Data Security in Service-Oriented Architectures

Dirk Henrici, Jochen Miiller

AG Integrated Communication Systems
University of Kaiserslautern
PO Box 3049, D-67653 Kaiserslautern
{henrici,jmueller}@informatik.uni-kl.de

Abstract: Due to standardized interfaces and loose coupling of services, service-
oriented architectures provide the possibility for close interaction between different
organizations and communities. But this also introduces new risks: To have under
control where which data is processed becomes increasingly difficult. This paper
highlights that current approaches for ensuring data privacy and required security
mechanisms are no longer adequate under these changing conditions and presents
possible solutions discussed by researchers and developers. Additionally, economic
implications of data privacy and security are considered.

1 Introduction

Service-oriented architectures are characterized by modular design and loose coupling of
services. These properties of service-oriented architectures enable a high degree of inter-
action and cooperation of people and organizations while crossing company boundaries.
The introduction of such new technologies is motivated by the desire of companies to
increase flexibility, decrease cost and thus to gain a better competitive position.

But besides the advantages, the increasing internetworking of services and data access
across company boundaries that already becomes common today lead to new risks: To
control where which data is processed becomes increasingly difficult. Also access restric-
tions and other security provisions can often be bypassed relatively easily, for instance by
exploiting vulnerabilities in operation systems, middleware, or applications. Thus, cus-
tomer data and company secrets in general are in danger. New technology could make life
more controlled, a threat feared by many people so that maintaining data privacy is of high
interest. Companies need to maintain data privacy to meet the demands of their customers
and to protect company secrets.

Today, customers and companies are often confronted with a choice between two options:
Either use new technologies and services and live with the related privacy and security
issues or opt out and live with current practices or workarounds. For example, one may
use his credit card information in the Internet and thus a comfortable form of payment.
The alternative is to use other forms like cash in advance which is time-consuming and
much less convenient. If a service is no longer available by “traditional” means an opt-
out option no longer exists. Already such a simple example shows that modern everyday
life of companies as well as individuals is already paved with processes that have serious
security and privacy issues.



160 Dirk Henrici, Jochen Miiller

But are companies and their customers really doomed to tolerate deficiencies in privacy
protection and security for the sake of productivity and convenience? Is there really no
viable solution for the creation of secure IT systems that are capable of managing the
increasing interaction and data processing introduced by service-oriented architectures?
This contribution points out that functionality and privacy need not be at odds if a suitable
system design and up-to-date techniques are used.

The thesis is that using a proper system design and suitable mechanisms, privacy and
security need not suffer for the sake of convenience or functionality. Therefore, revelation
and usage of data needs to be restricted and controlled. Not only by legislative regulations
but by technical means as well, so that abuse can be precluded effectively. A prerequisite
for this are secure systems, because privacy can only be guaranteed in a secure system
environment [He04]: If the IT systems are not secure, all efforts for preserving privacy
can be easily bypassed.

Webservices are the most widespread mechanism for the implementation of service-
oriented architectures. In this context, WS-Security (webservices security), SAML (se-
curity assertions markup language), XKMS (XML key management specification), XML-
encryption, and XML-signature (see e.g. [To04]) are some of the standards intended to
secure webservices. These standards will not be discussed in this contribution, because
to employ them is not sufficient for the creation of secure IT systems that are capable
to provide privacy. Instead, we will step back and present a more holistic view of the
requirements for designing secure, privacy respecting systems.

In the following section, considering as example a contemporary service, the implications
of system design for maintaining privacy are shown. Additionally, some not publicly well
known building blocks for limiting relinquishment of data are introduced. The example
shows that a system design respecting privacy may also have economic consequences.

In section 3 we highlight the current situation in creating secure, privacy respecting IT
systems. It will be shown that the current proceeding is not adequate for the increasing
demand for security and privacy and thus a paradigm shift is required. In section 4 we
will present some guidelines that are intended as starting point for further consideration
on the topic. The goal is to make the reader think of security and privacy from different
perspectives than usual today.

Interestingly, from an economic point of view, especially privacy is often not a desired
feature, at least at first glance. Because of that, economic implications are discussed in
section 5.

2 Example: “Find-a-friend” service

In the field of location-based services many new applications emerge. One of them is the
“find-a-friend” service, a lifestyle customer-to-customer application: Just like your instant
messaging application that informs you when your friends are online, your location aware
personal assistant could tell you when a friend is near your current location, for instance
within half a mile.



