,Kn99,HHS01], development method-
ologies [BJR99,WD99] and software development documentations, numerous inter-
pretations of UML sequence diagrams can be found. Furthermore, the influence of
alternative notations (MSCs [ITU96], LSCs [DH98]) still seems to be very strong,
so that UML sequence diagrams face a heavy ambition to use the (seemingly) more
powerful or more adequate notations and concepts of these alternative diagrams
(see e.g. the responses of Verilog, Alcatel, Ericsson and Motorola to the UML 2.0
RFI [OMG99]). We do thus face a situation in which many people take a great
interest in sequence diagrams, but their scope and interpretation in the context of
the UML is rather unclear. But not only the practical usage of sequence diagrams
lacks precision, defined software development processes seem to ignore the problem
as well. Section 3 gives two interpretations of sequence diagrams, both drawn from
the Rational Unified Process [BJR99], that have strong semantic differences, but
are not clearly distinguished in the process description. This situation will lead
to disoriented software developers at best and severe misdevelopments at worst.
To improve this, a clear understanding of the semantic alternatives of sequence
diagrams has to be developed. It has to be examined which of these alternatives
are supported by UML sequence diagrams and how to state which interpretation
should underlie a given sequence diagram.

In this paper, it is our intention to identify the most common ways in which se-
quence diagrams (UML and other) are used. We will separate syntactic from se-
mantic issues and group semantic alternatives along orthogonal dimensions, thus
creating what we call a semantic space for sequence diagrams. Each point in this
space will represent a precise interpretation for a sequence diagram. By establish-
ing a mapping from syntactic elements of sequence diagrams to these points it will
become possible to provide each sequence diagram in a development process with
unambiguous semantics. Precise and unambiguous semantics of a diagram type is a
mandatory prerequisite for its use within rigorous software development processes.
Note that it is not an aim of the paper to assess or to compare different approaches
but rather to survey, sort, and structure the possibilities implied by the usage of
sequence diagrams. The organization of the paper is as follows: Section 2 introduces
the criteria and methodologies underlying the following sections. Sections 3 to 8
each investigate a certain dimension of the semantic concepts of sequence diagrams,
thereby creating the semantic space. The concluding sections 9 and 10 summarize
the results of the survey and introduce ideas for their usage.

2 Criteria Underlying the Survey

Syntax and semantic concepts of every language should be tightly coupled. Having
a semantic concept without a construct of the abstract syntax to express it is as
useless as having syntactic elements (in the concrete or abstract syntax) that do
not carry any meaning. The UML is no exception to this rule, but does rather intro-

143

duce a third problem of having multiple possible interpretations without syntactic
symbols to choose between them. What we will conduct in the following sections
is an investigation which notations and interpretations for sequence diagrams are
commonly used in practice or research. We analyze whether they introduce new
semantic ideas (as opposed to syntactic abbreviations) and which syntactic ele-
ments may be used to identify the semantics. The distinction between syntactic
abbreviations and semantic extensions can be made by examining if two different
sets of syntactic elements cover the same semantic concepts.

We will furthermore make a distinction between semantic choices that are mutually
exclusive (e.g. specification on the role or the instance level) and semantic choices
that are orthogonal (e.g. having time in a model and specification on the role level).
Ordering all mutually exclusive choices along a dimension, we get a semantic space
which contains all possible semantics of sequence diagrams. In terms of the UML,
the choices along one dimension represent a semantic variation point.

UML Extended Enhanced
Syntax Sequence <«== Sequence Sequence
Diagram Diagram Diagram

Semantics/
Interpretation

Sequence
Diagram
Modeling

{survey & analysis}

UML Sequence
Diagram Modeling
{UML specification}

Semantic
Concepts

— —» syntactic transformation
—» semantics mapping

Fig. 1: The semantic space of sequence diagrams

As we do not strictly focus our survey on UML sequence diagrams, the semantic
space produced will include several semantic concepts that are not supported by
the current UML specification. Thus, we have to identify the subspace containing
exactly the UML semantics of sequence diagrams. Figure 1 illustrates the basic
notions used in this paper: Based upon the standard syntax of the UML, different
semantics may be identified, some inside, some outside the scope of UML semantics.
Furthermore, syntactically extended sequence diagrams may either be semantically
equivalent to UML sequence diagrams (purely syntactic extensions) or introduce
new semantic ideas (syntactically and semantically enhanced sequence diagrams).

