
On Transaction Design for UML Components

Sten Loecher
Dresden University of Technology
Sten.Loecher@inf.tu-dresden.de

Abstract: The transaction concept enables the efficient development of concurrent and
fault tolerant applications. Transaction services are therefore an essential part of mod-
ern component technologies, such as Enterprise JavaBeans, which are used to develop
server-side business applications. The container, which is the execution environment
of component-based applications, provides the services and uses corresponding con-
figuration information to apply them properly. The required transactional behavior can
be specified by using pre-defined configuration attributes. A result of this declarative
approach are separate workflows for designing business and transaction logic. In this
paper, we argue that existing methods for component-based development lack ade-
quate support for transaction design. We then describe a model-driven process, which
is directed towards an integration with the UML components method elaborated by
Cheesman and Daniels.

1 Introduction

Basic requirements to be fulfilled by business applications, such as online shopping sys-
tems or electronic banking applications, are efficient and reliable execution of user re-
quests. From a technical point of view, this implies concurrent execution of processes
and employment of fault tolerance mechanisms. Transactions address these issues by
providing the so-called ACID properties to an application, which stands for Atomicity,
Consistency, Isolation, and Durability. In other words, they guarantee atomic and iso-
lated execution of processes, facilitate consistent system states after process execution,
and durability of process results after commitment[GR93].

Since transactions simplify the development of concurrent and fault tolerant systems sig-
nificantly, they are an essential part in modern component technologies, such as Enterprise
JavaBeans (EJB)[DmYK01], which provide the technological foundation for efficiently
developing server-side business applications. A basic characteristic of these technologies
is the differentiation between the actual business application and the runtime environment,
the so-called container, which provides infrastructure services like transaction manage-
ment. This architecture enables separation of concerns with regard to application-specific
and application-independent logic in the development process. The integration of both as-
pects can be performed by either inserting control statements into the application-specific
code or by declaratively configuring the application using pre-defined configuration at-
tributes.

43

In our work, we focus on the declarative configuration of transaction management ser-
vices. We consider this approach more suitable for an efficient software development
process than the programmatic approach. This is due to the better separation of concerns,
which enables independent processing of the business specific and the transaction specific
aspect by domain experts and configuration of transaction management services based on
simple, yet precise, configuration mechanisms.

Efficient development of software systems does not only depend on the technological
foundation. An accompanying development method is a crucial factor for successfully
applying a technology. For the case of component technology, a corresponding method
must include both a process for developing component-based applications and a pro-
cess for handling the separated transactional aspect and its integration. However, current
methods either focus on component-based development[DW98, Se03, CD00] or aspect
orientation[Ki96, PC01].

For example, the development method proposed by Cheesman and Daniels in [CD00], to
which we refer to as UML components method in this paper, defines a process for devel-
oping and specifying component-based business applications. It provides a concise de-
scription of the workflows and related activities as well as concrete advice for performing
the individual tasks in the development process. However, design of transactional logic is
not considered sufficiently. It is just informally stated how transactions could be designed
and it is supposed that the actual configuration process takes place not until the assembling
of the application.

We think that the transaction design process and its integration with the design process
for component-based applications must be defined more precisely. This is required for
transactions to exploit their full capabilities with regard to concurrency and fault toler-
ance, which implies conscientious design. Therefore, we define a process for transaction
design in this paper. The result of transaction design are specifications describing transac-
tion demarcation, dependencies between transactions, and the behavior in case of failure.
The process is model-driven and therefore allows an early recognition of inappropriate
transaction design properties and design errors based on model analysis. The integration
with component-based development is discussed using the UML components method by
Cheesman and Daniels.

The presented process description is part of our work on elaborating the foundations for
model-driven transaction design[LH03, Lo04b, Lo04a]. We contribute to the definition
of a complete development process for component-based server-side business applications
and show how to integrate aspect-oriented and component-based development for the case
of transaction management services. Furthermore, the described process contributes to the
discussion about Model-Driven Architecture MDA[MM03] with respect to model-driven
configuration of infrastructure services, which is a prerequisite for a complete model-
driven development process.

After a discussion of some preliminary issues in the following section, the process for
transaction design is introduced in Sect. 3. The presented work is related to existing
literature in Sect. 4. We conclude in Sect. 5 with a summary of the paper.