Data Security in Service-Oriented Architectures 161

Obviously, such a service handles sensitive information since the identity of the user needs
to be associated with his current location [Be03]. This enables tracking of the individual by
anybody who gets access to that data. The current location of a user needs to be compared
with the locations of the user’s friends in order to realize the desired service.

In the following we will design such a find-a-friend service. At first, we will use a straight
forward approach. The focus will lie on functionality; privacy issues will be considered
afterwards. After that, we will design a second system with the same features but with
privacy as determining goal. There we will make use of advantageous techniques ensur-
ing that as little information as possible is exposed. These techniques are partly not very
known publicly yet, albeit being a research topic for years. For instance, in currently used
applications the use of cryptography is often limited to hashing, enciphering, and deci-
phering and as a means of implementing authentication and authorization mechanisms.
But there are many other possibilities that can be very useful to prevent revelation of sen-
sitive data. Of course, the presented techniques can be applied to other applications as
well.

2.1 Straight forward approach

Find-a-friend is a service, so we need an appropriate service provider. This would in
practice be an independent company.

The operation of the system itself is then rather simple (see figure 1): Each user obtains its
current location by GPS, according to the cell-ID of the user’s mobile phone, or from any
other available geo-information system and sends it regularly to the service provider. The
latter keeps track of the user and all the other registered ones and gives a notification when
the distance between two users being registered as friends falls below a specified value.

Of course, in this setup each user must trust the service provider since the user’s identity
and the user’s location are revealed to it completely. With this data, an untrustworthy ser-
vice provider can track the user and even estimate future locations of the user by creating a
location profile and studying a user’s habits. All the information could even be shared with
other companies or government without knowledge of the user, thus enabling customized
marketing and total surveillance. Imagine a sales representative equipped with all the data.
He can offer products tailored to the audience and knows always where to contact you. Or
imagine the police follow and analyze all of your recent and past steps (and the ones of
the persons you have met) when you are under suspicion.

As establishing a good reputation and legislative regulations are the only limits for a
provider not to misuse the confided data and as abuse is very simple and uncontrollable,
a user probably wants a better protection of his privacy.

An obvious approach would be not to link the user’s identity with its location directly.
This can be done using pseudo-identities: In connection with the service provider each
user does not reveal its real identity but uses a special identity, for instance a nickname,
instead. Already in 1985, Chaum [Ch85] proposed the use of different account numbers
or “digital pseudonyms” for each organization to make it harder for them to match or link
data records.



162 Dirk Henrici, Jochen Miiller

| GPs | | Cel-D | | GPs | | cCel-D | location
¢ ¢ ¢ * sensors
user friend user
location (x |y ) location ( xf | yf) entities
update update
v regularly L regularly
find-a-friend service provider service
check location ( x | y ) near location ( xf | yf) ? provider
if so: send notification

Figure 1: Possible system architecture for a find-a-friend service

Of course, it must be assured that the update messages from the user to the service provider
do not reveal the user’s real identity. In the paper of Chaum [Ch85] a technique for assuring
unconditional untraceability is explained. Other approaches use “mixes” in the line of
communication [Ch81] to circumvent traceability of messages.

Further, communication between user and service provider should be encrypted to keep the
message exchange private. Using public key cryptography with a private key associated to
the user’s nickname and the corresponding public key given to the service-provider and
another key pair vice-versa, the parties can also authenticate to each other.

Using all these techniques, the complexity of the system has increased significantly. But
what about privacy? As long as the association between real identity and pseudonym
can be kept private, everything is fine. But unfortunately, that is not easy. Users have to
register as friends, and at this stage, the association between user and pseudonym needs
to be known. This problem could be solved with public key cryptography: A user does
not reveal its pseudonym in clear to his friends but one that is encrypted using the public
key of the service provider.

Nevertheless, the association between user and its pseudonym can be unerringly revealed if
the service provider matches the pseudonym world with the real world: Since location of
the user in the real world is identical with the location stored in the provider’s database
for a particular nickname, matching is an easy task although fortunately it cannot be
automatized.

As we see, all approaches enhancing privacy in the system have an effect but are not an
overall satisfactory solution. With more effort and thus making the system even more
complex, some issues could be addressed, but the actual problem lies in the system design
itself: Too much data converges at the service provider. However, the mentioned building
blocks like mixes or public key cryptography may be applicable in other scenarios, there
solving the arising privacy and security issues.

