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Abstract: Today’s database management systems offer numerous tuning knobs that allow an adaptation
of database system behavior to specific customer needs, e. g., maximal throughput or minimal memory
consumption. Because manual tuning by database experts is complicated and expensive, academia
and industry devised tools that automate physical database tuning. The effectiveness of such advisor
tools strongly depends on the availability of accurate statistics about the executed database workload.
For advisor tools to run online, workload execution statistics must also be collected with low runtime
and memory overhead. However, to the best of our knowledge, no approach collects precise, compact,
and fast workload execution statistics for a physical database design tool. In this paper, we present
data structures that solve the problem of providing workload execution statistics with high precision,
low memory consumption, and low runtime overhead. In particular, we show how existing approaches
can be combined and for which advisor tools, new data structures need to be designed. We evaluate
our data structures in a prototype of a commercial database and show that they outperform previous
approaches using real-world and synthetic benchmarks.

1 Introduction

Modern database management systems (DBMS) offer a plethora of tuning knobs to adapt
the system behavior to specific customer needs [Ag04; Ra02]. As a result, finding an
optimal configuration that meets all requirements (e. g., with respect to throughput or
memory consumption) is usually a difficult task performed by experts. Since manual
database tuning by experts is expensive or even infeasible in managed database-as-a-service
(DBaaS) environments, academia and industry devised tools for automated physical database
design [Lu19]: (1) Index advisors improve query performance by creating (clustered)
indexes on columns frequently referenced in selective query predicates [Ag04; Ko20;
Na20]. (2) Data compression advisors reduce the table memory consumption, and thus,
the amount of data read and processed by physically compacting columns [Da19; Le10].
(3) Buffer pool size advisors lower the Total Cost of Ownership (TCO) by setting the buffer
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pool size to the working set size such that memory costs are minimized without impairing
performance [Da16; St06]. Finally, (4) table partitioning advisors enable partition pruning,
an effective method of reducing the amount of data to be read [ABI19; Ag04; Cu10; Ra02;
Se16]. Furthermore, separating frequently accessed (hot) and rarely accessed (cold) data
into disjoint partitions can increase the buffer pool hit ratio.

All aforementioned physical database design tools require an objective function, e. g., the
workload performance or memory footprint, while respecting given constraints, e. g., a
memory budget or maximum workload execution time. To do this, advisor tools consider a
set of potential new physical layout alternatives (e. g., by enumeration). For each alternative,
the advisor calculates a change in the objective function based on the data, the workload, and
the current physical layout. Accurate statistics about the executed workload are of particular
importance for the effectiveness of many advisors. For example, index advisors rely on
precise knowledge of query predicate selectivities, data compression advisors depend on
understanding how much data is sequentially read (e. g., scans) or randomly accessed (e. g.,
index join), buffer pool size advisors are based on page access statistics, whereas table
partitioning advisors build upon row- or value-level access statistics.

Obviously, there is a trade-off between the accuracy of workload execution statistics and
their runtime and memory overhead. Ideally, workload execution statistics are collected
with low overhead, such that advisor tools can be executed online to adapt to dynamically
changing workloads. However, in practice, workload execution statistics are either gathered
offline, e. g., by executing a representative sample of the workload on a separate node [Ag04;
Cu10; Ra02], or collected with low precision, e. g., by tracking access frequencies at page
granularity instead of per row and attribute, combined with sampling [FKN12; Hu19; No20].
As a result, to the best of our knowledge, no approach collects precise, compact, and fast
workload execution statistics for an advisor tool.

In this work, we formalize, analyze, and solve the problem of providing workload execution
statistics with high precision, low memory consumption, and low runtime overhead as input
to automated physical database design tools. Our contributions are as follows:

• we demonstrate and discuss four practical use cases of automated physical database
design advice that require workload execution statistics as input (Section 2);
• we define the workload execution statistics that need to be collected, and we subse-

quently formalize the problem (Section 3);
• we discuss and classify related work with respect to their precision, space efficiency,

and runtime overhead (Section 4);
• we present data structures for collecting precise, compact, and fast workload execution

statistics (Section 5); and
• we implement our data structures prototypically in SAP HANA and show for each

use case that workload execution statistics are provided with high precision and low
memory and runtime overhead using real-world and synthetic benchmarks (Section 6).
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2 Use Cases of Physical Database Design Advice

This section introduces four use cases of automated physical database design advice in
column stores that require workload execution statistics �(C0C about a workload , . For
now, it suffices to think of, as a set of SQL statements and �(C0C as statistics about,
collected during the execution of, .

We argue that automated physical database design tools can be categorized according to
their objective function, aiming either for maximum performance or minimum memory
footprint. Besides that, advisor tools need to fulfill given constraints, e. g., a memory budget
or a maximum workload execution time. In Section 2.1, we introduce an index advisor and
a data compression advisor that focus on in-memory performance, i. e., speeding up query
response times of given workloads. Section 2.2 presents a buffer pool size advisor and a
table partitioning advisor that optimize for memory footprint.

In the following, R denotes a set of = relations, and A('8) is the set of <8 attributes of
relation '8 ∈ R. Further, � (�8, 9 ) = {E8, 9 ,1, .., E8, 9 ,: , .., E8, 9 ,38, 9 } refers to the active domain
of attribute �8, 9 ∈ A('8) with E8, 9 ,1 < .. < E8, 9 ,: < .. < E8, 9 ,38, 9 , where 38, 9 is the number
of distinct values in �8, 9 . Finally, '8 [rid8] .�8, 9 ∈ � (�8, 9 ) is the value of the row with row
id rid8 ∈ [1, |'8 |] of attribute �8, 9 ∈ A('8), where |'8 | is the cardinality of '8 ∈ R.

2.1 Automated Physical Database Design for Maximizing Performance

Creating a (clustered) index on a column improves the performance if the workload includes
selective filter predicates. Traversing the index is then faster than performing a full column
scan. Besides that, we assume that a memory budget is given to create indexes only on those
attributes where they yield the largest benefit [Ag04; Ko20; Ra02].

Use Case 1 (Index Advisor) LetA8,B ∈ ℘(A('8)) be a set of attributes from the power set
of all attributes that is uniquely identified by B ∈ [1, |℘(A('8)) |], �8,B a single-/multi-column
index defined over A8,B, and I the set of all possible indexes over all relations. An index
advisor proposes an index configuration �� ⊆ I such that the estimated execution time Ê of
a workload, based on workload execution statistics �(C0C is minimized while the estimated
additional memory consumption M̂ of the indexes adheres to a given memory budget "�:

arg min
��⊆I

Ê (��,,, �(C0C) subject to M̂(��) ≤ "�.

Applying compression to a column may reduce its size, and thus, the amount of data
processed by sequential scans. In contrast, compression may deteriorate the time to
dereference individual row ids (e. g., during projections) since the decompression of
individual rows or blocks may incur multiple random memory accesses, depending on the
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compression technique. In practice, robust performance is often preferred, and a column
would only be compressed if the speed of critical SQL statements does not decline compared
to an uncompressed column [Da19; Le10]).

