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Abstract: Content based multimedia retrieval is an important topic in database sys-
tems. An emerging and challenging topic in this area is the content based search in
video data. A video clip can be considered as a sequence of images or frames. Since
this representation is too complex to facilitate efficient video retrieval, a video clip is
often summarized by a more concise feature representation. In this paper, we trans-
form a video clip into a set of probabilistic feature vectors (pfvs). In our case, a pfv
corresponds to a Gaussian in the feature space of frames. We demonstrate that this
representation is well suited for accurate video retrieval. The use of pfvs allows us
to calculate confidence values for frames or sets of frames for being contained within
a given video in the database. These confidence values can be employed to specify
two types of queries. The first type of query retrieves the videos stored in the database
which contain a given set of frames with a probability that is larger than a given thresh-
old value. Furthermore, we introduce a probabilistic ranking query retrieving the k
database videos which contain the given query set with the highest probabilities. To
efficiently process these queries, we introduce query algorithms on set-valued objects.
Our solution is based on the Gauss-tree, an index structure for efficiently managing
Gaussians in arbitrary vector spaces. Our experimental evaluation demonstrates that
sets of probabilistic feature vectors yield a compact and descriptive representation of
video clips. Additionally, we show that our new query algorithms outperform compet-
itive approaches when answering the given types of queries on a database of over 900
real world video clips.

1 Introduction

Video clips are an important type of multimedia data. Due to recent technical advances,
the amount of video data that is available in digital formats as well as the possibility to
access and display such video files has increased enormously. Nowadays, it is possible to
view complete movies on mobile phones and MP3 players. Another important aspect is
that broadcasting videos over the WWW (e.g. in video podcasts) allows to distribute video
data to a large number of people while spending minimum effort and budget.

The enormous amount of video clips and movies that is currently available causes a need
for database techniques to manage, store and retrieve video data for various applications.
In this paper, we focus on the following scenario: Given a database of movies or video
clips, we want to retrieve all movies from the database that are likely to match a given set
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Figure 1: A news video clip summarized as set of probabilistic feature vectors.

of query images. The query images might consist of a continuous image sequence of a
scene or might be sampled from the complete movie. For this type of scenario, there are
various applications. For example, a company wants to determine if a given video podcast
or shared video file contains scenes from any copyright protected movie or video clip. In
this scenario, the company would store all of its movies in the database and automatically
check if the scenes in the video podcast match any scenes in the database.

Another example is a database of news programs recorded on various days from various tv
stations. A user can retrieve all news programs that are likely to contain a given video clip
featuring a particular event. Since most news programs use videos which are provided by
video news agencies, it is very likely that the news programs dealing with similar topics
contain similar news clips. Another application is the detection of commercials in video
data recorded from television. In this case, the commercial is the query and the programs
are stored in the database. Thus, there are varying applications for this scenario varying
from the detection of single scenes to similarity search on complete movies.

From a technical point of view video data consists of a sequence of images (so-called
frames) that might be accompanied with some soundtrack. In our approach, we focus
on the image part only. To allow similarity search on video clips, each frame is usually
represented by a feature vector corresponding to some content based image representation
such as color histograms or texture vectors. So-called summarization [ZRHM98, GGM02,
CSL99] techniques are used to reduce the enormous number of frames. For summariza-
tion, a video is decomposed into shots, i.e. a sequence of frames within a movie showing
the same scenario recorded from the same camera position. The images within a shot are
usually very similar and thus, the images are usually associated to very similar feature vec-
tors. Therefore, each shot can be summarized by some representative object and only the
representative objects are stored in the database. To represent a shot, it is often sufficient
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to simply take the centroid or mean vector of all feature vectors within the shot. Newer
approaches like [IBW+04] represent shots as Gaussian probability density functions (pdf)
where each component µi of the mean vector is complimented by a variance σ2

i . We call
such feature vectors where each vector component is associated to a variance value proba-
bilistic feature vector (pfv). This type of summarization is usually more accurate because
the method additionally considers the variance among the summarized feature values. In
our new approach, we condense the given video data even more, by representing all similar
frames by one Gaussian regardless of the shot they belong to. To conclude, each movie
in the database is represented by a set of probabilistic feature vectors (pfvs) where each
Gaussian represents a set of similar frames.