144

3 Scope: Specification or Scenario—Mandatory vs. Possible
Behavior

In order to gain an understanding of the possible circumstances of use for UML
sequence diagrams, it is necessary to first obtain a high-level view of their capa-
bilities. UML sequence diagrams—as well as their predecessors and alternatives
[DH98,ITU96]—may have different meanings in the scope of an overall model. On
the one hand they are employed to illustrate an especially interesting interaction
involving multiple objects. By using sequence diagrams this way it is possible to
capture the expected behavior as well as exceptional situations. We call this way
of usage scenarios. Semantically, a scenario is a requirement for the behavior of
the modeled system. The term scenario and the loose interpretation of this kind
of sequence diagrams are mainly used in the area of requirements engineering. If
no further restrictions are made on the context of the scenario, it only expresses
that the shown sequence of messages should be possible in the final, implemented
system. Additional messages and objects may be needed to produce the intended
behavior. Thus, in its weakest form, a scenario only requires that a system that is
built according to the model may produce a trace that contains the specified mes-
sages in the specified order. In this very loose interpretation, a sequence diagram
is of limited use as a modeler certainly expects more than a single possible trace
of the system to fulfill a modeled scenario.

Another way to use sequence diagrams is to exactly capture the intended behav-
ior of a system. In this interpretation, any system producing a trace that differs
from the specified sequence diagram would be inconsistent with the model. We
call this interpretation of sequence diagrams specification. As a sequence diagram
does usually not cover all possible interactions of a system, the specification-type
diagrams are commonly extended by a precondition that implies the occurrence
of the specified interaction. An example for this kind of usage is given in [BJR99]
where test cases are expressed in terms of sequence diagrams. It is also possible
to weaken the semantics of such a diagram by checking only projections of the
traces against the sequence diagram. If only certain parts of the sequence diagram
must have a meaning of being mandatory, while others are optional, projection
conditions on the specifying sequence diagram can be used to ensure a match of
the diagram and a program trace. By using projection conditions the strict se-
mantics of specification-type sequence diagrams can be loosened to enable more
abstract modeling. What is not covered by the semantic concepts of the standard
UML is the idea of anti-scenarios. These are used to specify bad examples, i.e.,
interactions that are considered invalid. Like specifications, anti-scenarios affect all
possible traces of an implemented system. Therefore, projection conditions can be
applied to anti-scenarios as well.

The dimension of scope is thus organized along the strictness of the diagram’s
interpretation. It starts with the loose semantics of the scenario, contains interpre-
tations that are strict under certain projection conditions and ends with the strict
semantics of the specification.

145

In the UML specification, scenarios and specifications are mentioned as possible
usages for a sequence diagram, but the semantic differences are never investigated
nor are explicit syntactic constructs given to distinguish between them. As a mod-
eling process typically moves from the more abstract and loosely coupled diagrams
towards a tightly coupled system model, it would be profitable to define a set of
sequence diagrams with differing levels of strictness. These are to be used in the
different stages of the modeling process.

4 Abstraction: Instance Level vs. Role Level

The UML specification explicitly introduces two different kinds of collaborations
(the construct underlying sequence diagrams and collaboration diagrams). On the
one hand, the participants of the collaboration may be actual objects. This can for
example be useful when employing sequence diagrams to visualize program traces
[MWO01], since roles of runtime objects are generally not derivable from the pro-
gram code. Also for program testing, it is often necessary to distinguish between
different particular instances (possibly conforming to the same role). On the other
hand, sequence diagrams may represent a communication pattern between roles.
A sequence diagram interpreted in this way defines an interaction between ob-
jects that fulfill certain criteria to play the specified roles. Thus it abstracts from
particular objects or allows to focus on distinguished properties that make up a
particular role in the given context. For instance, this way of usage is profitable
when employing design patterns to develop a software system. The prototypical
interaction of the pattern can be displayed in the form of a sequence diagram and
can be deployed at several locations throughout the software system only by ref-
erencing the pattern as a whole. Both of these semantic variants are exhaustively
explained in the UML specification. The syntactic distinction between the two types
of diagrams is made via the participants involved in the interaction. If these partic-
ipants are marked as objects (underlined name), a diagram on the instance level is
intended. If the participants do not have underlined names, we get a role-level di-
agram (specification-level in UML terminology, but we distinguish specification as
a point of the scope dimension; see previous section). If both kinds of participants
occur in the same diagram, this is considered incorrect. It may be argued that a
mixture of roles and instances may have certain benefits, but we are not aware of
an approach that actually promotes such a kind of sequence diagram. We do thus
believe that the dimension regarding the level of abstraction only consists of two
points, the instance and the role level.