44

2 Preliminaries

For a better understanding of Sect. 3, a number of preliminary issues are explained. First,
we explicitly state our assumptions about configuration mechanisms and container capa-
bilities with regard to transaction services. Since our process description is based on terms
defined by the Rational Unified Process (RUP)[Kr98], we introduce the essential basics
in Sect. 2.2. An overview of the UML components approach is provided in Sect. 2.3.
Finally, an example application is introduced in Section 2.4, which is used to illustrate the
transaction design process.

2.1 Configuration Mechanisms and Container Services

The transaction design process presented in this paper is elaborated from a software en-
gineering perspective, i.e., with the goal to provide efficient process support for software
engineers that develop application software. Therefore, we make two assumptions. First,
we assume that various specific types of transaction configuration models are available for
software engineers. Second, we require the container to support the nested or advanced
transaction models.

In [LH03] and [Lo04a] we have discussed the requirement to provide different tailored
transaction configuration mechanisms to software engineers. These mechanism are cap-
tured by different types of configuration models that support different viewpoints on the
system and the use of various transaction models during configuration. Different view-
points on the system to be developed result from the different workers that are involved in
the transaction design process and their required level of abstraction, as well as their scope
of knowledge with regard to single components, groups of components, or the whole sys-
tem. Section 3 provides examples of configuration models that we have developed in our
work.

Support for various transaction models is required to build efficiently executable applica-
tions. Since the flat transaction model has a number of restrictions with regard to func-
tionality and performance, advanced transaction models and techniques[El92] have been
developed and applied within database management systems. However, this situation is
not reflected in current component technologies like EJB[DmYK01]. We nevertheless as-
sume advanced transactional functionality to be a necessary prerequisite. This point of
view is supported by other authors as well[Pr02, SS03] and containers that support ad-
vanced transaction models have already been developed[Pr02].

2.2 Rational Unified Process

The Rational Unified Process[Kr98] is a method framework that is used to describe devel-
opment processes and to assign tasks and responsibilities within a development organiza-
tion. For this, it defines the development process in terms of activities and workflows that

45

define the rules for creation or update of artifacts by workers.

Workers define the behavior and responsibilities of individuals or teams for performing
tasks during the development process. Typical examples for workers are business designer,
architect, and implementer. Note that workers are not individuals but rather roles that
can be played by individuals. They are merely used by the project manager to assign
tasks to persons. Consequently, persons can be assigned multiple workers. Workers own
artifacts, which are pieces of information that are produced, modified, or used during the
development process, such as design models or actual source code. However, artifacts are
not documents. Rather, documents are generated from artifacts.

The actual behavior of workers during the development process is defined by activities,
which describe the essential tasks to create, use, or update artifacts. An example for an
activity is the definition of system interfaces and operations based on provided use cases
as explained in [CD00]. Finally, workflows are used to define sequences of activities that
produce results of observable value and to relate workers to activities. The specification
workflow in [CD00], for example, describes the activities necessary to produce compo-
nent specifications and application architectures, which serve as a basis for component
implementation and final application assembly.

2.3 UML Components

The UML components approach to software engineering has been elaborated by Chees-
mann and Daniels[CD00]. It is a very simple and practical oriented engineering process
for the development and specification of component-based applications. The authors focus
on the development of system and business services of N-tier distributed architectures, i.e.,
the server-side part of distributed business applications. These applications comprise some
front end for user interaction, a middle tier providing the system and business services, and
backends such as databases for managing application data. System services are application
specific and designed to implement individual business processes. Business services are of
a more general nature and thus can be used across multiple applications. In terms of EJB,
for example, system services may be implemented by session beans whereas business
services may be implemented by entity beans. The functionality is made accessible via
accordingly named system and business interfaces.

The development process underlying UML components is aligned with the Rational Uni-
fied Process (RUP)[Kr98]. There are basically six workflows in the development pro-
cess, namely requirements, specification, assembly, provisioning, test, and deployment.
Whereas the requirements, test, and deployment workflow relate directly to their coun-
terparts in the RUP, the specification, provisioning, and assembly workflow replace the
original analysis, design, and implementation workflows.

In [CD00], the authors focus mainly on the specification workflow, which defines activities
to develop component specifications and application architectures from business concept
models, use cases, and existing assets with respect to technical constraints. The provi-
sioning of actual components according to specifications and the eventual assembly with

46

Figure 1: Example application.

respect to the defined application architecture are defined rather sketchily.