2.2 An alternative approach

By giving sensitive data to a third party, the individual loses control of data usage: Given
away, data can be used for both good and evil. But do we really need a service provider



Data Security in Service-Oriented Architectures 163

whom we have to entrust sensitive information? A user could exchange locations with his
friends directly. Unfortunately, this only shifts the problem. Now, he has to trust in all
his friends that they do not abuse the data. Another question is, whether we want to tell
our exact location even to our friends.

What we need is a way to check, whether two locations are near to each other without
revealing the locations themselves. Surprisingly, such computation without revealing the
preimages is possible!

The associated field of research called “secure two-party computation” (STC) was intro-
duced by Yao [Ya82, Ya86]. In this context, the “millionaires’ problem” has become
famous: Two millionaires, Alice and Bob, want to know who of them is richer without
revealing their actual wealth. Relevant applications for STC today are data mining or
creation of statistics without revealing the data itself.

A primitive for secure two-party computation is “oblivious transfer” (OT) [Cr00]. In
“chosen one-out-of-two OT”, the basic building block, one party has two secret input
bits, by and b;. The second party has a secret selection bit s. With an OT protocol, the
second party learns the input bit (bs) chosen by its selection bit without learning the other
one (b1_s). Thereby the first party does not obtain information about the selection bit.

Goldreich [Go87] proved that any secure multi-party computation problem is solvable
using circuit evaluation protocols. While this approach is appealing in generality, for
specific applications protocols with much lesser complexity can often be found. Solutions
to some common problems are given in [DuO1].

Another primitive for secure computation is “homomorphic encryption”. An encryption
scheme is homomorphic if E(x) * E(y) = E(xz + y). As can be seen, the arithmetic
operation is performed on the ciphertext without preceding decryption and revelation of
the preimages x and y.

Back to our find-a-friend scenario, using secure two-party computation it is possible to
check whether a user and his friends are near to each other without revealing the locations
or involving a trusted third party.

In [FeOl] an algorithm for calculating the L2-distance between two parties securely is
described. With an extension that not the exact distance is revealed to the parties but only
whether it is lower or higher a certain value, the algorithm is applicable to our problem.

User: =y et [y =
Icurr?nt \\< i Friend 2 &
location (out of range)
(1) A
. A —x+d > -— X,
\.Fr{‘end 1 A y+d >y,
47’ (within range) A —y+d > -y,

Figure 2: Find-a-friend with square area and its associated inequations



164 Dirk Henrici, Jochen Miiller

If we are satisfied with checking whether a friend is within a square area around the
user we can employ the simpler vector dominance protocol described in [At00]. The
protocol tests whether each element a; of a vector A = (ay, ..., a,) is higher than each
element bi of a vector B = (b1, . ..,b;) without revealing anything about the vectors or
the relationship of single elements themselves. In our scenario, the problem is described
by setting A = (z+d,—x+d,y+d,—y+d) and B = (zy, —xs,yy, —ys) Which can be
gathered from figure 2.

Using this technique, we have developed a find-a-friend service that ensures that loca-
tion information is kept private since no sensitive data at all is revealed to other parties.
Note that the presented solution is a constructed example in that it is not suitable for real
world application: The possibility of active attacks where a malicious party changes its
own position from on calculation to another until it gets a location match is not consid-
ered. Nevertheless, comparison of the two presented solutions is a good starting point for
discussing security and privacy issues and solutions.

3 Current Situation

In Germany, the “Bundesdatenschutzgesetz” [BDSG] (federal data protection law) is the
legal framework that has to be followed. It aims at avoiding that personal data is gathered
wherever possible. If personal data has to be processed its amount must be as low as
possible and the data may only be stored and processed when a legitimate interest exists
and with predetermination for specific purposes. The law leaves room for interpretation
and does not recommend procedures and methods (besides blinded storage) for actually
implementing data privacy. Also no statements regarding non personal data are given.
Because of that, the German law gives no guideline; it just sets limits on storage and
processing of personal data.

Storage and processing of non personal data is thus dependent on the requirements of
companies and the demand of their customers and originators. Data which is critical for
a company and may not be revealed to competitors is taken more care of than uncritical
data. Therefore, the effort to maintain privacy of non personal data depends on its value.