5 Composition and Refinement

The notational elements of UML sequence diagrams are rather satisfying for the
modeling of simple scenarios and procedural message flow. But when it comes

146

to the modeling of more complex patterns or instances of interaction, it may be
advantageous to have additional language features to structure and modularize
sequence diagrams. These are control flow operators such as iteration or conditional
branching on the one hand, and composition (and decomposition) operators on the
other hand.

The UML specification introduces branching and iteration within sequence dia-
grams only as presentation options for messages and stimuli ([OMGO1], section
3.63.3). Regarding modularization, another presentation option ([OMGO1], section
3.61.3) allows a modeler to link sequence diagrams by dangling message arrows
leaving (entering) a sequence diagram. The counterpart sequence diagram where
the message continues (from which the message originates) is only textually ref-
erenced by name using a note. Semantically, the linked diagrams are parts of one
underlying interaction. These are of course rather restricted forms of structuring.

Branching is a purely syntactic extension of sequence diagrams that may be fac-
tored out into alternative interaction flows with equivalent semantics. In addition to
multiple diagrams depicting particular occurrences of the possible execution paths,
an interaction can thus alternatively be described using a single diagram includ-
ing conditional flow of communication. Iteration can be viewed as an extension of
sequence diagram on both the syntactic and the semantic level. If iterations only
represent finite loops, they are a purely syntactic extension, although a very con-
venient one in practice. If loops may be infinite, then iteration becomes a semantic
enhancement that can not be expressed by rolling out the iteration. We do not
further investigate this case here.

Composition can be viewed from different perspectives. The first alternative is
composition of behavior for single objects. This means that the reaction of objects
when receiving a message, i.e., the activations of objects (see also Sect. 8), may be
decomposed and refined into concurrent or sequential parts in order to show the
encapsulation of more complex behavior (e.g. used in [SE99]). The second alter-
native is refinement on the structural level, i.e., replacing an object on a sequence
diagram by a set of collaborating objects ([OMGO1], section 3.63.3). This auto-
matically implies the decomposition of behavior as well: Activations of the original
object are decomposed into activations of the collaborating objects and interactions
(i-e., messages) between these objects causing their activations.

For example, in the field of multimedia applications it is often emphasized that
the reaction to a media presentation invocation is a complex process of its own,
containing prefetching, preprocessing, presentation, and postprocessing activities.
Any of these activities can be subject to temporal constraints. This complex behav-
ior may be encapsulated by a single message (activation) on a sequence diagram
which may then be further refined if necessary in another step of a multimedia
development process (compare [HHS01]).

While the previous concepts represent local refinement, more general forms of com-
position may operate on the granularity of sequence diagrams. Sequence diagrams
may be sequentially or concurrently composed, or they may be refined by nest-

147

ing sequence diagrams representing complete patterns or instances of interaction
within higher-level sequence diagrams.

The concept of refinement implies the need for consistency between more abstract
and more detailed parts of the model. When we conceive refinement as the inte-
gration of more detailed parts of a model in a more abstract model part, then we
need to define what the interface between these two models has to look like.

Composition and refinement operators can be discussed on the syntactic and the
semantic level. They can be regarded as purely syntactic extensions that can be
flattened to simple existing syntax elements and, consequently, are mapped to tra-
ditional semantics. But they can also be seen as enhancements of sequence diagrams
on the semantic level. In the latter case, it needs to be assured that the operators
on both the syntactic and semantic levels and the mapping of syntactic elements
to the semantic concepts are commutative.

6 Ordering of Events

Although the ordering of messages in a sequence diagram reflects causal dependen-
cies, sequence diagrams depict the exchange of messages (as well as stimuli) in a
temporal order. One can distinguish between a partial and a total order. Another
distinction arises from the elements that are ordered. These can either be the mes-
sages themselves or send and receive actions of the messages. In the following, we
will denote such actions also as events as this is common in other sequence diagram
modeling notations.