The documentation of artifacts within the UML components method is based on Version
1.3 of the UML standard. Since the authors of the UML components method do not make
use of extensions and alternative notations as those provided by the standard, we think that
an upgrade to the upcoming UML 2.0 standard is not problematic but rather enriches the
method.

2.4 Working Example

Throughout the paper, we use an example application to illustrate the transaction design
workflows and activities. The application, which is part of a banking system, is illustrated
in Figure 1. Its purpose is to serve three use cases, which are the creation of account statis-
tics, the processing of money transfer requests for customers of the bank, and the auto-
mated booking of earned interests to bank accounts. Accordingly, the application provides
three components that implement the system services, namely AccountStatistics,
ATM, and InterestBatch. The latter two components make use of a
FundsTransfer component that manages the actual money transfer between accounts.
Accounts are represented by the Account component. The FundsTransfer compo-
nent optionally makes use of a ReceiptService component that issues a receipt after
successful money transfer processing via a connected printing device. The complete inter-
face definitions are omitted for reasons of brevity but will become obvious in the following
sections.

47

Figure 2: Transaction Design Workflows.

3 Transaction Design

This section introduces the transaction design process. We start in Sect. 3.1 with an
overall picture of the process by explaining the workflows and involved artifacts. The
integration of the transaction design workflows and the workflows defined by the UML
components method is discussed in Sect. 3.2. The individual activities that are performed
in the transaction design workflows are explained in Sect. 3.3. Finally Sect. 3.4 defines
the required workers and their relations to activities.

3.1 Workflows

The analysis, design, and implementation of transactional logic is captured by two work-
flows, namely transaction modeling and transaction service configuration. Whereas the
transaction modeling workflow realizes the analysis and design of transactional behavior,
the purpose of transaction service configuration is to implement a transaction design for a
specific environment respectively to configure the environment accordingly. By introduc-
ing separate workflows for transaction design, we stress the fact that transaction design is
an important aspect of application development that is to be handled by accordingly skilled
workers. Figure 2 depicts the workflows and related activities.

48

3.1.1 Transaction Modeling

Transaction modeling produces transaction specifications that match the required trans-
actional behavior of the application and provides optimization plans for different target
environments. For this, the essential activities to be performed are transaction identifica-
tion, intersection analysis, transaction specification, and transaction refinement. The first
three activities result in transaction specifications that match the required transactional be-
havior of the business application. Transaction refinement eventually elaborates plans to
optimize transaction specifications with regard to functional and non-functional require-
ments for individual environments based on corresponding deployment information.

The required artifacts for transaction modeling are use cases, component specifications,
application architectures, and deployment specifications:

� Use cases are used during requirements elicitation to capture the interaction struc-
ture between the client and the system and to document the tasks to be performed by
the system. They are also used to provide information about business transactions
required by the client[AM00] and therefore play an important role in determining
the overall transactional structure of the system.

� Component specifications provide the essential information that is required to ana-
lyze and to make decisions about transaction properties of individual components.
This includes structural information, such as provided and required interfaces, as
well as functional specifications that describe, for example, the causality between
provided and required operations and the temporal ordering of operation calls on
required interfaces.

� Application architectures define software systems in terms of computational com-
ponents and interactions among those components[SG96]. In other words, they
describe networks of interconnected components. Application architectures provide
the basis to analyze the propagation of transactions within a system and to reason
about resulting properties, such as deadlock freedom.

� Deployment specifications are used to define the execution architecture of systems
that represent the assignment of components to hardware devices or software exe-
cution environments and the connections between such devices and execution envi-
ronments. This information is required to refine transaction designs with regard to
recovery points and inner-transaction parallelism, which is discussed in more detail
in Sect. 3.3.

We like to emphasize that we do not require full formal specification of components, ar-
chitectures and deployment information but specifications sufficiently precise to analyze
and to decide about transaction design issues. This is justified by practical experience in
software engineering[Hu00]. The transaction modeling workflow results in transaction
specifications that describe transaction demarcation, dependencies between transactions,
and the behavior in case of failures independently of the technical platform.

49

It is also emphasized that in particular the transaction modeling workflow is not linear but
rather an iterative process. The transaction specification and refinement activity, for exam-
ple, are naturally performed alternately until a usable transaction specification is created.