Our work is focused on similarity search and scene detection in movie databases. To pose
a query, a user has to provide a video clip that might comprise a scene in the movie or even
the complete movie. The query clip can be transformed into a set of frames, correspond-
ing to a set of traditional feature vectors or a set of probabilistic feature vectors. To use
probabilistic (rather than traditional) feature vectors for the queries yields advantages as
well as disadvantages: extracting a set of frames and determining traditional feature vec-
tors without further summarization might be computationally simpler and less expensive.
In contrast, probabilistic feature vectors might represent the information contained in the
query in a more concise way. Therefore, we will examine both possibilities.

Furthermore, we develop a method for comparing both types of query representations to
objects stored in the database which is based on the likelihood that the query matches the
database object. Based on this method, we describe two types of probabilistic queries. The
first type is the set-valued probabilistic threshold query retrieving all movies matching the
given query frames with a likelihood which is higher than a specified threshold value. The
second query type is the set-valued probabilistic ranking query retrieving the top k movies
from the database which are most likely query hits.

Although summarization considerably decreases the size of the representation of each
database object, query processing still requires to examine every movie description in the
database. Therefore, we will introduce algorithms for query processing that are facilitated
by the Gauss-tree [BPS06b], an index structure for probabilistic feature vectors. Let us
note that our previous work on the Gauss-tree was focused on querying single objects.
In this paper, we introduce techniques for querying set-valued objects which is a more
complex problem.

Our main contributions in this paper are:

• A compact representation of a video as sets of probabilistic feature vectors and a
method for similarity and partial similarity search based on statistics.

• The specification of two new types of probabilistic queries on sets of probabilistic
feature vectors.

• Efficient algorithms for processing these new types of queries on sets of probabilistic
feature vectors which are based on the Gauss-tree.

The rest of the paper is organized as follows. Section 2 surveys related topics like content
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based video retrieval and similarity search using point sets and probabilistic feature vec-
tors. Additionally, the Gauss-tree is introduced as the index structure the query algorithms
are based on. In section 3, we will formalize our model and the new types of queries. Sec-
tion 4 describes the new algorithms for query processing. To demonstrate the quality of
our approach to video retrieval and show the superior efficiency of our query algorithms,
we provide several experiments on a database of over 900 video clips in section 5. The
paper is concluded by section 6 containing a short summary.

2 Related Work

2.1 Video Summarization Techniques.

Since video data consists of large sequences of images or frames, a straightforward feature
representation of a movie might contain thousands or even millions of feature vectors. In
order to handle such data efficiently, summarization techniques are usually applied to the
original data, i.e. the original feature vectors are grouped together and each group is rep-
resented by a summarization vector or summarization representative. Then similarity is
defined based on these summarizations. Summarizations are usually generated by apply-
ing optimization algorithms on feature vectors. They describe a video as a mix of statistical
distributions or cluster representatives. The authors of [CSL99] propose an approach for
obtaining a compact representation of videos that computes the optimal representatives
by minimizing the Hausdorff distance between the original video and its representation.
There also exist approaches which apply k-medoid or k-means clustering for the sum-
marization of video clip content [ZRHM98]. In [GGM02], a summarization technique is
presented which describes spatial-temporal areas in a sequence of a few dozen frames by
mixtures of Gaussian distributions. The authors of [IBW+04] demonstrated that Gaussian
mixture models computed from video shots yield higher retrieval precision compared to
keyframe-based models. However, to the best of our knowledge, none of these techniques
uses an index structure for the pfvs to accelerate query processing.

