
cba

Herausgeber et al. (Hrsg.): Name-der-Konferenz,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

Canola seed or not? Autoencoder-based Anomaly Detection
in Agricultural Seed Production
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Abstract: Analysing harvested seeds is a time-consuming task in the seed-producing industry.
Automating this process has the potential to enhance and expedite agricultural seed production. In our
study, we focus on differentiating Canola seeds from visually similar non-Canola seeds using computer
vision techniques. Our approach utilises both RGB and hyperspectral images, captured by a specialised
camera, to train separate autoencoder neural networks. By leveraging the high spatial resolution of
RGB data and the high spectral resolution of hyperspectral data, we develop distinct models for Canola
seed analysis, ensuring a comprehensive and robust assessment. The autoencoder networks are trained
on a dataset of Canola seeds, allowing for the extraction of latent representations from both RGB
and hyperspectral data. This enables efficient compression of input data and effective discrimination
between Canola and non-Canola seeds. Our proposed approach demonstrates promising results in
detecting non-Canola seeds in unseen test data.
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1 Introduction

In agricultural seed production, classifying and sorting harvested seeds is ultimately required
for quality assurance. At the same time, however, this task is also particularly challenging
and requires years of expertise and training for human analysts. Using rapeseed as a sample
case, we are developing an AI-supported platform for the classification and sorting of plant
seeds and seed purity. To this end, we aim to integrate advanced machine learning techniques
with robotic sensors and actors into a unified, continuously learning sorting platform. It
will establish sorting as a collaborative process between users and the learning algorithm in
order to significantly increase its efficiency in comparison to manual testing.

From a computational point of view, the central task of this approach is the computer vision
task of anomaly detection. This task plays a vital role in both human and machine intelligence
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by identifying unusual or unexpected patterns in data. It holds significant importance across
diverse domains such as science, engineering, finance, healthcare, cybersecurity, and more.
Anomaly detection is crucial for identifying outliers or deviations from the expected
behaviour, enabling timely intervention and decision-making in various applications and
disciplines.

Here, we apply anomaly detection techniques in the context of agricultural production of
Canola seed (scientifically known as Brassica napus L./Rape seed). As Canola seeds play a
crucial role in ensuring global food security [AA; He20], the presence of weeds in oilseed
rape fields during the harvest presents a significant challenge. It complicates the seed sorting
process and compromises the accuracy of regulatory purity testing during seed production.
To tackle this issue, we propose an anomaly detection system specifically designed for
differentiating Canola from non-Canola seeds using hyperspectral and RGB images. In this
paper, we assess this approach for Canola seeds and samples of three commonly encountered
weed species by conducting comprehensive anomaly detection analyses.

2 Related Work

Anomaly detection for images is an important area of research with broad applications
in various fields [Pi14]. Recently, there has been increasing attention to the development
of unsupervised anomaly detection methods that do not rely on labelled data. The three
arguably most widely used approaches employed for anomaly detection are autoencoders,
generative adversarial networks and transfer learning with convolutional neural networls.

In the context of anomaly detection, an autoencoder (AE) may be trained using a collection
of normal images and subsequently applied to analyse new, unseen images. If the AE
struggles to reconstruct an input image accurately, it is identified and classified as an
anomaly. A vanilla AE may, however, struggle to reconstruct complex image features, such
as textures and patterns, which can lead to false positives or false negatives. To address this
limitation, researchers have proposed various modifications to the AE architecture, such as
using denoising AEs [Lu17] or adding regularisers to the loss function [AC15; Ma15; Ri11;
Vi08] to improve their reconstruction accuracy and anomaly detection performance.