Use Case 2 (Data Compression Advisor) Let C8, 9 be a set of compressed and uncom-
pressed storage layouts for an attribute �8, 9 ∈ '8 , �D8, 9 ∈ C8, 9 be the uncompressed
storage layout, and ,crit ⊆ , be the subset of (business) critical SQL statements in the
workload, defined by the user. A data compression advisor proposes for each attribute
�8, 9 ∈ A('8) of each relation '8 ∈ R a physical storage layout �8, 9 ∈ C8, 9 such
that the estimated execution time Ê of a workload , based on workload execution
statistics �(C0C is minimized, while for each critical SQL statement @ ∈ ,crit, the esti-
mated execution time Ê does not exceed the estimated execution time Ê without compression:

arg min
∀'8 ∈R∀�8, 9 ∈A('8):�8, 9 ∈C8, 9

Ê ({�8, 9 | 1 ≤ 8 ≤ =, 1 ≤ 9 ≤ <8},,, �(C0C)
subject to ∀@ ∈ ,crit : Ê ({�8, 9 | 1 ≤ 8 ≤ =, 1 ≤ 9 ≤ <8}, @, �(C0C)

≤ Ê ({�D8, 9 | 1 ≤ 8 ≤ =, 1 ≤ 9 ≤ <8}, @, �(C0C).

2.2 Automated Physical Database Design for Memory Footprint Reduction

A buffer pool size advisor aims for a minimal buffer pool size such that a performance
constraint, e. g., a maximum workload execution time, is still fulfilled. To do this, a buffer
pool size advisor needs to identify the workload’s working set and configure the buffer pool
size so that all hot pages can still be held in DRAM.

Use Case 3 (Buffer Pool Size Advisor) A buffer pool size advisor proposes a minimal
buffer pool size � ∈ N such that the estimated execution time Ê of a workload, based on
workload execution statistics �(C0C does not violate a given threshold (!�:

arg min
�∈N

� subject to Ê (�,,, �(C0C) ≤ (!�.

A buffer pool is a simple and practical approach to retain data’s hot working set in DRAM.
Its most significant drawback is that mixing hot and cold data within the same page pollutes
the buffer cache and works against its effectiveness. Table range partitioning separates hot
and cold data into disjoint range partitions, and hence, improves the buffer pool hit ratio.

Use Case 4 (Table Partitioning Advisor) Let S8 be a set of range partitioning specifica-
tions for a relation '8 ∈ R. A table partitioning advisor proposes a buffer pool size � ∈ N,
and for each relation '8 ∈ R a range-partitioning (8 ∈ S8 such that the buffer pool size � is
minimized, while the estimated execution time Ê of workload, with workload execution
statistics �(C0C does not violate a maximum workload execution time (!�.

arg min
�∈N,'8 ∈R:(8 ∈S8

� subject to Ê ({(8 | 1 ≤ 8 ≤ =}, �,,, �(C0C) ≤ (!�.
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3 Problem Statement

We now formalize the problem of providing workload execution statistics �(C0C with high
precision, low memory consumption, and low runtime overhead as input to automated
physical database design tools. We start this section by defining �(C0C for a workload,
and show exemplary �(C0C after executing JCC-H Query 3 [BAK18].

Definition 1 (Workload Execution Statistics) We define a workload , as a multiset of
SQL statements7 and ) (@) as the physical execution plan of a SQL statement @ ∈ , . For a
workload, , we define workload execution statistics �(C0C:
F1 (Index Advisor): For each executed SQL statement @ ∈ , , �(C0C stores for each

selection f? ('8) on a base relation '8 ∈ R in the physical execution plan ) (@) that
consists of an index-SARGable predicate ?, a tuple ( |f? ('8) |, F (?)), where |f? ('8) |
is the output cardinality of f? ('8) and F (?) are the free attributes contained in ?.

F2 (Data Compression Advisor): For each executed SQL statement @ ∈ , , �(C0C stores
for each attribute �8, 9 ∈ '8 a pair (B8, 9 , A8, 9 ), where B8, 9 is the number of rows in �8, 9
that were sequentially accessed by @ (e. g., by a selection f? ('8) ∈ ) (@), where ?
contains �8, 9 ), and A8, 9 is the number of rows that were randomly accessed in �8, 9 by @
(e. g., by a projection Π�8, 9 ∈ ) (@)).

F3 (Buffer Pool Size Advisor): For each executed SQL statement @ ∈ , , �(C0C stores the
access frequency 5%8, 9,D to each page %8, 9 ,D ∈ P8, 9 , D ∈ [1, |P8, 9 |] (i. e., %8, 9 ,D stores for
a set of rows the values '8 [rid8] .�8, 9 ), where P8, 9 is the set of all pages of �8, 9 ∈ '8 .

F4 (Table Partitioning Advisor): For each executed SQL statement @ ∈ , , �(C0C stores
the access frequency 5E8, 9,: for each value E8, 9 ,: ∈ � (�8, 9 ), where 5E8, 9,: is the sum of
• the number of sequential reads of �8, 9 by @ such that ∃'8 [rid8] .�8, 9 = E8, 9 ,: , rid8 ∈
[1, |'8 |] that is part of the matching rows (e. g., by a selection f? (4) ∈ ) (@) where
? references �8, 9 and E8, 9 ,: satisfy ?)8, and

• the number of random reads of rows in �8, 9 by @ such that '8 [rid8] .�8, 9 =
E8, 9 ,: ,∀rid8 ∈ [1, |'8 |] (e. g., by a projection Π�8, 9 ∈ ) (@)).

|f? ('8) | F (?)
3,774,696 { O_ORDERDATE }
299,496 { C_MKTSEGMENT }

Tab. 1: Collected statistics �(C0C F1
for selections f? ('8) of JCC-H Q3.

We execute JCC-H Q3 [BAK18] to demonstrate �(C0C.
Figure 1 shows the optimal query execution plan,
identified by SAP HANAs query optimizer [MBL17].

Table 1 shows �(C0C F1 for an index advisor.
Since the most selective predicate is applied to
C_MKTSEGMENT, an index advisor might propose
an index on this attribute. Depending on the memory
budget, the advisor might also recommend an index on O_ORDERDATE. The selection on
L_SHIPDATE is not recorded since it is not performed on a base relation in the plan.

7 We consider multisets of SQL statements to account for realistic workloads with repeated queries.
8 We record only accesses to rows that match the predicate since we assume that a range partition generated for a

value E8, 9,: is pruned if the value does not satisfy the predicate.
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𝜎O_ORDERDATE<1993-05-29 𝜎C_MKTSEGMENT=‘FURNITURE’

⋈O_CUSTKEY=C_CUSTKEY
HJ

⋈O_ORDERKEY=L_ORDERKEY
INL

𝜎L_SHIPDATE>1993-05-29

ΓO_ORDERKEY

Sortrevenue desc, O_ORDERDATE, top 10

𝜋L_ORDERKEY, revenue, O_ORDERDATE, O_SHIPPRIORITY

sum(L_EXTENDEDPRICE * (1 – L_DISCOUNT)) as revenue

LINEITEM

CUSTOMERORDERS

Fig. 1: Optimal query execution plan for JCC-H
Q3, identified by SAP HANAs query optimizer.

�8, 9 B8, 9 A8, 9

C_CUSTKEY 0 299,496
C_MKTSEGMENT 1,500,000 0
O_ORDERKEY 0 1,015,311
O_CUSTKEY 0 3,774,696
O_ORDERDATE 15,000,000 377,432
O_SHIPPRIORITY 0 10
L_ORDERKEY 0 3,045,935
L_DISCOUNT 0 1,074,616
L_EXTENDEDPRICE 0 1,074,616
L_SHIPDATE 0 3,045,935

Tab. 2: Collected statistics �(C0C F2 about the
number of rows that were sequentially (B8, 9 ) and
randomly (A8, 9 ) read for each �8, 9 .