Concerning UML sequence diagrams, the UML meta model states that there exists
a partial order of messages as follows: Messages are ordered by predecessor and
activator relationships. (While activator relations represent control-flow dependen-
cies that are explicitly causal, predecessor relations may be implicitly causal, e.g.
based on data dependencies, or just an arbitrary sequential ordering undertaken
by the modeler.) This partial order well reflects the possible order of messages in
collaboration diagrams modeled with sequence numbers. As in collaboration dia-
grams, sequence numbers can be used in sequence diagrams to explicitly express
(procedural) nesting, sequencing, and concurrent threads of communication in-
cluding synchronization. However, sequence numbers are often omitted in sequence
diagrams since the graphical position of message arrows (i.e., visual information)
shows relative sequences. Nevertheless, these alternative (syntactic) representations
must be consistent if they are used together, or the necessary ordering information
needs to be derived from the graphical diagram notation. This leads to the prob-
lem of consistently mapping graphical relations of message arrows to the activator
and predecessor meta model relations. If sequence diagrams increase in complexity
and concurrency, ambiguity of the graphical notation may arise. Especially regard-
ing predecessor relations within concurrent sequence diagrams, both the sequence
relative to which successive messages are ordered (i.e., the scope of the graphi-

148

cally implicit order) and possibly multiple concurrent preceding messages must be
identified to obtain unambiguous semantics.

Another problem is that the actions of sending a message and receiving a message,
that can be visually distinguished in concrete syntax if transmission time is not
negligible, are not distinguished on the level of abstract syntax. As a consequence,
overtaking of messages can only be indirectly expressed in UML interactions by
incorporating time constraints (see next section). However, this kind of relations is
part of the ordering dimension.

A possible form of partial ordering consists in having all events on a lifeline of an
object ordered. In addition, all events related via a send and receive actions of a
message are ordered. Thus, from the viewpoint of an event, it can only be assured
that all following events on the lifeline of the same object will occur at some later
point in time. Moreover, all receive events from outgoing messages of this event
will be received after their emission. But it can for example not be assured that the
reception of an outgoing message on some remote object occurs before the sender
object commences with the next operation (in case of asynchronous messages).

One justification for employing partial orders within a sequence diagram is to leave
aspects not relevant to the model unspecified. For example, if a sequence diagram
depicts the message exchange of concurrently executed objects, it might not be
necessary to determine a total order. It may be feasible to introduce even weaker
partial orderings by allowing certain events on the timeline of an object to switch
places, thereby enabling a concurrent modeling of a set of events, in which no
order is fixed. This would be in accordance with the idea of concurrent co-regions
as defined in MSCs [ITU96].

On the other hand, there are also applications of sequence diagrams where a total
order might be required. For example, when using sequence diagrams for deadlock
detection and for displaying the trace of a deadlocked program (see [MWO1)), it
might be necessary that exactly one path of message exchanges is fixed by totally
ordering all messages and their receive/send actions. Older versions of the UML
supported this idea by supplying a general timeline on which every event had
to map via its vertical position in the diagram and which thus produced a total
(temporal) ordering. In the current version of the UML, this can only be achieved
by applying additional constraints, but it is not expressible using graphical notation
(unless the graphical ordering is globally interpreted, i.e., predecessor relations are
globally derived in the scope of the overall diagram for all messages).

Such additional constraints can be used for incrementally transforming a partial
order into a total one. Unlike a total ordering based on some intuitive model of
total ordering (as arranging the events along a vertical timeline), the specification
of a set of constraints bears the risk of contradictions; consistency checking has
to take place. Regarding the proposal to express program traces in UML sequence
diagrams, the specification of a lot of constraints for a quite simple intuition appears
to be unpractical. It seems to be desirable to have the option to fix a total order
by specifying a corresponding semantics that interprets visual information. This
ensures that the ordering of two events is determined by their relative vertical

149

position in the diagram. This semantic alternative is currently not supported by
the UML semantics.

A comparison of these alternative approaches reveals the following insights: A se-
quence diagram is either partially ordered or it is totally ordered. Concerning the
partial order, different degrees of such an order are possible, one of them being
the one currently found in UML. A total order may either be produced by adding
enough constraints to a partial order or by interpreting the position of the ele-
ments in a fashion that leads to a total order. The dimension of ordering therefore
distinguishes partial ordering (that may be further refined) and total ordering.