Generative adversarial networks (GANs) models [AAB19; Sc17; Sc19] may be used to
characterise the normal distribution of the data and subsequently identify anomalies as
samples that significantly deviate from this distribution. However, GAN approaches present
certain challenges in their training process, such as failure to converge and mode collapse
[Me16]. Additionally, distinguishing abnormal samples from the generative distribution
poses difficulties, affecting the performance [AAB19]. Another popular approach is transfer
learning, where pre-trained CNNs are fine-tuned on anomaly detection tasks [An16; De21;
Ro22]. This approach has been shown to be effective in detecting anomalies in new domains
with limited labeled data availability. However, due to the disjointed feature extraction and
anomaly scoring could lead to suboptimal results [Pa21].
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3 Methodology

Due to its simplicity, speed, and established performance, we selected an autoencoder (AE)
architecture as the foundation for the anomaly detection system. The availability of sufficient
training data, too, was supporting this decision. The AE operates in two stages: Initially,
it takes an input image, represented as 𝑟𝑖 , and compresses it into a lower-dimensional
representation. In the subsequent stage, the AE aims to reconstruct the input image with the
highest accuracy. The loss function, which measures the difference between the reconstructed
image 𝑟 ′

𝑖
and the input image 𝑟𝑖 , is defined as follows:

𝑀𝑆𝐸 =
1
𝑛

𝑛∑︁
𝑖=1

(𝑟𝑖 − 𝑟 ′𝑖 )2 (1)

where 𝑟𝑖 and 𝑟 ′
𝑖

denote the input and reconstructed images, respectively.

Considering the presence of two types of data, namely hyperspectral data with high spectral
resolution but low spatial resolution, and RGB data with low spectral resolution but high
spatial resolution, we propose to employ two separate autoencoder-based models tailored to
each data type, namely RGB-AE and HS-AE with latent dimension of 4096 (see. Fig 1).

It is important to note that our HS-AE differs from RGB-AE in its architecture. In addition to
Conv2D and fully connected layers (similar to RGB-AE), HS-AE also incorporates Conv3D
layers to extract spatio-spectral information (refer to Fig. 1b). To enable the use of RGB
images as input, we standardised their size by resizing or padding them to a consistent
dimension of 192x192 pixels. Furthermore, for the sake of computational efficiency in
HS-AE, a hyperspectral region of interest was extracted from the centre of the hyperspectral
images, specifically with a volume of 16x16x300.

(a)

(b)

Fig. 1: Architectures of RGB-AE (a) and HS-AE (b). Please note, for RGB-AE and HS-AE use
BatchNorm (yellow) and LeakyReLU (red)
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4 Experiments

Data. The training dataset utilised in our study comprises a total of 3,156 RGB images along
with their corresponding 3,156 hyperspectral images of Canola. For the purpose of testing,
we have a separate set containing 370 images, out of which 280 belong to the normal class
(Brassica napus L.). The remaining 90 images in the test set are equally distributed among
three distinct weed species: Anchusa arvensis L., Sinapis alba L., and Sinapis arvensis L.
(see Fig. 2). Hence, the primary objective of our anomaly detection approach is to accurately
identify these 90 images from the anomalous class. The corresponding hyperspectral images
are composed of 300 wavelengths within the visible and near-infrared (VNIR) range of the
electromagnetic spectrum (380 - 1000 nm) (see Fig. 3).

(a) (b) (c) (d)

Fig. 2: Examples of images from the test dataset. (a) Represents the normal class, showing images of
B. napus, (b-d) Depict anomalous classes, displaying images of Anchusa arvensis L., Sinapis alba L.,

and Sinapis arvensis L. respectively.
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Fig. 3: Mean spectra with standard deviation for each seed species in test dataset

Training setting. Both the RGB-AE and HS-AE models were trained using the same
configuration. This configuration involved training with the Adam optimizer, using a
learning rate of 0.001 for 100 epochs with a learning rate schedule. A batch size of 128
was employed, and various data augmentation techniques, such as vertical and horizontal
flips, as well as rotations, were applied to augment the training dataset and expand its size.
To compare the performance of the two models, we employed several evaluation metrics,
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including (i) the Area Under the Receiver Operating Characteristic Curve (AUC), (ii) Ac-
curacy, (iii) Sensitivity, (iv) Specificity and (v) weighted F1-Score. In our study, we
determined the threshold by using the ROC curve, as the selection of this threshold can lead
to significant variations in metrics (ii) to (iv).