Table 2 shows �(C0C F2 for a data compression advisor. Since C_MKTSEGMENT exposes
only sequential but no random reads, a data compression advisor might suggest compression.
A data compression advisor might also propose compression of O_ORDERDATE since the
amount of data processed by sequential scans is reduced. However, random accesses would
slow down the time of dereferencing individual row ids due to compression. Therefore, the
data compression advisor needs to consider the trade-off between the gain of speeding up
sequential reads and the loss of slowing down random accesses.

Figure 2 shows for each 256KB page %8, 9 ,D (x-axis) of L_EXTENDEDPRICE the ac-
cess frequency 5%8, 9,D (y-axis), i. e., �(C0C F3. Due to dictionary compression in SAP
HANA [MBL17], pages contain either value-id array chunks (600 pages) or dictionary data
(40 pages). Since only ≈75% of the value-id array pages are accessed, a buffer pool size
advisor might propose reducing the buffer pool size such that all hot pages can still be held
in DRAM.

Figure 3 shows for each value E8, 9 ,: of the active domain of O_ORDERDATE (x-axis)
the access frequency 5E8, 9,: (y-axis), i. e., �(C0C F4. A table partitioning advisor might
propose a (hot) range-partition for data items with O_ORDERDATE between 1993-01-29
and 1993-05-28 since only those values are accessed frequently. In contrast, data items with
O_ORDERDATE larger than 1993-05-28 have an access frequency of 0 and a corresponding
(cold) table partition will be pruned by the predicate on O_ORDERDATE.

Problem 1 The problem we consider is to provide workload execution statistics �(C0C,
which are precise (i. e., as accurate as possible), compact (i. e., the memory footprint
compared to the data set size should be as small as possible), and fast (i. e., the runtime
overhead during workload execution should be as low as possible).
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Fig. 2: Collected statistics �(C0C F3 about the
access frequency 5%8, 9,D of each page %8, 9 ,D of
L_EXTENDEDPRICE for JCC-H Q3.
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Fig. 3: Collected statistics �(C0C F4 about
the access frequency 5E8, 9,: of each value
E8, 9 ,: ∈ � (O_ORDERDATE) for JCC-H Q3.

4 Related Work

This section discusses and classifies related approaches of collecting workload execution
statistics �(C0C with respect to the precision for use cases F1 to F4, space efficiency, and
runtime overhead. The considered approaches are summarized in Table 3.

The first type of workload execution statistics are row-level data access counters. Project
Siberia [LLS13] analyzes log samples to estimate the access frequency of rows, and SAP
ASE [Gu18] caches runtime access patterns of rows. In row stores, this approach yields
precise access frequencies of pages (F3). To also track access frequencies of active domain
values precisely (F4), separate counters per domain value and attribute are needed, which
results in high memory consumption and runtime overhead. Furthermore, with row-level
counting, it is unable to deduce the output cardinality of selections (F1). Finally, the total
number of rows that were accessed sequentially or randomly can only be tracked if separate
counters of each access type exist (F2).

Another class of workload execution statistics are graphs. In Schism [Cu10] and Clay [Se16],
each row is represented as a node, and edges connect rows if accessed within the same
transaction. The weight of an edge denotes the number of transactions that accessed both
rows. Graphs are as precise as row-level data access counters. However, the memory and
runtime overhead depends on the workload. If transactions touch only a few rows, an
adjacency list results in low memory and runtime overhead. In contrast, if transactions touch
many rows, both an adjacency list or a matrix result in high memory and runtime overhead.

To further improve the memory and runtime overhead, block-level data access counters
were proposed. For example, X-Engine [Hu19] leverages access frequencies at extent level
collected during workload execution, and HyPer [FKN12] uses for each virtual memory
page flags of the CPU’s MMU to identify cold pages. Block-level data access counters
provide precise access frequencies of pages (F3). The tracking accuracy for accesses to the
active domain (F4) depends heavily on the workload and falls short in the presence of heavy
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Approach for collecting workload execution statistics Precise �(C0C Compact Fast

F1 F2 F3 F4

Row-level data access counters [Gu18; LLS13] 7 3 3 3 7 7

Graph representation [Cu10; Se16] 7 3 3 3

Block-level data access counters [FKN12; Hu19] 7 3 3 3

SQL statements + What-if API [Ag04; Ra02] 3 7

Memory access tracing [No20] 7 7 3 3 7 7

Our approach 3 3 3 3 3 3

Tab. 3: Comparison between different approaches for collecting workload execution statistics �(C0C
as input to advisor tools with respect to their precision, space efficiency, and runtime overhead.

hitters. The total number of rows sequentially or randomly accessed is available if separate
counters for each access type are maintained (F2). The access granularity cannot be tracked
as row-level access counters (F1). While block-level access counters are compact, their
runtime overhead depends on the workload. In the worst-case, all counters of all blocks
accessed need to be incremented (e. g., during a full column scan).

A traditional approach of collecting workload execution statistics is to feed the workload’s
SQL statements into offline physical design advisors, which rely on the query optimizer’s
what-if API [Ag04; Ra02]. While the collected SQL statements are compact, the most
significant drawback is that physical accesses to the data are not tracked. Thus, the approach
fails to provide accurate statistics as it relies on estimates.

Instead of collecting workload execution statistics inside the database, memory access
tracing [No20] uses the PEBS mechanism of Intel processors to trace memory accesses,
which are mapped to the data to determine precise access frequencies of pages (F3) and
values of the active attribute domain (F4). While only single memory accesses are traced,
the access granularity (F1) and access type (F2) cannot be identified. Since memory traces
are logged and analyzed offline, the memory and runtime overhead is high.

In sum, no approach collects precise, compact, and fast workload execution statistics �(C0C
for a physical database design tool. In the next section, we show how existing approaches
can be combined and for which advisor tools new data structures need to be designed.

5 Data Access Counters

We begin describing our approach by explaining how precise, compact, and fast workload
execution statistics for an index advisor can be collected (Section 5.1). Afterwards, we
present data structures for a data compression advisor (Section 5.2), a buffer pool size
advisor (Section 5.3), and a table partitioning advisor (Section 5.4).
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5.1 Use Case 1: Index Advisor

The most popular approaches of providing workload execution statistics for index advisors
(�(C0C F1) consider SQL statements as input to the optimizer’s what-if API. As a result,
those approaches are limited in their performance due to what-if analysis and rely on
the availability of precise cardinality estimates. To address these limitations, we track the
actual output cardinalities of selections f? ('8) at query execution time. Since tracking
the exact output cardinalities |f? ('8) | of all selections would consume too much memory,
we introduce a threshold parameter q ∈ (0, 1] to capture only selections with an output
cardinality less than q · |'8 | since only selective predicates benefit from indexes [KAI17].
To reduce the memory overhead further, we group the actual output cardinalities into
intervals [1A , 1A+1), 1 ∈ R>0, 0 ≤ A ≤ d;>61 (q · |'8 |)e and instead only count the number
of selections per interval. The estimated output cardinality for selections that are recorded to
the interval [1A , 1A+1) is

√
1A · 1A+1. Hence, we determine an error (i. e., the ratio between

the actual and recorded output cardinality) of
√
1 for arbitrary complex predicates. In our

experiments in Section 6, we set the interval base parameter 1 to 2, such that the actual and
recorded output cardinalities differ at most by a factor of

√
2.