7 Time Quantification

As a sequence diagram depicts the exchange of messages in a temporal order,
the question arises which model of time is underlying the sequence diagram and
which time concepts are supported. It is obvious that the time dimension is strongly
related to the ordering dimension discussed in Sect. 6. In their most primitive form,
the temporal relation between two events (as introduced in the previous section)
is not quantified. In this case, the time model is only qualitative and collapses to
the concept of (temporal) ordering. In contrast, the temporal relationships may
be quantified by deploying some time metric that relates events more precisely
in time. This is important for the specification of timing requirements as they
are mandatory in time-dependent applications such as real-time or multimedia
systems. Obviously, one can further distinguish between discrete and continuous
time models, but we will not focus on this difference here since their respective
implications for sequence diagrams must be discussed in detail first to make such
a distinction useful for sequence diagram modeling.

Another distinction is that of time models based on points in time or time intervals.
Since interval-based representations can be mapped to point-based representations,
this distinction does not have semantic implications that are important for our
discussion. Nevertheless, both alternatives should be intuitively supported on the
syntax level.

What can be further distinguished is the aspect of uniformity of the temporal
metric along a sequence diagram. This refers to the idea of conceptual mismatch
that is often discussed in the area of visual languages. It denotes the discrepancy
of the human intuition and perception and the notation of the visual language. For
example, when two activations are depicted one with a short, the other with a long
activation symbol, then the intuitive interpretation is that the activity represented
by these symbols have a temporal duration that coincides with the graphical length
of the symbols. This means that a user implicitly assumes a sequence diagram
to be a kind of temporal grid representation that has a uniform time base (or
unit), resulting in a linear time axis. Temporal relations can be derived from the
absolute and relative positions of events according to the specified time unit, i.e.,
the graphical symbols of sequence diagrams are interpreted as visually modeled

150

temporal requirements or constraints (this already holds for the ordering dimension
discussed in the previous section). Another semantic question in this context is
whether a notion of time exists before the first and after the last message of the
depicted interaction or if an object has a notion of (local) time when it is inactivated
(e.g. supported by the concept of an external timer).

In contrast to an implicit specification of time by a linear, metric time axis, it is
also possible to explicitly state temporal quantifications on sequence diagrams. This
alternative allows a modeler to scale models or to vary the unit of time measurement
and to model non-uniform progress of the time represented on a time axis relative
to a global, perceivable (real) time. By using explicit temporal notions, absolute
and relative timing information can be modeled and temporal requirements and
constraints can be stated more precisely. Especially since the graphic notation is
limited with respect to the expressiveness of temporal properties, textual constraint
notations may be used as a syntactic variant. For example, if a temporal instance is
defined relative to another temporal instance that can not be graphically identified
(because there are alternative events that are temporally identical in the graphical
notation, e.g. send and receive times for horizontally drawn message arrows or
multiple arrows originating from the same vertical level) then it is ambiguous to
which it refers, possibly causing semantic inconsistencies or update anomalies, e.g.
if the reference instance is shifted.

An (explicit) time constraint is a constraint formulated over the time of two or
more events. In UML, time constraints are Boolean expressions containing time
expressions. They can express absolute timing or timing relations relative to other
temporal instances. Time expressions are formulated using time functions on stimuli
and message names ([OMGO1], sections 3.60.3, 3.64). Constraints are defined in the
scope of the entire diagram. Sequence diagrams support time constraints by the use
of the OCL or other constraint languages, or graphically by construction marks for
time intervals as a presentation option. Additionally, approaches exist for verifying
the consistency of such timing constraints.

Sometimes a global time axis and local time axes for each object are distinguished.
These two different interpretations both have their justifications in systems that
are modeled with sequence diagrams. In concurrent systems, without applying ad-
ditional techniques, we face a system with local clocks. As a consequence, in the
first place we can only make assumptions on time occurring on one lifeline. On the
other hand, when modeling a one-processor system where a number of objects are
executed, it is straightforward to assume a global clock and thus to use a global
time axis. Also, in concurrent systems, global time might be established using spe-
cific synchronization techniques and therefore there might be usages of sequence
diagrams for concurrent systems with a global time axis.

The concept of global and local time axes refers to a combination of time and or-
dering (see Sect. 6) in the sense that events on a local time axis are only temporally
related to other events on the same time axis, while a global time axis implies that
all events are mapped to a common time axis. Therefore, although they are called
time axes, they represent rather the concept of ordering that may (or may not) be

151

quantified by time metrics. But even in the case of a global time axis, it is still
possible to either require all events to be ordered relative to it or to allow events
to be unspecified regarding their temporal ordering. This means that the global
ordering may be partial, alike events on the local time axis of a single object may
not all be ordered. With respect to timing, a time unit can be assigned as the time
base to a single or multiple time axes, or even to segments of axes.