3.1.2 Transaction Service Configuration

Transaction service configuration is based on transaction specifications and results in ac-
tual configurations for specific environments, such as deployment descriptors for EJB con-
tainers. Therefore, essential activities are the selection of context specific specifications
and the mapping of the corresponding platform independent transaction specification to
the target platform. For this, concrete deployment information as well as mapping rules
are required. The result of the configuration workflow are platform-specific configurations
for the application.

3.2 Integration with UML Components

The integration with the workflows of the UML components method is driven by the cre-
ation and update of artifacts and the implied chronological order of the workflows.

The specification workflow from [CD00] provides the artifacts that are required for trans-
action modeling, which is therefore performed subsequently to it. Also, an alternation
with the specification workflow is possible, because transaction modeling can result in
feedback about non-compatible compositions of components with regard to transaction
management services. For example, different component realizations can exhibit different
properties with regard to possible deadlock of the system and must be chosen accordingly.

The transaction service configuration workflow is supposed to be performed after the as-
sembling of the application and therefore after the corresponding workflow in [CD00],
because the configuration is performed on the actual application.

3.3 Activities

This section explains the individual activities that are necessary to perform the transaction
modeling and configuration workflow. The activities are introduced in the order they are
performed within the workflows. Each activity is first characterized and then explained on
the basis of the working example. Besides that, the essential input and output artifacts are
stated explicitly.

3.3.1 Transaction Identification

The first step to design the transactional logic of an application is to identify transaction
candidates. In other words, atomic processes have to be identified within the system that

50

is developed. We follow [Da78], who determines process atomicity by the amount of pro-
cessing that one wishes to consider as having identity. For this, [CD00] suggests using
operations of system interfaces to identify transaction candidates, i.e., each such operation
is considered a potential starting point of a transaction. If a transaction is actually required
is determined by execution properties of the operation, such as shared state access. We
make use of this idea but refine it to identify distinguished atomic processes within the
transaction candidates that require special transaction properties, such as special recovery
strategies or vitality properties with respect to the commitment policy of the enclosing
transaction. To find such distinguished atomic processes, the call graph of system opera-
tions is determined and investigated. To summarize, the transaction identification activity
is required to find transaction candidates and is broken into two steps, namely the identifi-
cation of atomic processes based on use cases and system operations and the identification
of distinguished sub processes that require special transaction properties, such as different
recovery strategies.
Input: use cases, application architecture, component specifications
Output: transaction candidates
Example: The example system provides three system interfaces. After an analysis of the
call dependencies within the business logic, based on the system operations
IStatistics::getAccountsTotal, ICustTrans::creditTransfer, and
IBatchCtrl::processInterest, the following transaction candidates are identi-
fied1:

<transaction-spec>
<transaction id=1>

<root>IStatistics::getAccountsTotal</root>
</transaction>
<transaction id=2>

<root>ICustTrans::creditTransfer</root>
<demarcation>
<sub-id>4</sub-id>
<vitality>non-vital</vitality>

</demarcation>
</transaction>
<transaction id=3>

<root>IBatchCtrl::processInterest</root>
<demarcation>
<sub-id>5</sub-id>
<vitality>non-vital</vitality>
<retry>retryable<retry>

</demarcation>
</transaction>
<transaction id=4>

<root>IReceiptService::printReceipt</root>
<recovery-type>norecovery</recovery-type>

</transaction>

1We use an XML notation to describe the determined atomic processes and their distinguished properties.
The underlying metamodel has been defined within our framework for transaction configuration models[Lo04a]
and could also be represented by an alternative notation, such as a graphical one.

51

<transaction id=5>
<root>ITransfer::transfer</root>
<recovery-type>backward</recovery-type>

</transaction>
</transaction-spec>

The model defines five transactions with consecutively numbered identifiers, which we
denote

� �
(n=1,...,5) in the following. Transactions

� �
,

� �
, and

� �
result from the sys-

tem operations, which are declared as root operations of the respective transaction. The
used type of model assumes implicit propagation of declared transactions. An analysis
of the call graph of operation ICustTrans::creditTransfer revealed a distin-
guished process for printing the money transfer receipt. Since a printed receipt cannot
be revoked once printed and therefore has the distinguished property of not being recov-
erable, the printing operation has been excluded from

� �
. For this,

� �
is demarcated at

the printReceipt operation, which is declared by a reference to
� �

that models the
printing transaction.