In other terms, the risk that is associated with storage and processing of that kind of
data shall be kept as low as possible. The risk can be calculated using the following
risk equation: Risk = Threat x Vulnerability x Cost of Asset

By technical means, the level of protection can be increased and therewith the vulnerability
can be kept low. Due to economics, the cost of keeping the vulnerability low and avoiding
threats should never be higher than the risk. Thus an optimal balance needs to be found.

In practice, the risk equation is of limited use, because it is difficult to give numbers for
threats, vulnerabilities, and costs. Nevertheless, it can be interpreted qualitatively to give
us a guide how to design secure, privacy respecting systems from an economic point of
view: Threats should be avoided and the vulnerability should be kept low with as few
efforts as possible. Unfortunately, both design goals are often not properly addressed
in today’s IT. This leads to immense problems, because with the interconnection and



Data Security in Service-Oriented Architectures 165

interaction of companies using service-oriented architectures, threats and vulnerabilities
are likely to increase.

Avoidance of threats and limiting vulnerabilities is not the usual procedure today: Some-
thing bad must happen, at least to others, until an investment into securing IT takes place.
Each threat must first be brought to mind, before people start to address it effectively.
Many examples can be found to support this thesis. For instance, in March 2005 Time
Warner lost backup tapes with data on 600,000 employees. In reaction of this event, the
company started to encipher its backup data (see e. g. [CWO05]).

Pure reaction to security incidents also leads to a patchwork of solutions instead of well-
thought out homogeneous and consistent secure system design. Unfortunately, limiting
vulnerabilities and thus IT security is today for many managers equal to firewalls, patch-
ing operating systems and applications with security fixes, enciphering data, and newly
applying PKI (public key infrastructure). But since a chain is only as strong as its weak-
est link, a holistic view of IT security and data privacy is required. Therefore we need a
paradigm shift to address the increasing requirements towards IT security and data privacy.

4 Measures

In the previous section we argued that the current proceeding for gaining IT security and
data privacy is not adequate for the increasing requirements raised by service-oriented
architectures and other new technologies.

But what can be done to meet current and future demand? In the following we will present
a number of guidelines that help to implement secure, privacy respecting IT systems. The
guidelines are not independent from each other but are often interwoven. Note that the
following measures are not intended to be a complete list. They just have the goal to make
the reader think of security and privacy from different perspectives.

4.1 Guard against threats and vulnerabilities

An important guideline is to act foresighted and to try to anticipate potential problems
beforehand. In the worst case, harm already taken place cannot be undone any more: If
any confidential data has become public, improving the security level afterwards can only
prevent a similar future event but can by no means limit the damage already taken place.
In case of the lost data, its usage is no longer under control of its owner and the data can be
abused for any purpose.

However, the need for preventive measures is often not considered as much as necessary.
A main reason is that the human perception of risk often does not match the actual risk.
For instance, revelation of data does not seem like a big deal at first: Data is just some
text and numbers, nothing concrete, nothing life threatening. The threatening things are
the ones that can potentially be done with data. For example, these things may even be
the loss of one’s livelihood in case of identity theft. But such consequences are difficult
to imagine and thus are easily misjudged.

Examples for taking reactive measures instead of preventive ones are antivirus applications
and spyware checkers in case they are used for cleaning an infected system. It would be



166 Dirk Henrici, Jochen Miiller

better to prevent malware from getting executed and nesting in the system, for instance
by email filters or by means of a securely designed operating system.

It is important to learn from mistakes made in former times so that mistakes are not
repeated any more and to better foresee possible vulnerabilities. Nevertheless, if one takes
a look at security hotfixes for operating systems and applications often the same types of
mistakes and sometimes even the same mistakes occur repeatedly. One of many examples
is Microsoft’s incorrect application of the RC4 stream cipher [Wu05] in Word and Excel
applications. The same mistake has already been made in 1999 in its operating system
NT4.

A good approach for guarding against vulnerabilities is to separate applications and parts
of an application that require different security levels cleanly. An example for maximum
separation is sandboxing, i.e. running applications in a separated environment with only
limited and defined possibility to interact with its surroundings. Examples are the Java-
sandbox in which Java applications are executed or chroot-environments in Unix. Example
of poor design is close interlocking of applications or even interlocking between applica-
tions and the operating system (e.g. the Internet Explorer as a core component of the
operating system). Reasons to do things like that are either poor application design or
the desire to gain maximum performance. But with today’s computing power, gaining the
endmost pinch of performance at the expense of clean design, lower complexity, and less
vulnerability is obviously a bad trade-off.