Since an index advisor may recommend multi-column indexes, we would need one set
of intervals (i. e., [1A , 1A+1), 1 ∈ R>0, 0 ≤ A ≤ d;>61 (q · |'8 |)e) per combination of free
attributes per relation, i. e., in total, 2<8 − 1 (= |℘(A('8)) \ {}|) set of intervals. As a result,
the memory consumption of our approach using 32-bit counters for a relation '8 with
<8 attributes would be (d;>61 (q · |'8 |)e + 1) · (2<8 − 1) · 4 bytes. To meet the memory
requirements, we propose lazy counters, only created if (1) the corresponding combination
of free attributes actually occurred in selection predicates and (2) the selectivity of this
attribute combination is below q. We argue that this number of attribute combinations
is significantly smaller than the number of all attribute combinations. For example, for
LINEITEM with scale factor 10 (i. e., 16 attributes and 60,000,000 rows) and 1 = 2, counters
for all combinations of free attributes constitute 0.32% of the data set size of LINEITEM in
SAP HANA (1.90 GB), while our lazy counters constitute only 0.02% of the data set size.

Section 6 demonstrates that our approach has a high precision as well as a low memory and
runtime overhead. We summarize the presented data structure in the following:

Access Counter 1 (Index Advisor)
Physical Accesses: We consider each selection f? ('8) consisting of an index-SARGable
predicate, and its actual output cardinality |f? ('8) |, collected during query execution.
Lazy Counters: For a base 1 ∈ R and a set of attributes A8,B ∈ ℘(A('8)), we create and
maintain integer counters - 83G8,B,0, . . . , -

83G
8,B,A . . . , -

83G
8,B, d;>61 (q · |'8 |) e if there exists a selection

f? ('8) ∈ ) (@), @ ∈ , such that A8,B ⊆ F (?) and |f? ('8) | < q · |'8 |.
Interval Counting: A counter - 83G8,B,A is incremented by 1 for a selection f? ('8) ∈ ) (@), @ ∈
, if |f? ('8) | > 0 and A = d;>61 ( |f? ('8) |)e and |f? ('8) | < q · |'8 |. For |f? ('8) | = 0,
- 83G8,B,0 is incremented by 1.
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{O_ORDERDATE, O_SHIPPRIORITY} = A1,2

|fO_ORDERDATE>1992-05-22 (ORDERS) | = 14, 673, 977

|fO_ORDERDATE=1996-05-28 (ORDERS) | = 1, 142, 442

|fO_ORDERDATE=1992-05-28 (ORDERS) | = 1, 142, 946
|fO_ORDERPRIORITY=’1-URGENT’∧

O_ORDERDATE=1997-10-05 (ORDERS) | = 298

|fO_ORDERDATE=1997-10-05 (ORDERS) | = 1428

7

Fig. 4: Illustration of our approach for collecting workload execution statistics for an index advisor.

Figure 4 shows for five selections on ORDERS with scale factor 10 (15, 000, 000 rows)
how the access counters with base 1 = 2 are updated. We show the access counters for
selection predicates containing attribute O_ORDERDATE (left), and selection predicates
containing O_ORDERDATE and O_ORDERPRIORITY (right). The first selection on
O_ORDERDATE matches 14, 673, 977 rows, and thus no counter is updated for q = 0.1.
The counter - 83G1,1,21 is updated twice, by the second (d;>62 (1, 142, 442)e = 21) and the third
selection (d;>62 (1, 142, 946)e = 21). The fourth selection updates the counter - 83G1,2,9 for
the attribute set of O_ORDERDATE and O_SHIPPRIORITY as 298 rows match, and two
attributes are referenced in the predicate.

As future work, we plan to collect for a join 4 ⊲⊳�8̂, 9̂=�8, 9 '8 , where 4 is an expression (e. g.,
f? ('8̂)), the cardinality of expression 4 (i. e., |4 |) for attribute �8, 9 of relation '8 . The
reason is that an index on an attribute �8, 9 may improve the performance if |4 | is small.
Traversing the index on �8, 9 is then faster than building a hash table on �8, 9 .

5.2 Use Case 2: Data Compression Advisor

In Section 4, we have shown that existing approaches of collecting workload execution
statistics for data compression advisors (�(C0C F2) do not consider the type of access (i. e.,
sequential vs. random access). We propose to count both the number of rows accessed
sequentially and randomly by the workload. Maintaining just two counters per attribute
fulfills the space efficiency requirement. Section 6 shows that our approach also achieves a
low runtime overhead. Note that besides workload execution statistics, characteristics of
the data (e. g., number of distinct values, value distribution, or whether the data is sorted)
are also needed to propose an optimal compression layout (Use Case 2) [Da19]. Moreover,
these statistics are typically available in databases today with sufficient quality. However,
workload execution statistics are essential in estimating the performance benefit, particularly
for (business) critical queries. We summarize the presented access counter in the following:
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Access Counter 2 (Data Compression Advisor)
Physical Accesses: We consider the physical data accesses during execution of workload, .
Access Type: For each attribute �8, 9 ∈ '8 , we create and maintain an integer counter -B8, 9 ,
which tracks the number of rows sequentially read, and an integer counter -A8, 9 , which tracks
the number of rows randomly accessed.

𝜎O_ORDERDATE<1993-05-29 𝜎C_MKTSEGMENT=‘FURNITURE’

⋈O_CUSTKEY=C_CUSTKEY
HJ

⋈O_ORDERKEY=L_ORDERKEY
INL

𝜎L_SHIPDATE>1993-05-29

ΓO_ORDERKEY

Sortrevenue desc, O_ORDERDATE, top 10

𝜋L_ORDERKEY, revenue, O_ORDERDATE, O_SHIPPRIORITY

sum(L_EXTENDEDPRICE * (1 – L_DISCOUNT)) as revenue

LINEITEM

CUSTOMERORDERS

C_CUSTKEY

C_MKTSEGMENT

O_ORDERKEY

O_CUSTKEY

O_ORDERDATE

O_SHIPPRIORITY

L_ORDERKEY

L_DISCOUNT

L_EXTENDEDPRICE

L_SHIPDATE

0
1, 500, 000

0

0
15, 000, 000

0

0

0

0

0

299, 496

0
1, 015, 311

3, 774, 696

377, 432

10
3, 045, 935

1, 074, 616

1, 074, 616

3, 045, 935

�8, 9 -B8, 9 -A8, 9

Fig. 5: Illustration of the data structure for collecting �(C0C F2 for a data compression advisor.

Figure 5 shows for JCC-H Q3 how -B8, 9 and -A8, 9 are updated. Note that these statistics
are actual values from the execution with SAP HANA. Data accesses by an operator in
the plan and updating the corresponding counter are highlighted using a unique color.
The selection on O_ORDERDATE causes 15, 000, 000 sequential row accesses, while
the join between ORDERS and CUSTOMER causes 299, 496 random row accesses to
C_CUSTKEY and 3, 774, 696 random accesses to O_CUSTKEY (a customer has on average
10 orders). The projection on O_SHIPPRIORITY generates 10 random row accesses due to
the top-10 query.