3.3.2 Transaction Intersection

One reason for using transactions is to enable a system to be used by multiple users con-
currently. As a result, transactions can interleave at runtime, i.e., transactions can share
components and application data. Transaction intersection information can help software
engineers in two ways. First, individual transaction properties can be adjusted based on
the analysis results to facilitate efficient concurrent processing of transactions by the sys-
tem. Isolation levels can be, for example, selected with respect to the required accuracy of
transaction results as discussed in [Ew01]. Second, transaction intersection analysis is re-
quired to select local configurations properly. This is required, because current component
technologies are based on single configuration attributes that are associated to provided
operations of components. If operations are executed within different scenarios that re-
quire different transactional properties, the configuration must be selected with respect to
all scenarios.
Input: transaction candidates
Output: transaction intersection information
Example: By analyzing the possible interleaving between the three transaction candidates,
an important point of intersection is identified between

� �
and

� �
. Both transactions use

the Account. However, wheras
� �

is required to run in full isolation since fund transfers
must preserve consistency of the involved data,

� �
can be allowed to operate on a lower

isolation level and therefore possibly inconsistent data since the result of the calculated
statistic is not crucially dependent on individual account data. Also,

� �
and

� �
interleave

at the transfer operation and the subsequently called operations. For this, the resulting
local transaction specification for the transfer operation must be a combination of the
specifications of

� �
and

� �
that takes the requirements of both transactions into account.

52

3.3.3 Transaction Specification

The result of transaction identification and transaction intersection analysis provide the
starting point for precisely specifying the required transactional behavior of an applica-
tion. The purpose of the transaction specification activity is to create explicit and precise
specifications that describe the required transactional behavior of an application. For this,
transaction candidates must be elaborated to complete specifications based on transaction
intersection analysis results. Therefore, an important difference between the results of
transaction identification and transaction specification regard the incorporation of transac-
tion interaction information. The properties of the resulting transaction specification may
vary with respect to the point of view about locality of the software engineer, the available
and desired transaction concepts respectively models, and the level of abstraction applied
during development[Lo04a].
Input: use cases, transaction candidates, transaction intersection information
Output: transaction specification
Example: To illustrate the transaction specification activity, we use another example of a
transaction specification based on XML that allows specification of transactional behav-
ior in terms of provided and required transactional properties of an individual component.
Such a specification allows, for example, to be replaced by another specification based on
local information exclusively.

<transaction-spec>
<method>

<method-name>transfer</methode-name>
</method>
<configuration>

<trigger>invocation</trigger>
<recoverability>backward</recoverability>
<demarcation>requires</demarcation>

</configuration>
<requires>

<method>
<method-name>*</methode-name>

</method>
<trigger>invocation</trigger>
<recoverability>backward</recoverability>
<demarcation>propagate</demarcation>

</requires>
</transaction-spec>

The example specifies that the transfer operation of component FundsTransfer
must be executed within a transaction. If the client of the operation does not call from
within a transaction, a transaction must be started upon invocation of transfer. Also,
the transaction is required to be propagated to the operations called within transfer.
This specification is derived from the transaction candidates

� �
and

� �
. Since

� �
requires

the propagation of the transaction context provided by the ATM component and
� �

requires
the begin of a new transaction upon invocation of transfer, the demarcation attribute
has been chosen to serve both usage scenarios.

53

3.3.4 Transaction Refinement

The transaction identification activity determines the system processes for which the ACID
properties must be guaranteed at runtime. Transaction specification provides precise and
explicit specifications of the corresponding transactional logic. At this point, the trans-
action modeling workflows could be considered completed. However, for the application
to be executed efficiently, it may be required to refine the elaborated specifications with
regard to intra-transaction structure and individual transaction properties. In particular,
transactions may be structured into subtransactions to increase intra-transaction concur-
rency and to provide more adequate recovery points. The refinement of transaction spec-
ifications is driven by information about the actual deployment context of an application.
Such information regards, for example, the distribution of components on different nodes
of a network, physical properties of the corresponding hardware, and supported transaction
models within the target container. If an application is to be deployed within different tar-
get environments, various refinements are possible with respect to the actual deployment
context. Basically, there are two strategies to provide multiple tailored transaction specifi-
cations. On the one hand, multiple deployment context specific transaction specifications
can be created during transaction refinement. The software engineer that configures the
application then has to choose the specification that matches the actual deployment context
properties most adequately. On the other hand, refinement plans can be provided that are
used by the responsible software engineer to derive a deployment context specific configu-
ration. For example, such a plan can provide the rule to generally propagate transactions at
individual operations of components or to preferably invoke them within subtransactions
if the actual container supports that feature. The actual strategy chosen depends on the
specific application or project properties, respectively.
Input: transaction specification, deployment information
Output: transaction specifications, refinement plans
Example: To demonstrate the refinement of transaction specifications, we will have a
closer look at transaction