4.2 Proper system design

Today, security and privacy are often seen as an add-on, i. e. an addition to an else insecure
system. Therefore, development often takes place in the same manner: At first get the
system to work; afterwards add security elements like enciphering or authentication. But
as shown in the previous section and also in the find-a-friend example, proper system
design is a crucial element in designing secure, privacy respecting IT systems. Thus,
security and privacy are not orthogonal to the overall system architecture and therewith
with those cannot be dealt with independently.

Another example of improper system design regarding security is the SMTP [K101] which
is used to deliver emails in the Internet. The protocol was originally designed without
having security in mind. This leads to the problem that today’s mailboxes are filled up
with spam, mostly having forged sender’s addresses. Adding effective security features
to the running mail system is almost impossible since it would require a redesign which
would disrupt compatibility to the existing mail system. Similar issues exist for exam-
ple in operating systems that cannot be easily redesigned without breaking application
compatibility.

As shown in the find-a-friend example, considering security and privacy already at early
stages of system design gives much more leeway in the selection of proper mechanisms
and in their implementation. It has the additional advantage that the developer is urged
to find a cleaner system design. This is caused by the fact that designing secure systems
requires employing paradigms like separation of concern, layering, or modular assembly



Data Security in Service-Oriented Architectures 167

that are also advantageous to overall software quality. Thus, secure systems tend to have a
cleaner design and better code than insecure ones.

4.3 Elimination of causes instead of symptoms

In today’s IT many examples can be found in which symptoms of problems are fixed but
not the actual problems themselves. The actual problem is often improper system design
lacking security considerations as presented in the previous section. To engineer a system
with proper security out of an insecure one, usually a patchwork of security tools and fixes
is needed for compensation. Such solutions are often incomplete and complicated.

Missing security mechanisms in current widespread operating systems [Lo98] are a good
example to fortify this. Security in Unix and Windows is based on user accounts: Each
process runs in the context of a certain user and has all the access privileges to resources
(like files, network, and devices) that are granted to that user. With this proceeding, pro-
cesses often have much more access privileges than necessary. For instance, a calculator
application or an ordinary screensaver does not need to be able to access the network,
a user’s files or even system files. Thus, a security model based on user and process is
required that enables a user to run applications in different roles with defined access priv-
ileges. A step in this direction is SELinux [LoO1] that aims to add such kinds of additional
restrictions to the Linux operating system. It is obvious that with process-based security
mechanisms many kinds of malware like viruses or trojans could no longer do serious
harm and spread as easily as today. Also, malicious or faulty applications could no longer
harm other applications, data of other applications, or even system files. But instead of
adding proper security mechanisms and solving the actual problem, symptoms are cured
by using personal firewalls, anti virus applications, and patching applications and the op-
erating systems with regular bugfixes. Note that measures like the enumerated ones would
still be a good supplement; but basing security solely on them is flawed.

The need of process based security in operating systems becomes clear when considering
the workarounds used today: Different daemons like mail and web servers run in different
user contexts to simulate process based security for them and thus separate them from each
other and the rest of the system. This works well for files but not for other resources like
the network. To limit network connectivity, “personal firewalls” can be set up so that only
cleared application can access the network. This simulates process based security for the
network as a resource.

Related to missing process based security in most operating systems is the partition of all
applications into trusted and untrusted ones: After downloading an executable from the
Internet a user gets a security warning informing him about the risks. The only possi-
bilities are to deny execution or to give full access based on the user’s rights. There is
no possibility to run the executable in a separated environment with limited access to the
system which would be a huge advantage for security. Similarly, personal firewalls and
access lists usually only offer the options of denying, giving client access to the network
or giving full access to the network. Restricting special functionality that is powerful but
seldom needed (e. g. raw sockets) is usually not possible.



168 Dirk Henrici, Jochen Miiller

In general, a stepped security model is needed that enables granular setting of access
restrictions based on user, a user’s role, and the process itself. Such a proceeding would
provide a much saver environment for system services as well as user applications and
prevent malware from performing unwanted tasks effectively.