5.3 Use Case 3: Buffer Pool Size Advisor

Block-level data access counters provide precise access frequencies of pages if the block size
equals the page size. However, keeping track of accesses that span multiple pages requires
updating |P8, 9 |-many block counters. Instead of updating for each query the frequencies
of all touched pages individually, we propose to update only the respective start and end
page counters: If a query accesses the pages [%8, 9 ,E , %8, 9 ,F ), %8, 9 ,E , %8, 9 ,F ∈ P8, 9 , the
corresponding counter to page %8, 9 ,E is incremented, while the counter of page %8, 9 ,F+1 is
decremented since %8, 9 ,F is the last accessed page. This enables counter updates in constant
time. Since we decrement the counter of the following page, in total |P8, 9 + 1| counters
are needed to be able to decrement a counter for accesses to the last page %8, 9 , |P8, 9+| . After
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statistics collection, the final page access frequencies are derived by calculating the prefix
sum of the counters up to the target page. We argue that the statistics are considerably
more often updated than read (e. g., after a sampling phase) and that we thus meet the
runtime overhead requirements. Furthermore, the memory overhead is low because only a
single 64-bit signed integer counter per page is stored. For example, in SAP HANA [Sh19]
the memory footprint varies between 0.2% (64 bit/4 KB) and 0.00005% (64 bit/16 MB),
depending on the page size. We present the data structure below:

Access Counter 3 (Buffer Pool Size Advisor)
Physical Accesses: We consider the physical data accesses by the workload, .
Start/End Block Counting: For each attribute �8, 9 ∈ '8 , we create and maintain inte-
ger counters -%8, 9,1, . . . , -

%
8, 9,E , . . . , -

%
8, 9, ( |P8, 9+1 |) . For physical accesses to pages in the

range [%8, 9 ,E , %8, 9 ,F [, %8, 9 ,E , %8, 9 ,F ∈ P8, 9 , counter -%8, 9,E is incremented by 1, and
counter -%

8, 9, (F+1) is decremented by 1. The access frequency 5%8, 9,D for page %8, 9 ,D is
defined as 5%8, 9,D =

∑D
E=1 -

%
8, 9,E .

%8, 9 ,1 %8, 9 ,2 %8, 9 ,3 %8, 9 ,4 . . . %8, 9 , |P8, 9 |Pages %8, 9 ,D of O_ORDERDATE

+1 +1 −1 0 . . . +1 −2Access Counters -%8, 9,D
1 2 1 1 . . . 2Access Frequency 5%8, 9,D

ΠO_ORDERDATE (e)
+1 −1 +1 −1

fO_ORDERDATE>′1992−01−01′ (Orders) . . .
+1 −1

W
or

kl
oa

d
,
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s
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Fig. 6: Illustration of the data structure for collection �(C0C F3 for a buffer pool size advisor.

Figure 6 shows for a selection and a projection on O_ORDERDATE how the page accesses
are counted. The selection changes counter -%8, 9,1 by +1 and counter -%

8, 9, ( |P8, 9+1 |) by −1,
while the projection increments only the counter of the accessed page by +1 and decrements
the counter of the following page by −1. Note that for accesses to the last page, the counter
-%
8, 9, ( |P8, 9+1 |) is decremented. We compute the prefix sum of the counters up to the target

page to obtain the access frequencies of individual pages, e. g., page %8, 9 ,2 has an access
frequency of 2 (= -%8, 9,1 + -%8, 9,2).

5.4 Use Case 4: Table Partitioning Advisor

A naïve approach of tracking the access frequencies of values in the active attribute domain
(�(C0C F4) is to group values into value ranges and to increment a value range counter by
one whenever a value or sub-range of the value range is read. With the counter representing
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the access frequency of each value in the range, frequencies are overestimated substantially.
Instead, we propose to count the number of actually accessed values. A single random read
would increase the counter by one, whereas a full column scan would increment the counter
by the number of values in the range (i. e., the block size). The access frequency of a value
is then obtained by dividing the value range counter by the block size. The calculated access
frequencies are nevertheless prone to skewed access patterns. More specifically, access
frequencies of heavy hitters are underestimated, whereas frequencies of rarely accessed
values (i. e., the long tail) are overestimated.

To improve precision in such situations, we propose to employ the space-saving algorithm
and its stream-summary data structure [MAE05] in order to monitor the top-ℎ most
frequently accessed values of a value range. However, depending on ℎ, not all values stored
in the stream-summary are true heavy hitters. To identify actual heavy hitters from the values
stored in the stream-summary, we additionally consider each values’ value range counter.
Since the stream-summary substantially overestimates access frequencies of rarely accessed
values, we argue that the estimated frequency of a heavy hitter must not be significantly
larger than its corresponding value range counter. Since the stream-summary also tends
to overestimate heavy hitters, we tolerate a slightly larger estimated access frequency.
Therefore, we introduce a tolerance parameter _, such that the estimated access frequency
of the stream-summary is only considered if its estimate is at most _-times larger than its
corresponding value range counter.

To calculate the access frequency of a value, we first check if the corresponding value range
contains heavy hitters. If this is the case, we subtract their accumulated access count from
the value range counter. The estimated access frequency of values from the long tail is
given by the remaining block count divided by the number of values from the long tail in
the value range. The estimated access frequency of heavy hitters is simply taken from the
stream-summary.

Our approach can be tuned to fulfill the space requirement by configuring the block size
and the number of heavy hitter candidates tracked by the stream-summary data structure.
We show in Section 6 that our approach also achieves high precision while having a low
runtime overhead. The presented data structure is summarized in the following:

Access Counter 4 (Table Partitioning Advisor)
Block Counting: For each attribute �8, 9 ∈ '8 , we create counters - E0;8, 9 ,0, . . . , -

E0;
8, 9 ,1 , . . . ,

- E0;
8, 9 , b38, 9/18, 9 c , where the block size 18, 9 is the number of values grouped into a block.

Stream-summary: For each attribute �8, 9 ∈ '8 , we create a stream-summary data struc-
ture ((ℎ8, 9 such that � (((ℎ8, 9 ) is the domain of the monitored top-ℎ most frequently accessed
values. For a value E8, 9 ,: , the estimated access frequency is given by ((ℎ8, 9 (E8, 9 ,: ) if
E8, 9 ,: ∈ � (((ℎ8, 9 ), otherwise 0.
Physical Accesses: We consider the physical data accesses during execution of workload, .
For a sequential read on �8, 9 , - E0;8, 9 ,1 is incremented by the number of values that fall into
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the given block and have at least one matching row. The values are also inserted into ((ℎ8, 9 .
For a random read '8 [rid8] .�8, 9 = E8, 9 ,: , rid8 ∈ [1, |'8 |], - E0;8, 9 , d:/18, 9 e is incremented by 1,
and the value is inserted into ((ℎ8, 9 .

Access Frequency: The estimated access frequency 5̂E8, 9,: is calculated as follows:

5̂E8, 9,: =

{
((ℎ8, 9 (E8, 9 ,: ) if 8B�� (E8, 9 ,: )⌈(
- E0;
8, 9 , b:/18, 9 c − =D<���224BB4B

)
/(18, 9 − =D<��)⌉

otherwise,

where 8B�� (E8, 9 ,: ) =
{

1 if E8, 9 ,: ∈ � (((ℎ8, 9 ) ∧ ((ℎ8, 9 (E8, 9 ,: ) ≤ _ · - E0;8, 9 , b:/18, 9 c
0 otherwise.

=D<�� =
∑ d:/18, 9 e ·18, 9−1

:′= b:/18, 9 c ·18, 9
8B�� (E8, 9 ,:′)

=D<���224BB4B =
∑ d:/18, 9 e ·18, 9−1

:′= b:/18, 9 c ·18, 9
8B�� (E8, 9 ,:′) · ((ℎ8, 9 (E8, 9 ,:′).