� �
and in particular the subsystem comprising the

FundsTransfer and Account component. The specification elaborated in the pre-
ceding activity requires the subsequent execution of the debit and credit operation,
denoted by the wildcard, within one transaction. To increase intra-transaction concurrency
and therefore application performance, both operations can be executed within concur-
rently executed subtransactions. Of course, the component and container must support
such behavior. Furthermore, with the knowledge that the communication between the
FundsTransfer and Account components is realized over a communication link with
a specific failure rate, a retry policy can be specified, declaring that the debit and credit
operation must be recalled several times in case of failure to increases the success rate
according to the application requirements. A refined version of the specification for the
transfer operation may be:

<transaction-spec target=1>
<method>

<method-name>transfer</methode-name>
</method>
...

54

<requires>
<method>
<method-name>*</methode-name>

</method>
<trigger>invocation</trigger>
<recoverability>backward</recoverability>
<demarcation>sub</demarcation>
<no-retry>1<no-retry>

</requires>
</transaction-spec>

The example declares that the specification is meant to be used within a specific target
environment, denoted by target=1, which is a reference to a corresponding deployment
specification that we omit for reasons of brevity. It is specified that the called operations
are required to be invoked within subtransactions and should be retried one time in case of
failure.

3.3.5 Context Selection

The first activity of the transaction configuration workflow is the selection of a specific
transaction specification with regard to the actual deployment context of the application.
This selection is either a choice among multiple provided transaction specifications or
comprises the selection of a context specific refinement plan and the subsequent refine-
ment of the transaction specification in accordance to the plan.
Input: transaction specification(s), refinement plans, deployment information
Output: deployment context specific transaction specification
Example: Depending on the properties of the target container, either the original specifica-
tion using only flat transactions or the refined version using nested transactions can be used
for deployment. In the example, we choose to deploy the application to an EJB container
that supports only flat transactions and therefore select the unrefined specification.

3.3.6 Technology Mapping

In the preceding activities, we have used platform-independent specification models that
allow software engineers to efficiently handle the transaction modeling task. By platform
independence we mean the abstraction from container-specific configuration mechanisms
and notations. That also allows the use of the specifications across multiple platforms,
which increases reuse. To use transaction specifications on real platforms, they must be
mapped to platform-specific configuration mechanisms. For this mapping, which can be
automated by transformation tools, rules must be defined.
Input: transaction specification, mapping rules
Output: technology specific deployment descriptor
Example: To demonstrate the mapping of the selected transaction specification for the
FundsTransfer component, we choose as target platform a standard conform EJB con-
tainer. The EJB standard[DmYK01] defines six configuration attributes that can be used

55

for transaction service configuration. The mapping of the specification to EJB-specific
configuration attributes that are stored in XML deployment descriptors has the following
results:

� The ITransfer::transfer() operation is configured with the EJB attribute
Requires, since the result of the interpretation by the container is the specified
transactional behavior.

� The requirement of executing the required operations of the Account component
within the same transaction is mapped by configuring the corresponding operations
of the Account component with the attribute Mandatory, since the configuration
of required operations of components is not possible in EJB.

The mapping rules for this example are applied intuitively and are not specified explicitly
for reasons of brevity. Also, the example is rather simple. However, more complex map-
pings are possible. For example, more sophisticated container services can be used for
transactions, such as developed by Prochazka[Pr02].

3.4 Workers

The transaction modeling and configuration workflows comprise several activities that
must be performed by accordingly skilled workers. This section establishes a role model
that is used by the project manager to assign tasks to project members.

Generally, the defined activities for transaction modeling and configuration can be catego-
rized into identification, optimization, and configuration. Correspondingly, we introduce
three workers that handle the tasks, namely the transaction designer, the transaction opti-
mizer, and the transaction configurator:

Transaction Designer: The transaction designer is responsible for the identification of
transactions, intersection analysis, and transaction specification. He must have ba-
sic knowledge about the purpose of transactions and must be able to identify key
properties of atomic processes. The transaction designer develops an initial trans-
action specification based on uses cases, component specifications, and application
architectures.