Besides that, when designing an application, it should be taken into consideration that it
could have security vulnerabilities. This means that arrangements should be made for the
case of bugs. Ideally, the effects of a security breach can be limited by another security bor-
der. This is a matter of trust: Each software module should be considered untrustworthy or
only trusted under certain assumptions. Today, often all software modules are considered
equally trustworthy so that security checks and input validation is often neglected in intern
interfaces.

4.4 Utilization of all available building blocks

Today’s most widespread technical building blocks for achieving security and data pri-
vacy are cryptographic hash functions and enciphering/deciphering using a number of
algorithms. These are important constituent parts of widespread authentication and au-
thorization software like Kerberos and lately public key infrastructures (PKI). But as high-
lighted in the find-a-friend example, many other building blocks exist that could be em-
ployed. Some examples are STC, polymorphic encryption, anonymization infrastructures,
and pseudonymization infrastructures.

Although such powerful building blocks exist they are currently not used to protect privacy
and security in a broad scope. This raises the interesting question what the causes for this
are. Some potential ones are to be discussed in the following.

The most important one is that these building blocks and the possibilities they offer are still
not very known outside the academic area. Because of that, system designers in industry
cannot apply the concepts and the general public cannot demand their usage.

But even if a building block, for instance STC, is known to the developer and shall be
used, the problem is that libraries implementing these building blocks are virtually un-
available. Because of that developers often have to implement the desired functionality
by themselves which is such a lot of work that the option is often abandoned.

For building blocks that are intended to ensure privacy another drawback exists: Debug-
ging of applications as well as management like logging and auditing is more complex.
The reason is that for privacy reasons data is usually no longer kept centrally but split
between several entities (shared secrets paradigm). Bringing such data together for debug-
ging or auditing purposes becomes even more difficult if pseudonyms are used. Similarly,
bringing data together for data mining purposes that does not harm privacy is more com-
plex and can only be done with lower performance when privacy enabled applications are
used instead of applications not respecting privacy. This counteracts the goal of compa-
nies to gather as much data as possible about their customers to be able to effectively learn
about their requirements and interests.



Data Security in Service-Oriented Architectures 169

4.5 Supporting the developer with standard libraries

As already mentioned in the section above, many building blocks that could help building
secure and privacy respecting applications are not available for developers in form of
libraries that can be easily used. The need for developers to implement such functionality
on their own is error prone and not cost effective. Fortunately, this issue is more and
more getting addressed, in particular in the open source community that is making many
libraries available for anybody’s use (see e. g. [Sf05]).

It is very important that developers stick to open standards. This enables a developer to
use different implementations of a standard without requiring learning new concepts and
substantial changes in their application. Therewith standards help to reduce cost and to
ensure interoperability.

In the context of security and privacy, standards also are a necessity by other means: One
should always use widespread standard techniques instead of proprietary ones. For in-
stance, it cannot be mathematically proven today that algorithms (like cryptographic hash
functions) have the characteristics one would ideally require. But standard cryptographic
algorithms like the hash function SHA1 [Sh93] are much better understood and tested by
researchers and the community than any proprietary algorithm will ever be. Additionally,
proprietary algorithm’s have often flaws because designing cryptographic algorithms of-
ten has many pitfalls. Thus the security of proprietary algorithms is often mainly based on
obscurity. This is considered bad design in modern cryptography; today’s cryptography is
based on Kerckhoff’s principle [Ke83] that a cryptographic system should not be required
to be kept secret.

Employing libraries and open standards has the advantage that complexity is reduced by
their use: A developer does not need to implement everything on his own but can employ
complete, tested, ready-to-use code.

4.6 Making security and privacy part of the business model

Security and privacy should not be regarded as unwanted necessities that just need effort
and thus generate cost for implementation. They should be regarded as an opportunity to
distinguish a company from its competitors. Consideration of security and privacy can
act as a sales argument that can have much significance to customers. This could make
the investment into security and privacy profitable from an economic point of view as
well. A more detailed consideration of economic implications is presented in the following
chapter.

5 Economic Considerations

As stated in the introduction and pointed out in the scope of the example, privacy cannot be
regarded as an add-on like an additional feature. Instead, privacy needs much consideration
in early stages of system design. This is an additional effort that is at odds with the wish to
get a running system as soon as possible and therewith a fast time-to-market.