. . . . . .1 2 3 4 5 6 7 32 33 34 35 36 37 38 39 64 60
M

Values E8, 9 ,: of O_ORDERKEY

0 2 8 4 . . . 4-E0;
8, 9 ,1

18, 9 = 4
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Stream Summary ((ℎ8, 9
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Fig. 7: Illustration of the data structure for collection �(C0C F4 for a partitioning advisor.

Figure 7 shows for a selection and a join of attribute O_ORDERKEY how the access
frequencies of values are estimated based on the block counter and the stream-summary.
For example, the value 35 stored in the stream-summary is a heavy hitter as 6 is not larger
than _ · - E0;8, 9 ,2 with _ = 1.2. Therefore, the counter - E0;8, 9 ,2 is decremented by 6, which results
in an estimated access frequency of 1 for the values from the long tail, i. e., 33, 34, and 36.
In contrast, value 6 is not classified as a heavy hitter as the estimated access frequency 4 is
more than _-times larger than - E,;8, 9 ,1 with _ = 1.2.
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6 Experimental Evaluation

We evaluate the presented access counters with respect to their precision, space efficiency,
and runtime overhead using real-world and synthetic benchmarks for an index advisor
(Section 6.1), a data compression advisor (Section 6.2), a buffer pool size advisor (Sec-
tion 6.3), and a table partitioning advisor (Section 6.4). We implemented our access counters
prototypically in SAP HANA [MBL17]. First, we discuss the experimental setup.

Our test system is equipped with an Intel Xeon E7-8870 v4 CPU (4 sockets) and 1 TB
DRAM. Secondary storage is provided by a RAID controller of 8 disks of type HGST
HUC101812CSS204 HDD with 10k rpm and a SAS 12 Gbit/s interface.

The first workload is the synthetic TPC-H benchmark [TP18] with scale factor 10, consisting
of 22 templated queries. To create a challenging environment for our access counters, we
consider as second workload the JCC-H benchmark [BAK18] (scale factor 10), which
extends TPC-H with data and query skew. For example, special shopping events such as Black
Friday are reflected by corresponding spikes in O_ORDERDATE. To cover the experiments in
an acceptable time, we excluded queries Q9, Q16, Q20, and Q21 for JCC-H since parameter
combinations led to query execution times larger than five minutes due to the data and
query skew. Our third workload is the Join Order Benchmark (JOB) [Le15]. JOB consists
of 33 different query templates (113 different queries in total) and uses real-world data from
IMDb with data skew and correlations that aggravate estimation errors.

For the evaluation, we randomly generated for each benchmark a workload of 200 queries.
The following table shows how often each templated query occurs in each workload:
Query ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
TPC-H 8 11 11 5 14 16 9 5 8 11 5 11 10 7 12 4 8 8 10 9 9 9
JCC-H 11 15 7 14 19 9 9 12 – 7 14 10 12 8 9 – 9 14 10 – – 11
JOB 5 6 4 4 7 11 4 5 5 3 6 2 9 4 6 11 12 16 17 7 4 9 5 5 5 7 3 8 5 3 5 7 10

6.1 Use Case 1: Index Advisor

We start by evaluating Access Counter 1 for collecting workload execution statistics for an
index advisor. Since we group actual output cardinalities into intervals [1A , 1A+1) and count
only the number of selections per interval, we calculate the precision of our approach by
dividing the estimated output cardinality (i. e.,

√
1A · 1A+1) by its actual output cardinality:

i83G = �|f? ('8) |/|f? ('8) |. In our experiments, we set the interval base parameter 1 to 2.
Hence, the actual and recorded output cardinalities differ at most by a factor of

√
2.

Figure 8 shows for six attributesA8,B ⊆ F (?),∀f? ('8) ∈ ) (@),∀@ ∈ , of each benchmark
the precision i83G , i. e., the ratio of estimated and actual output cardinalities. Overestimation
is shown on the top, underestimation at the bottom. Each boxplot shows the 0.00, 0.25, 0.5,
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0.75, and 1.00 percentiles. We observe for all attributes and all benchmarks that i83G of all
selections is at most

√
2 in accordance with our choice of 1.
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Fig. 8: Precision of our approach for collecting workload execution statistics for an index advisor.

Precise Counting Our Approach
Workload TPC-H JCC-H JOB TPC-H JCC-H JOB
Precision i83G 1.0 1.0 1.0 ≤

√
2 ≤

√
2 ≤

√
2

Memory Overhead 10.6% 10.6% 8.4% < 0.1% < 0.1% < 0.1%
Runtime Overhead 1.4% 1.5% 1.6% 1.7% 2.6% 3.1%

Tab. 4: Precision, space efficiency, and runtime overhead compared to precise counters.

Table 4 shows the results with respect to precision, space efficiency, and runtime overhead
of precise counting (i. e., one counter per output cardinality) and our approach (i. e., lazy
counters and interval counting). While precise counting achieves perfect precision, its
memory overhead varies between 8.4% and 10.6% and is thus substantial. Our approach
instead still attains reasonably accurate estimates, differing at most by a factor of

√
2. The

memory overhead is also negligible due to lazy counting in combination with intervals.
Both approaches yield a low runtime overhead since only the actual output cardinalities of
selections are tracked. We conclude that our access counters are precise, compact, and fast.

6.2 Use Case 2: Data Compression Advisor

Workload TPC-H JCC-H JOB
Precision 100% precise
Memory Overhead < 0.1% < 0.1% < 0.1%
Runtime Overhead 4.7% 8.3% 9.1%

Tab. 5: Precision, space efficiency, and runtime overhead
for our access counters of a data compression advisor.

We now evaluate Access Counter 2 for
collecting workload execution statistics
for a data compression advisor. Table 5
shows the results with respect to pre-
cision, space efficiency, and runtime
overhead. Our approach is 100% pre-
cise since, for each attribute, the exact
number of rows accessed sequentially
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and randomly by the workload is counted. Maintaining just two 64-bit integer counters
per attribute is also space-efficient. For example, for the Join Order Benchmark with 108
attributes in 21 relations, the total memory consumption is only 1.73 KB (= 108 · 16 bytes).
Compared to the data set size in SAP HANA (2.28 GB), this represents only 0.00008%. As
the runtime overhead is also low (between 4.7% and 9.1%), we conclude that our access
counters for a data compression advisor are precise, compact, and fast.

6.3 Use Case 3: Buffer Pool Size Advisor

In the third experiment, we evaluate Access Counter 3 for collecting workload execution
statistics for a buffer pool size advisor. Table 6 shows the results with respect to the precision,
space efficiency, and runtime overhead of naïve block-level counting (i. e., updating the
frequencies of all touched pages) and our approach (i. e., updating only the frequencies
of start and end pages). Both approaches are 100% precise since, for each memory page,
all physical accesses are tracked. Compared to the data set size, the memory overhead is
at most 0.2% compared to the tables data size, given the smallest page size of 4 KB in
SAP HANA (64 bit/4 KB) [Sh19]. We use one signed 64-bit integer counter per page as
counters may become negative. The runtime overhead of naïve block-level counting varies
between 8.3% and 21.8%. Our approach results only in a runtime overhead between 5.2%
and 13.5%, as updates to the counter are done in constant time for queries that span multiple
pages. We conclude that our access counters are precise, compact, and fast.