Semantically, we distinguish temporal ordering, implicit and explicit timing as the
alternatives for the timing dimension in the following.

8 Function View: Interaction vs. Internal Activity

The traditional use of (UML) sequence diagrams focuses on the presentation of
interaction between objects by exchanging messages to invoke operations, send
signals, create or destroy instances. In this intention, the reception of a message
causes the presence of an activation symbol—denoting focus of control—on the
lifeline of the receiver object (at least for passive objects) to explicitly represent
activity, e.g. method execution. However, the reaction of the receiver object is
limited to succeeding messages sent by this object. Although an activation symbol
appears within the concrete syntax of UML sequence diagrams (i.e., as a diagram
element), there is no direct representative for it on the level of abstract syntax (i.e.,
a model element), given by the UML meta model.

Surprisingly, the UML semantics description (in the notation guide, [OMGO01], sec-
tion 3.62.1) gives an interpretation for this purely notational detail. As this seman-
tics is quite intuitive, many people use it. The consequence of this situation is that
all properties of an activation must formally refer to received or sent messages.
Hence any approach to use activations for more than an intuitive annotation must
fail.

According to the UML specification, an activation denotes the period of time during
which an object (directly or indirectly) performs an action. It comprises the control
relationship to its caller as well as initiation and completion times delimiting its
duration. In procedural flow of control, this timing information can be strictly
bound to incoming and outgoing, (possibly omitted) return messages. This might
not always be the case for concurrent flow of control.

The performed action may only be given as a textual label or be indicated by the
incoming message. For procedural flow of control, it denotes the interval during
which a procedure or a subordinate procedure is active. For concurrently active
objects with their own threads of control, an activation represents the performing
of an operation or a transition in a state machine ([OMGO1], section 3.62.2), inde-
pendent from operations of other objects. Thus activations support more behavioral
expressiveness than just exchanging messages between objects.

In addition to observable behavior in the sense of succeeding messages, sometimes
it may be intended to also specify some part of the internal reaction of the receiver
object, e.g. internal computations, actions or activities, in a sequence diagram.

152

The lack of a model element for activations becomes especially critical in the domain
of (distributed) real-time systems. In this domain, it may be necessary to specify
timing constraints on the duration of internal actions or computations, and not just
between different events of observable messages. Additionally, the duration of an
(asynchronously invoked) activation that does not terminate by sending or receiving
a message, cannot be semantically modeled since timing constraints can only be
formulated using timing functions on message and stimuli names (see Sect. 7).

An activation in a sequence diagram is supposed to show where the corresponding
object is active. The focus of control is passed to another object when making a
synchronous method call. There might be different types of activations depending
on the usage of sequence diagrams. In an analysis diagram, the activation may only
be needed for keeping track of the focus of control of the system. In a design diagram
for real-time embedded systems, the activation may be bound to a processor and
the activation will be given a concrete schedule on this processor (see [KS01]). In
such a context, an activation is also bound to a concrete execution sequence, either
modeled in a statechart diagram or as program code.

While changes in life state of an object (i.e., creation or destruction) are easily
expressible in sequence diagrams, it may sometimes be supportive to depict other
changes in object states as well without linking to an explicit state machine. As-
signing transitions (or states) to activation symbols may be a means to achieve this.
Since the distinction between live activations and periods where an activation is ac-
tually computing (see [OMGO01], section 3.63.3) cannot always be expressed based
on the corresponding messages, e.g. when the scheduling of processes is involved
the same concept can be applied to denote execution states of activations.

As another example, in the context of multimedia applications we have identified
the necessity not to simplify activations of objects in sequence diagrams to a black-
box reaction to some received message (see e.g. [SE99]). The invocation of the
presentation of a multimedia object may cause a sequence of internal actions for
the receiver or may itself be a complex pattern of interaction (compare Sect. 5).
Therefore, we like to have activations as individual modeling elements, in the meta
model that allow the modeler to define semantics for activations, and to specialize
them for particular application domains by stereotypes.

Although some of these requirements could be fulfilled by adequately combining
sequence and statechart diagrams, UML users often tend to minimize the number of
different partial models and thus the problems of consistency and view integration.