170 Dirk Henrici, Jochen Miiller

business model

make
provisions

system
design

utilize
building
blocks

eliminate
causes

| libraries & standards |

| secure operating systems |

Figure 3: Interrelation of business model and IT security

This would not be a problem if a better protection of privacy would have positive effects
that would outweigh the additional effort. So, what’s the value of privacy? Are customers
willing to pay for security and protection of their privacy?

Polls indicate that the general awareness regarding privacy issues is high and that its
protection is rated important [EUO3]. But a big problem is that privacy is a “soft” feature:
Different people have different opinions and expectations about it. This is represented
by the diversity of privacy legislation of different countries [Ep03] as well as in other
literature (e.g. [Ja03]). Furthermore, the privacy level reached by a particular software
or service is difficult to rate from the viewpoint of an outsider because it requires deep
understanding of the internal processes.

To summarize, from an economic point of view, a system designer needs to gather what
their target group really wants. After actual implementation, marketing has to make clear
that an offered product or service corresponds to those expectations. Only then a customer
entirely realizes the added value of a privacy-enabled product and is willing to pay for it.

As these are complex requirements that require coordination between different parties like
social research, engineers, and sales, the revenue in customer satisfaction is consequently
only worth the effort if the demand of customers for higher protection of privacy is high
enough.

Interestingly, this demand seems to be not that high as one would expect due to results of
the mentioned polls. Several reasons for this can be imagined: The first is, that functional-
ity and possibilities are more concrete than protection of privacy and that customers are not
aware of the things they could demand. Actual demand comes if one needs something be-
cause a lack of functionality has been experienced. For privacy this becomes only relevant
after abuse of data has been experienced (or can be expected in the short term). Demand
can also be created by some nice aspect that has been seen in another implementation of a
system or service and thus becomes a desired feature. This will probably become more and



Data Security in Service-Oriented Architectures 171

more relevant as soon as protection of privacy becomes realized as useful for marketing
purposes.

Besides the missing recognition of the possibilities for the protection of privacy, it can be
noticed that customers become used to privacy violations as long as they do not perceive
them as a worrying issue. For instance, data collected by rebate companies (purchasing
patterns etc.) that are used and sold for marketing purposes do not become a concern for a
customer as long as the direct advantages (here: a discount) outweigh the perceived risk of
privacy violations.

In consequence, today’s customer demand for protection of privacy is not yet very high.
But it will probably rise after increasing awareness caused by experienced abuse.

For a service provider, the implementation of privacy features is not desirable as long as
customer demand is too low. The reason is that companies are interested in collecting as
much data about customers as possible for Customer Relationship Management (CRM)
purposes.

As we have seen in the find-a-friend-example, the protection of privacy can also affect the
market itself: In the extreme, a service provider could become obsolete — and nobody pays
for a service not being provided.

6 Conclusion

As shown by the find-a-friend service example, only an appropriate system design re-
specting privacy and security as fundamental prerequisite from the beginning of the design
process on leads to optimal solutions.

Sensitive information should only be revealed when it is really necessary. Even when
information divulgement seems to be inevitable at the first sight, with appropriate tech-
niques often a better way can be found. Besides “standard” methods like encryption and
decryption, techniques like secure two-party or even secure multi-party computation can
be employed.

Unfortunately, albeit being well observed in research for years, these possibilities are still
not known to most application designers and developers, decisions makers, and least to
general public. Besides that, companies like service providers or government are not that
interested in using all possible algorithms for ensuring privacy: They prefer collecting as
much data as possible as long as customers or citizens, respectively, do not complain. Be-
sides that, economic considerations lead to the observation that implementation of mech-
anisms for the protection of privacy is currently often undesirable for industry — at least
at first sight.

In consequence, privacy advocates should not only complain about missing protection of
privacy but do awareness training of the public. The public needs to know that powerful
techniques for securing IT systems and implementing privacy protection exist. Only in-
formed customers can create enough market demand and therewith pressure for industry
to implement privacy protection in their software and services.



172

Dirk Henrici, Jochen Miiller

We highlighted that the emerging requirements introduced by interacting organizations
using service-oriented architectures can only be addressed by conceptual changes in the
design of operating systems and applications. We brought to mind that the technical means
for securing IT systems and protection of privacy in privacy sensitive applications do exist.
We also illustrated that doing much for security and privacy is not enough — the right
things need to be done using suitable techniques. Therewith we want to contribute to
raise awareness for security in today’s IT systems and privacy issues in society and for the
existing technical possibilities for solving privacy related problems.