Transaction Optimizer: The transaction optimizer is a specially skilled worker who has
particular knowledge about transaction optimization. Based on deployment plans
and initial transaction specifications he elaborates refined transaction specifications
that provide potentially more efficient transactional behavior.

Transaction Configurator: The transaction configurator is an engineer who is supposed
to implement a specification based on transaction specifications. Therefore, he is
not required to be specially skilled with respect to transaction design. He chooses
a transaction specification and maps it, with the help of tools, to the deployment
platform.

56

The workers discussed so far are only those workers directly involved in the transaction
modeling and configuration workflow. However, other workers that have responsibilities
with regard to transaction design are:

Component Provider: The main task of the component provider is to design and imple-
ment components and to deliver them to the application assembler, i.e., he has the
responsibility to provide adequate component specifications that enable safe trans-
action design.

Application Architect: The application architect designs the business application. Also
he adapts the application architecture based on technical constraints and feedback
from the transaction modeling process. For example, he replaces components so
that transactions can be applied more properly.

4 Related Work

The area of component-based development is still evolving. However, there exist several
established methods for component-based development, which heavily build on proven
concepts from object-oriented modelling methods[SDS01]. Prominent examples are the
Catalysis approach[DW98], the Select Perspective method[AF00], and the UML compo-
nents method[CD00]. Our work is strongly related to the UML components method, which
we have chosen as foundation for our work since it provides a very concise description of
the development process, is very accessible, and comprehensive.

The situation with aspect-oriented methods is somewhat different. Although aspect-orient-
ed programming (AOP) approaches have been proposed in the literature, their practical
applications are still unclear. Thus, there exist no established methods that describe the
aspect-oriented development process exhaustively[PC01]. However, several authors work
on process descriptions. For example, [PD03] analyzes the effects of integrating aspect-
oriented software engineering and the RUP. This work is of interest to us, since we use the
RUP as foundation for describing the concepts of the transaction design process.

Finally, our work aims at contributing to the discussion about Model-Driven Architecture
[MM03]. There are other projects that also work on model-driven middleware configura-
tion, such as CoSMIC[TG04]. However, they focus on different aspects than transaction
management services and often focus on the definition of tool chains to support the devel-
opment process instead of the development process itself.

5 Conclusion

In this paper, we argue that current methods for component-based development of server-
side business applications do not adequately support the design and configuration of trans-
action management services. We introduce a process for model-driven transaction design
that integrates with the UML components method elaborated by Cheesman and Daniels.

57

The process includes two workflows, namely transaction modeling and transaction con-
figuration. Transaction modeling deals with the design of the transactional logic for an
application model. Transaction configuration is concerned with the adequate implementa-
tion of a transaction design on a specific target platform. The design space, i.e., available
transaction models, recovery strategies, etc., is captured by different types of models used
by the developer.

The main contribution of this paper is the description of an integrated development process
for component-based applications that use transaction management infrastructure services
provided by the runtime environment based on declarative configuration. We also con-
tribute to the elaboration of a complete model-driven development process for component-
based development based on the UML components approach. We like to stress that we do
not intend to reinvent existing concepts from the database and transaction processing do-
main, but to bridge the existing gap to software engineering and the application of these
concepts within this domain.

So far we have not validated the design process based on complex applications and empir-
ical studies. However, validation of the presented process is supported by our previously
presented framework for transaction service configuration[LH03, Lo04b, Lo04a], which
provides the technical foundation for a model-driven transaction design process. A first
tool prototype to support the approach and to show the applicability of the proposed con-
cepts has already been implemented. We think that, with the position and the results pre-
sented in this paper, we provide a proper foundation for a discussion about model-driven
service configuration in the context of the Model-Driven Architecture.

References

[AF00] Allen, P. and Frost, S. (eds.): Component-Based Development for Enterprise Systems,
Applying the SELECT Perspective. Cambridge University Press/SIGS, Cambridge.
2000.

[AM00] Armour, F. and Miller, G.: Advanced Use Case Modeling: Software Systems. Addison-
Wesley. 2000.