Naïve Block-Level Counting Our Approach
Workload TPC-H JCC-H JOB TPC-H JCC-H JOB
Precision 100% precise 100% precise
Memory Overhead ≤ 0.2% ≤ 0.2% ≤ 0.2% ≤ 0.2% ≤ 0.2% ≤ 0.2%
Runtime Overhead 8.3% 13.1% 21.8% 5.2% 9.2% 13.5%

Tab. 6: Precision, space efficiency, and runtime overhead compared to naïve block access counters.

6.4 Use Case 4: Table Partitioning Advisor

Finally, we evaluate Access Counter 4 for collecting workload execution statistics for a
table partitioning advisor. To fulfill the space efficiency requirement, we limit the access
counters’ memory footprint to 1% compared to the column size (encoded column and
dictionary). For example, for O_ORDERDATE (23 MB, 2406 distinct values), we create
one counter per domain value, while for O_ORDERKEY (105MB, 15,000,000 distinct
values), domain values are grouped into ranges of 115 values each. We also maintain a
stream-summary for attributes with a block size larger than one to track the top-100 most
frequently accessed values. Finally, we set _ = 1.2, i. e., a value is classified as heavy hitter
if its access frequency estimated by the stream-summary is at most 1.2× larger than its
value range counter. We experimentally evaluated _ = 1.2 as a good choice. To calculate the
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precision of a value i8, 9 ,: , we divide the estimated access frequency by the actual access
frequency, i. e., i8, 9 ,: = 5̂E8, 9,:/ 5E8, 9,: .

In the JCC-H benchmark, 29 of 61 attributes yield a block size larger than one, i. e., cannot
grant 100% precision within a memory budget of 1% of the column size. Figure 9 shows the
precision i8, 9 ,: of three approaches and six representative attributes with a block size larger
than one. Overestimation is shown on the top, underestimation at the bottom. The boxplot
displays the 0.0001, 0.25, 0.5, 0.75, and 0.9999 percentiles. Outliers are highlighted as dots
above or below the boxplot.
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(c) Our approach (+ stream-sum.)

Fig. 9: Precision of our approach (with and without the stream-summary data structure) compared to
naïve block-level access counters for a table partitioning advisor, executing the JCC-H benchmark.

Figure 9(a) shows the precision of naïve block-level counters, i. e., the block counter is
incremented by one whenever a value or sub-range of the block is read. The results confirm
the statement in Section 5.4 that access frequencies are overestimated substantially.

Figure 9(b) shows the precision of our approach that counts the number of actually accessed
block values, while the access frequency of a value is obtained by dividing the total number
of accessed values by the block size. We observe that our approach dramatically improves
precision by several orders of magnitude, most of the estimates are within a bound of factor
2. However, for all six attributes, heavy hitters are underestimated, and rarely accessed
values are overestimated (shown on the top and bottom of Figure 9(b)).

Figure 9(c) shows the precision obtained by adding a stream-summary to identify heavy
hitters. To emphasize the difference with and without the stream-summary, we mark these
values in Figure 9(b) in red, which are estimated correctly in Figure 9(c). For example, the
heavy hitters of L_ORDERKEY (shown in red at the bottom in Figure 9(b)) are estimated
precisely in Figure 9(c). Accordingly, rarely accessed values of the corresponding block
are overestimated without the stream-summary (shown at the top of Figure 9(b)) but
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estimated precisely with the stream-summary. We observe similar results for O_CUSTKEY,
L_PARTKEY, and L_EXTENDEDPRICE.

We omit measurements of the precision for the TPC-H benchmark since the results are very
similar compared to the JCC-H benchmark by ignoring the heavy hitters.

In the Join Order Benchmark, 47 of 108 attributes yield a block size larger than one.
Figure 10 shows the precision i8, 9 ,: for six representative attributes. We again observe
that naïve block-level counters overestimate access frequencies substantially (Figure 10(a)),
while our approach improves the precision by 1-2 orders of magnitude (Figure 10(b)).
However, we do not observe substantial improvement by adding a stream-summary like for
the JCC-H benchmark (Figure 10(c)). The reason is that the JCC-H benchmark exhibits
heavy hitters by design, while the Join Order Benchmark exposes only limited data and
query skew.
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(a) Naïve block-level counters
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(b) Our approach (− stream-sum.)
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(c) Our approach (+ stream-sum.)

Fig. 10: Precision of our approach (with and without the stream-summary data structure) compared to
naïve block-level access counters for a table partitioning advisor, executing the Join Order Benchmark.

Table 7 shows the space efficiency and runtime overhead of row-level access counters, naïve
block-level access counters, and our approach, with and without the stream-summary data
structure. While row-level data access counters are 100% precise, their memory overhead is
high, and the runtime overhead is also notable. In contrast, naïve block-level access counters
and our approach (without stream-summary) use a fixed memory budget of 1% and achieve

Block-Level Counters & Our approach
Row-Level Counters Our approach (− s.s.) (+ stream summary)

Workload TPC-H JCC-H JOB TPC-H JCC-H JOB TPC-H JCC-H JOB
Memory Overhead 10.80% 10.82% 20.53% ≤ 1% ≤ 1% ≤ 1% ≤ 1% ≤ 1% ≤ 1%
Runtime Overhead 3.9% 14.7% 15.6% 2.1% 9.7% 9.6% 13.8% 22.7% 23.6%

Tab. 7: Memory and runtime overhead for our approach compared to row and block-level counters.
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low runtime overhead. However, naïve block-level access counters are imprecise, while our
approach achieves precise estimates (Figures 9 and 10). Adding the stream-summary data
structure further improves the precision (Figure 9) at the cost of increasing the runtime
overhead. Therefore, we argue that our approach (without the stream-summary) is preferred
if the runtime overhead is critical. Otherwise, the stream-summary data structure may be
added to improve the precision with low memory overhead.

7 Conclusion

We presented data structures that solve the problem of providing workload execution
statistics with high precision, low memory consumption, and low runtime overhead to
automated physical database design tools. Since no approach in the literature collects
precise, compact, and fast workload execution statistics for an advisor tool, we presented
how existing approaches can be combined and for which advisors new data structures have
to be designed. Our evaluation showed that our data access counters outperform related
work to provide precise, compact, and fast workload execution statistics for an index advisor,
a data compression advisor, a buffer pool size advisor, and a table partitioning advisor using
real-world and synthetic benchmarks.

References

[ABI19] Athanassoulis, M.; Bøgh, K. S.; Idreos, S.: Optimal Column Layout for Hybrid
Workloads. Proc. VLDB Endow. 12/13, pp. 2393–2407, Sept. 2019.

[Ag04] Agrawal, S.; Chaudhuri, S.; Kollar, L.; Marathe, A.; Narasayya, V.; Syamala, M.:
Database Tuning Advisor for Microsoft SQL Server 2005. In: Proceedings of
the Thirtieth International Conference on Very Large Data Bases. VLDB ’04,
VLDB Endow., pp. 1110–1121, 2004.

[BAK18] Boncz, P.; Anatiotis, A.-C.; Kläbe, S.: JCC-H: Adding Join Crossing Corre-
lations with Skew to TPC-H. In (Nambiar, R.; Poess, M., eds.): Performance
Evaluation and Benchmarking for the Analytics Era. Springer International
Publishing, Cham, Switzerland, pp. 103–119, 2018.