References

[At00]
[BDSG]
[Be03]
[Ch85]
[Ch81]
[Cr00]

[CWO05]

[Du01]
[EUO03]
[Ep03]

[FeO1]

[Go87]
[He04]
[Ja03]

[Ke83]

[KI01]
[Lo98]

Atallah, M. J.; Du, W: Secure Multi-party Computational Geometry. Lecture Notes in
Computer Science, vol. 2125, pp. 165-179, 2000

Bundesdatenschutzgesetz, Bundesgesetzblatt (BGBI. I 2003 pp. 66ff), 2003. Web: hitp:
/iwww.bfd.bund.de/information/BDSG.pdf

Beresford, A., Stajano, F.: Location Privacy in Pervasive Computing, IEEE Pervasive
Computing, vol. 2, no. 1, pp. 46-55, 2003

Chaum, D.: Security without identification. Communications of the ACM, 28(10): 1030-
1044, 1985

Chaum, D.: Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms.
Communications of the ACM, vol. 24(2), pp. 24-88, 1981

Cramer, R.: Introduction to secure computation. Lecture Notes, University of Aarhus,
Department for Computer Science, 2000

Mearian, L.: Missing backup tapes spur encryption at Time Warner, ComputerWorld,
Mai 2005; Website: http://www.computerworld.com/securitytopics/security/story/0,
10801,101589,00.html

Du, W.: A Study of Several Specific Secure Two-Party Computation Problems. Purdue
University, West Lafayette, Indiana, 2001

Special Eurobarometer “Data Protection”, Survey of the European Opinion Research
Group (EEIG), 2003

Privacy & Human Rights 2003, (see hitp://www.epic.org/bookstore/epic_books.html),
2003

Feigenbaum, J. et al.: Secure Multiparty Computation of Approximations. Proceedings
of the 28th International Colloquium on Automata, Languages and Programming (ICALP
’01), 2001

Goldreich, O.; Micali, S.; Wigderson, A.: How to play any mental game. Proceedings of
the Nineteenth Annual ACM Symposium on Theory of Computing, pp. 218-229, 1987
Henrici, D.; Miiller, P.: Sicherheit und Privatsphire in RFID-Systemen; VDE-Kongress
2004, VDE-Verlag, 2004

Jacobs, A. R.; Abowd, G. D.: A Framework for Comparing Perspectives on Privacy and
Pervasive Technologies, IEEE Pervasive Computing, vol. 2, no. 4, pp. 78-84, 2003
Kerckhoffs, A.: La cryptographie militaire, Journal des sciences militaires, vol. IX, pp.
5-83, Jan. 1883, pp. 161-191, Feb. 1883

Klensin, J.: RFC 2821 - Simple Mail Transfer Protocol, Network Working Group, 2001
Loscocco, P. A. et al.: The Inevitability of Failure: The Flawed Assumption of Security in
Modern Computing Environments, National Security Agency. 21* National Information
Systems Security Conference, 1998



[LoO01]

[Sh93]

[Sf05]

[To04]

[Wu05]

[Ya82]

[Ya86]

Data Security in Service-Oriented Architectures 173

Loscocco, P. A.; Smalley, S. D.: Meeting Critical Security Objectives with Security-
Enhanced Linux, Proceedings of Ottawa Linux Symposium, 2001

Secure Hash Standard, National Institute of Science and Technology USA, Federal Infor-
mation Processing Standard (FIPS) 180-1, 1993

Sourceforge, Open Source software development website, 2005. Web: http://www.sf.net
Toms, A.: Threats, challenges and emerging standards in web services security. Techni-
cal Report HS- IKI-TR-04-001, University of Skovde, Department of Computer Science,
Sweden, 2004

Wu, H.: The Misuse of RC4 in Microsoft Word and Excel, Cryptology ePrint Archive:
Report 2005/007, 2005. Web: http://eprint.iacr.org/2005/007

Yao, A.C.: Protocols for secure computations. Proceedings 23™ Annual IEEE Symposium
on Foundations of Computer Science, pp. 162-167, 1982

Yao, A.C.: How to generate and exchange secrets. Proceedings 27" IEEE Symposium on
Foundations of Computer Science, pp. 162-167, 1986