Results. As illustrated in Fig. 4a, the HS-AE exhibits an AUC score of 0.96, surpassing the
score of 0.90 achieved by the RGB-AE. The optimal thresholds determined by analysing the
ROC curve are 7.7191 × 10−3 for the RGB-AE and 8.5624 × 10−4 for the HS-AE. Upon
closer inspection of the Table 1, it can be observed that the specificity of the RGB-AE is only
slightly higher than that of the HS-AE, reaching 0.857. However, the HS-AE demonstrates
a significantly higher sensitivity of 0.941. Furthermore, the F1-Score is also superior for the
HS-AE, measuring 0.881 as opposed to 0.845 for the RGB-AE. Similarly, the accuracy, as
illustrated in Figure 4b, shows that the HS-AE achieves 0.875, which is 0.35 higher than the
accuracy achieved by the RGB-AE.

(a) (b)

Fig. 4: Comparison of the performance between RGB-AE (blue) and HS-AE (green):
(a) ROC curve and Area under the ROC curve, and (b) Number of correctly detected images.

Accuracy Sensitivity Specificity F1-score AUC

RGB-AE 0.840 0.788 0.857 0.845 0.897
HS-AE 0.875 0.944 0.853 0.881 0.961

Tab. 1: Evaluation metrics of RGB-AE and HS-AE

5 Discussion

Results from training and testing demonstrate the reliability of our approach for differentiating
Canola from non-Canola seeds. In order to gain deeper insights, we conducted a thorough
analysis to identify the specific types of anomalies where the HS-AE and RGB-AE made
the highest number of incorrect predictions. Our findings, depicted in Fig. 5, reveal that
both models performed remarkably well in detecting anomalies associated with the species
S. alba with the HS-AE model correctly detecting all images of this species.
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Fig. 5: Reconstruction error distributions (anomaly scores) for test datasets generated
by RGB-AE (a) and HS-AE (b), using MSE. The dashed red line indicates the threshold.

On the other hand, the RGB-AE model successfully detected all images associated with
the A. arvensis, but encountered difficulties in detecting anomalies related to S. arvensis.
This difficulty can be attributed to the visual similarities between B. napus and S. arvensis.
However, by utilising hyperspectral data, it becomes possible to effectively distinguish
between these two species. The aforementioned findings highlight the superiority of the
HS-AE, as it outperformed the RGB-AE across almost all evaluation metrics. This indicates
that the spectral information of plant seeds holds greater importance than the spatial
information for the most cases.

6 Conclusion and Outlook

In conclusion, we strongly believe that AI has a crucial role to play in promoting sustainability
in agriculture. By automating routine processes and reducing errors, AI simplifies the
lives of agricultural workers. Our system specifically focuses on seed production and
aids in ensuring seed purity, a task traditionally performed by humans. By incorporating
AI technology, we can enhance the efficiency and accuracy of this process, ultimately
contributing to a more sustainable agricultural industry.

In this study, we successfully demonstrated the effectiveness of autoencoders (AE) in
differentiating Canola from non-Canola seeds using RGB and hyperspectral images. The
results highlight the potential of our approach to optimize and accelerate agricultural seed
production.

Moving forward, our future work aims to advance anomaly detection techniques in agriculture.
We plan to integrate the strengths of RGB imagery and hyperspectral data, leveraging both
approaches to achieve more accurate anomaly detection. Furthermore, we will identify key
wavelengths that provide valuable information for distinguishing different types of plant
seeds. This will simplify the anomaly detection process, increase efficiency, and potentially
reduce costs.
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