Hence in general it may be discussed whether sequence diagrams should depict
internal, non-observable behavior. Nevertheless, under certain circumstances, ac-
tivations can have properties of their own that are to be expressed in the model.
They may then also occur in constraint expressions. If activations are considered to
be meaningful, a consistent representation on all levels of the UML specification is
needed. Once activations are semantically present, they may be used to distinguish
different kinds of internal activity, possibly leading to a further refinement of this
dimension.

153

9 Defining the Semantic Space of Sequence Diagrams

After the previous discussion and the identification of modeling aspects and their
semantics, we will now set out to define the semantic space of sequence diagrams.
Figure 2 gives an overview of the dimensions identified in the preceding sections. For
rigorous modeling, it has to be stated whether the diagram should be interpreted
to

specify required, forbidden or mandatory behavior (scope),

contain instances or roles (abstraction),

display only interactions or internal actions as well (function view),

include a composition of activations, structure or whole diagrams (composition),
impose a partial order or a total order on its elements (ordering),

quantify the temporal order of its elements by an implicit or explicit time metric
(time quantification).

Function View

) o Scope
internal activity

Ordering specification

interaction specification under projection
total . .
anti -scenario

partial scenario

- nd
instance role

not quantified Abstraction

activation
implicit structure refinement

i diagram composition
explicit

Time Quantification ~ Composition

Fig. 2: Dimensions of the semantic space of sequence diagrams and their semantic alter-
natives

Note that these are just the general decisions to be undertaken. Most of the choices
require additional specifications to become really precise (e.g. imposing a total order
by the vertical position in the diagram).

As already stated in the previous sections, not all of these semantic concepts are
supported by the current UML semantics description and hence the subspace of
the supported concepts can be identified (see fig. 3). This reduces some of the
dimensions to mere points (see e.g. composition that is not supported in UML).
But still two dimensions remain, where a mismatch of UML’s syntax and semantics
can be detected. These are marked with grey shading.

Based upon this observation two discussions may ensue: On the one hand there
seem to be several semantic concepts for sequence diagrams that are currently not
supported by the UML. Nonetheless these concepts do not seem to be very exotic

154

or esoteric, as they are frequently used in practice. Thus an inclusion of these con-
cepts in the UML standard may be discussed. On the other hand, there are severe
insufficiencies in the relation of syntax and semantics of the UML. For example,
if an activation is given a meaning (see [OMGO1], section 3.62.1), but there is no
element of the abstract syntax to represent an activation, the meaning can never
be formalized and fixed. The concept of activations remains vague. Furthermore,
there are no syntactic means to distinguish between scenarios and specification dia-
grams. These missing elements may be supplied by defining stereotypes to indicate
the se

Function View

: o Scope
internal activity

Ordering specification

interaction

partial scenario

- @
instance role

not quantified Abstraction

explicit
Time Quantification ~ Composition

Fig. 3: Semantic space of sequence diagrams as currently supported by the UML

10 Conclusion and Future Work

In this paper, we have developed a semantic space for sequence diagrams. This
semantic space consists of dimensions where each dimension can be considered a
semantic variation point of sequence diagrams. Semantic variation points have been
identified by surveying sequence diagrams in general and UML sequence diagrams
in particular. The purpose of the survey was to find semantic modeling concepts
existent in sequence diagrams. We have shown that UML sequence diagrams cur-
rently have an ambiguous semantics with respect to several of the semantic vari-
ations identified. For each semantic variation point, we have identified the choices
of semantics and we have justified each choice by supplying examples for its usage
in sequence diagram modeling.

Concerning the precision of sequence diagrams, it is necessary that modelers are
able to indicate the semantics of sequence diagrams with respect to semantic vari-
ations. In order to do this, we propose a method consisting of two steps. First, one
has to define the semantic framework by introducing stereotypes for each of these
semantic variations. Second, when using a sequence diagram, the modeler has to

155

supply one stereotype for each dimension, thereby fixing the semantics. Each com-
bination of stereotypes defines a new semantics for sequence diagrams. For each
combination, specific well-formedness rules may be supplied. As a consequence, the
definition of stereotypes for each variation is an important task and should be done
with great care. Essentially, this task corresponds to defining a new specialized sub-
language. The use of stereotypes for fixing sequence diagram semantics can easily
be integrated in CASE tools such as Rational Rose or TogetherJ. Thus it can be
ensured that the semantics of each sequence diagram can be fixed by the modeler.

From a methodological point of view, it needs to be discussed whether all com-
binations of semantic variations fit together. Using OCL constraints, these invalid
combinations can be specified and excluded from the set of all valid sequence dia-
grams.