[Cu10] Curino, C.; Jones, E.; Zhang, Y.; Madden, S.: Schism: A Workload-Driven
Approach to Database Replication and Partitioning. Proc. VLDB Endow. 3/1–2,
pp. 48–57, Sept. 2010.

[Da16] Das, S.; Li, F.; Narasayya, V. R.; König, A. C.: Automated Demand-Driven
Resource Scaling in Relational Database-as-a-Service. In: Proceedings of
the 2016 International Conference on Management of Data. SIGMOD ’16,
Association for Computing Machinery, New York, NY, USA, pp. 1923–1934,
2016.

98 Michael Brendle, Nick Weber, Mahammad Valiyev, Norman May, Robert Schulze,
Alexander Böhm, Guido Moerkotte, Michael Grossniklaus



21

[Da19] Damme, P.; Ungethüm, A.; Hildebrandt, J.; Habich, D.; Lehner, W.: From a
Comprehensive Experimental Survey to a Cost-Based Selection Strategy for
Lightweight Integer Compression Algorithms. ACM Trans. Database Syst. 44/3,
June 2019.

[FKN12] Funke, F.; Kemper, A.; Neumann, T.: Compacting Transactional Data in Hybrid
OLTP & OLAP Databases. Proc. VLDB Endow. 5/11, pp. 1424–1435, July
2012.

[Gu18] Gurajada, A.; Gala, D.; Zhou, F.; Pathak, A.; Ma, Z.-F.: BTrim: Hybrid in-
Memory Database Architecture for Extreme Transaction Processing in VLDBs.
Proc. VLDB Endow. 11/12, pp. 1889–1901, Aug. 2018.

[Hu19] Huang, G.; Cheng, X.; Wang, J.; Wang, Y.; He, D.; Zhang, T.; Li, F.; Wang, S.;
Cao, W.; Li, Q.: X-Engine: An Optimized Storage Engine for Large-Scale
E-Commerce Transaction Processing. In: Proceedings of the 2019 International
Conference on Management of Data. SIGMOD ’19, Association for Computing
Machinery, New York, NY, USA, pp. 651–665, 2019.

[KAI17] Kester, M. S.; Athanassoulis, M.; Idreos, S.: Access Path Selection in Main-
Memory Optimized Data Systems: Should I Scan or Should I Probe? In:
Proceedings of the 2017 ACM International Conference on Management of
Data. SIGMOD ’17, Association for Computing Machinery, New York, NY,
USA, pp. 715–730, 2017.

[Ko20] Kossmann, J.; Halfpap, S.; Jankrift, M.; Schlosser, R.: Magic Mirror in My
Hand, Which is the Best in the Land? An Experimental Evaluation of Index
Selection Algorithms. Proc. VLDB Endow. 13/12, pp. 2382–2395, July 2020.

[Le10] Lemke, C.; Sattler, K.-U.; Faerber, F.; Zeier, A.: Speeding Up Queries in
Column Stores. In (Bach Pedersen, T.; Mohania, M. K.; Tjoa, A. M., eds.): Data
Warehousing and Knowledge Discovery. Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 117–129, 2010.

[Le15] Leis, V.; Gubichev, A.; Mirchev, A.; Boncz, P.; Kemper, A.; Neumann, T.: How
Good Are Query Optimizers, Really? Proc. VLDB Endow. 9/3, pp. 204–215,
Nov. 2015.

[LLS13] Levandoski, J. J.; Larson, P.-Å.; Stoica, R.: Identifying hot and cold data in
main-memory databases. In: 2013 IEEE 29th International Conference on Data
Engineering (ICDE). ICDE ’13, IEEE, pp. 26–37, 2013.

[Lu19] Lu, J.; Chen, Y.; Herodotou, H.; Babu, S.: Speedup Your Analytics: Automatic
Parameter Tuning for Databases and Big Data Systems. Proc. VLDB Endow.
12/12, pp. 1970–1973, Aug. 2019.

[MAE05] Metwally, A.; Agrawal, D.; El Abbadi, A.: Efficient Computation of Frequent
and Top-k Elements in Data Streams. In (Eiter, T.; Libkin, L., eds.): Database
Theory - ICDT 2005. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 398–
412, 2005.

Precise, Compact, and Fast Data Access Counters for Automated Physical Database Design
99



22 Brendle, Weber, Valiyev, May, Schulze, Böhm, Moerkotte, Grossniklaus

[MBL17] May, N.; Böhm, A.; Lehner, W.: SAP HANA – The Evolution of an In-
Memory DBMS from Pure OLAP Processing Towards Mixed Workloads.
In (Mitschang, B.; Nicklas, D.; Leymann, F.; Schöning, H.; Herschel, M.;
Teubner, J.; Härder, T.; Kopp, O.; Wieland, M., eds.): Datenbanksysteme für
Business, Technologie und Web (BTW 2017). Gesellschaft für Informatik,
Bonn, pp. 545–546, 2017.

[Na20] Nathan, V.; Ding, J.; Alizadeh, M.; Kraska, T.: Learning Multi-Dimensional
Indexes. In: Proceedings of the 2020 ACM SIGMOD International Conference
on Management of Data. SIGMOD ’20, Association for Computing Machinery,
New York, NY, USA, pp. 985–1000, 2020.

[No20] Noll, S.; Teubner, J.; May, N.; Böhm, A.: Analyzing Memory Accesses with
Modern Processors. In: Proceedings of the 16th International Workshop on
Data Management on New Hardware. DaMoN ’20, Association for Computing
Machinery, New York, NY, USA, 2020.

[Ra02] Rao, J.; Zhang, C.; Megiddo, N.; Lohman, G.: Automating Physical Database
Design in a Parallel Database. In: Proceedings of the 2002 ACM SIGMOD
International Conference on Management of Data. SIGMOD ’02, Association
for Computing Machinery, New York, NY, USA, pp. 558–569, 2002.

[Se16] Serafini, M.; Taft, R.; Elmore, A. J.; Pavlo, A.; Aboulnaga, A.; Stonebraker, M.:
Clay: Fine-Grained Adaptive Partitioning for General Database Schemas. Proc.
VLDB Endow. 10/4, pp. 445–456, Nov. 2016.

[Sh19] Sherkat, R.; Florendo, C.; Andrei, M.; Blanco, R.; Dragusanu, A.; Pathak, A.;
Khadilkar, P.; Kulkarni, N.; Lemke, C.; Seifert, S.; Iyer, S.; Gottapu, S.;
Schulze, R.; Gottipati, C.; Basak, N.; Wang, Y.; Kandiyanallur, V.; Pendap, S.;
Gala, D.; Almeida, R.; Ghosh, P.: Native Store Extension for SAP HANA. Proc.
VLDB Endow. 12/12, pp. 2047–2058, Aug. 2019.

[St06] Storm, A. J.; Garcia-Arellano, C.; Lightstone, S. S.; Diao, Y.; Surendra, M.:
Adaptive Self-Tuning Memory in DB2. In: Proceedings of the 32nd Interna-
tional Conference on Very Large Data Bases. VLDB ’06, VLDB Endowment,
pp. 1081–1092, 2006.

[TP18] TPC: TPC Benchmark H Standard Specification, http://www.tpc.org/tpc_
documents_current_versions/pdf/tpc-h_v2.18.0.pdf, 2018.

100 Michael Brendle, Nick Weber, Mahammad Valiyev, Norman May, Robert Schulze,
Alexander Böhm, Guido Moerkotte, Michael Grossniklaus

http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.18.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.18.0.pdf