[CD00] Cheesman, J. and Daniels, J.: UML Components: A Simple Process for Specifying
Component-Based Software. Addison-Wesley. 2000.

[Da78] Davies, Jr., C. T.: Data processing spheres of control. IBM Systems Journal. 17(2):179–
198. 1978.

[DmYK01] DeMichiel, L. G., mit Yalcinalp, L., and Krishnan, S. (eds.): Enterprise JavaBeans
Specification, Version 2.0. Sun Microsystems. 2001.

[DW98] D’Souza, D. F. and Wills, A. C.: Objects, Components, and Frameworks with UML:
The Catalysis Approach. Addison-Wesley Object Technology Series. Addison-Wesley
Publishing Company. 1998.

[El92] Elmagarmid, A. K. (eds.): Database Transaction Models for Advanced Applications.
Morgan Kaufmann Publishers. 1992.

58

[Ew01] Ewald, T.: Transactional COM+: Building Scalable Applications. Addison Wesley.
February 2001.

[GR93] Gray, J. and Reuter, A.: Transaction Processing: concepts and techniques. Morgan
Kaufmann Publishers, Inc. 1993.

[Hu00] Hussmann, H.: Towards Practical Support for Component-Based Software Develop-
ment Using Formal Specification. In: Modelling Software System Structures in a Fastly
Moving Scenario, Workshop Proceedings. Santa Margherita Ligure, Italy. June 2000.

[Ki96] Kiczales, G.: Aspect-oriented programming. ACM Comput. Surv. 28(4es):154. 1996.

[Kr98] Kruchten, P.: Rational Unified Process: an Introduction. Addison-Wesley. 1998.

[LH03] Loecher, S. and Hussmann, H.: Metamodelling of Transaction Configurations - Po-
sition Paper. In: Metamodelling for MDA, First International Workshop, York, UK.
University of York. November 2003.

[Lo04a] Loecher, S.: Model-Based Transaction Service Configuration for Component-Based
Development. In: 7th Workshop on Component-Based Software Engineering (CBSE7),
Edinburgh, Scottland, Workshop Proceedings, to be published in Lecture Notes in Com-
puter Science (LNCS) by Springer. March 2004.

[Lo04b] Loecher, S.: Modellbasierte Konfiguration von Transaktionsdiensten. In: Modellierung
2004, Gemeinsame Konferenz von zwoelf Fachgruppen der GI, Marburg, Germany,
Proceedings zur Tagung, LNI Volume P-45. Gesellschaft fuer Informatik. March 2004.

[MM03] Miller, J. and Mukerji, J. (eds.): MDA Guide Version 1.0. www.omg.org. May 2003.

[PC01] Pace, J. A. D. and Campo, M. R.: Analyzing the role of aspects in software design.
Commun. ACM. 44(10):66–73. 2001.

[PD03] Piveta, K. and Devegili, A. J.: Aspects in the rational unified process’ analysis and
design workflow. 2003.

[Pr02] Prochazka, M.: Advanced Transactions in Component-Based Software Architectures.
PhD thesis. Charles University, Faculty of Mathematics and Physics, Department of
Software Engineering, Prague. 2002.

[SDS01] Stojanovic, Z., Dahanayake, A., and Sol, H.: A Methodology Framework for
Component-Based System Development Support. In: 6th CaiSE/IFIP8.1 International
Workshop on Evaluation of Modeling Methods in Systems Analysis and Design EMM-
SAD01, Interlaken, Switzerland. June 2001.

[Se03] Select Business Solutions. Introducing Select Perspective - Delivering Component
Based Solutions. www.selectbs.com. 2003.

[SG96] Shaw, M. and Garlan, D.: Software Architecture: Perspectives on an Emerging Disci-
pline. Prentice-Hall. 1996.

[SS03] Silaghi, R. and Strohmeier, A.: Critical Evaluation of the EJB Transaction Model.
In: N.Guelfi, E.Astesiano, and G.Reggio (eds.), Scientific Engineering for Distributed
Java Applications. International Workshop, FIDJI 2002 Luxembourg-Kirchberg, Lux-
embourg, November 28-29, 2002. volume 2604 of LNCS. S. 15–28. Springer. 2003.

[TG04] Turkay, E. and Gokhale, A. Addressing the middle-
ware configuration challenges using model-based techniques.
http://www.dre.vanderbilt.edu/cosmic/acmse_mdm_ocml.pdf. April 2004.

59