Within a rigorous development process, it is of importance that modeling activities
can be assigned with sequence diagrams with specific semantics. For example, it
may be possible to use scenarios in early stages (e.g. requirements engineering)
and then proceed to specifications in later stages (e.g. analysis and design). Using
our method to fix the semantics of sequence diagrams, a process model can now
precisely define the form of sequence diagram to be used, e.g. by restricting or
prescribing stereotypes for a development activity. Due to the fixed semantics,
precise consistency relations and checks [EHKO01] can be formulated that have to
hold between different (partial) models within a development process. Thus it can
be ensured that sequence diagrams are used in a way that no contradictions occur.

With respect to further evolving the UML, our discussion can provide input to the
definition of semantics and the integration of languages such as MSCs. Using our
semantic space, other dialects similar to sequence diagrams can be evaluated and
the space spanned in the semantic space can be determined. On the basis of this
result, it can then be discussed which semantic elements should be integrated into
the UML. We see our results as a basis for both ensuring the general applicability
of UML sequence diagrams and simultaneously improving its preciseness by the
explicit distinction of syntactic and semantic variations.

Acknowledgement

We want to thank our dear colleague Reiko Heckel for fruitful discussions and
valuable suggestions on the topics of this paper.

Bibliography

[BJR99] Booch, G.; Jacobson, I.; Rumbaugh, J.: Unified Software Development Pro-
cess. Addison-Wesley, Reading, MA, 1999.

[DH98] Damm, W.; Harel, D.: LSCs: Breathing Life into Message Sequence Charts.
Technical Report CS98-09, Weizmann Institute of Science, Faculty of Math-
ematics and Computer Science, January 1998.

156

[EHKO01]

[FR9]

[HHSO1]

[ITU96]
[Kn99)]

[KSO01]

[MWO1]

[OMG99]

[OMGO1]

[0e99]

[SE99]

[WD99]

Engels, G; Heckel, R.; Kiister, J.M.: Rule-Based Specifications of Behavioral
Consistency based on the UML Meta-Model. In Proceedings of the Fourth In-
ternational Conference on the Unified Modeling Language, Toronto, Canada,
2001. To appear.

France, R; Rumpe, B. Eds.: Proceedings of UML’99—Beyond the Standard,
volume 1723 of Lecture Notes in Computer Science. Springer-Verlag, 1999.
Hausmann, J.H.; Heckel, R.; Sauer, S.: Towards Dynamic Meta Modeling of
UML Extensions: An Extensible Semantics for UML Sequence Diagrams. In
Proceedings of the IEEE Symposia on Human-Centric Computing Languages
and Environments (HCC’01), Stresa, Italy, 2001. To appear.

ITU-TS: ITU-TS Recomendation Z.120: Message Sequence Chart 1996
(MSC96). Technical report, ITU-TS, Geneva, 1996.

Knapp, A.: A Formal Semantics of UML Interactions. In (France and Rumpe
Eds.) [FR99]; pp. 116-130.

Kiister, J.M.; Stroop, J.: Consistent Design of Embedded Real-Time Sytems
with UML-RT. In Proceedings of the 4th IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing (ISORC’2001), 2001.
Mehner, K.; Weymann, B..: Visualization and Debugging of Concurrent Java
Programs with UML. In (De Pauw, W; Reiss, S.P.; Stasko, J.T. Eds.): Pro-
ceedings of ICSE 2001 Workshop on Software Visualization, Toronto, 2001;
pp. 59-64.

Object Management Group: UML 2.0 RFIL. Document ad/99-08-08, 1999.
http://cgi.omg.org/techprocess/meetings/schedule/UML_2.0_RFILhtml
Object Management Group: UML Specification, version 1.4. Document ad/01-
02-13, May 2001. http://www.omg.org/

Oevergaard, G.: A Formal Approach to Collaborations in the Unified Model-
ing Language. In (France and Rumpe Eds.) [FR99]; pp. 99-115.

Sauer, S.; Engels, G.: Extending UML for Modeling of Multimedia Applica-
tions. In (Hirakawa, M.; Mussio, P. Eds.): Proceedings of the IEEE Sympo-
sium on Visual Languages (VL’99), Tokyo, Japan, 1999; pp. 80-87.

Wills, A.C.; D’Souza, D.F.: Objects, Components, and Frameworks with
UML: The Catalysis Approach. Addison-Wesley, Reading, MA, 1999.

157