2.2 Similarity Search Based on Set-Valued Objects

Set-valued objects are usually compared by complex distance measures like [EM97, RB01]
allowing similarity queries. However, selecting a suitable distance measure for a partic-
ular application is often quite difficult because there exist many different notions of sim-
ilarity between two sets of feature vectors. Another problem is the understandability of
the derived distances. For complex distance measures and large set-valued objects con-
taining hundreds of instances, it is very difficult to understand why the set-valued objects
are similar. Finally, employing the proposed distance measures often yields efficiency
problems. Since most of the distance measures for set-valued objects are non-metric, em-
ploying index structures is not always possible. Additionally, useful filter steps avoiding
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time consuming distance calculations like in [BKK+03] were introduced for a minority
of multi-instance distance measures only. To the best of our knowledge there is so far
no query algorithm handling sets of probabilistic feature vectors, instead of ordinary set-
valued objects.

2.3 Similarity Search Based on Probabilistic Feature Vectors

In [CKP03] a new uncertainty model is introduced and several new types of queries are
described that allow the handling of inexact data. [CXP+04] describes two methods for
efficiently answering probabilistic threshold queries that are based on the R-Tree [Gut84].
A probabilistic threshold query returns all data objects that are placed in a given query
interval with a probability exceeding a specified threshold value. [TCX+05] introduced
the U-Tree for indexing uncertain 2D objects. All these approaches do not handle sets
of probabilistic feature vectors and do not apply a Bayesian setting. Thus, the mentioned
approaches are rather dealing with data objects having an uncertain location. Besides
the mentioned methods for indexing spatially uncertain objects, [DYM+05] introduces
existential uncertainty. The idea of this approach is that the existence of each data object
is uncertain.

2.4 The Gauss-tree

In [BPS06b], the Gauss-tree is introduced which is an index structure for managing large
amounts of Gaussian distribution functions. Additionally, [BPS06b] proposed probabilis-
tic identification queries which are based on a Bayesian setting, i.e. the paper deals with
the retrieval of the database objects that explain a given query observation with the highest
probability. This setting is more similar to the queries described in this paper. However,
the queries in [BPS06b] are based on the assumption that there is exactly one individual
object explaining the query object. In our setting a very important aspect is that one query
video clip might be contained in several database movies. Another major difference to the
approach described in this paper is that [BPS06b] strictly deals with single-valued proba-
bilistic feature vectors. In [BPS06a] the Gauss-tree was extended to handle objects having
an uncertain location as proposed in [CXP+04].

Since the Gauss-tree is the index structure our new method is based on, we will now survey
the main characteristics of this approach and the processing of single-valued queries. For
the Gauss-tree, a single pfv is defined as follows:

Definition 1 A probabilistic feature vector v is a vector consisting of d pairs of feature
values µi and standard deviations σi. Each pair defines a univariate Gaussian distribution
of the true feature value xi, defined by the following probability density function:

Nµi,σi
(xi) =

1√
2πσi

· e
−(xi−µi)

2

2σ2
i
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The probability density of a probabilistic feature vector v for a given vector of actual
values x can be calculated in the following way:

p(x|v) =
d∏

i=1

Nµi,σi
(xi)

Let the dimensionality of the data space be d, i.e. our pdf are d-variate Gaussian functions
each of which is defined by d pairs of means and standard deviation (µi, σi, 1 ≤ i ≤ d).
According to this definition our method is based on independent features which is often
not given in a given application. However, as in naive Bayes classification, neglecting the
dependencies between the dimensions does not necessarily cause a bad retrieval perfor-
mance. Furthermore, in image data the correlations between the features are more or less
an inherent characteristic of the transformation method and not to a given database. Thus,
it is possible to use feature transformation techniques like principal component analysis
(PCA) to find orthogonal dimensions. The idea of the Gauss-tree is to regard the parame-
ters of each Gaussian as vectors (points) of a (2 · d)-dimensional space. The structure of
the index is then inherited from the R-tree [Gut84] family, as formalized in the following
definition:

Definition 2 (Gauss-tree)
A Gauss-tree of degree M is a search tree where the following properties hold:

• The root has between 1 and M entries unless it is a leaf. All other inner nodes have
between M/2 and M entries each. A leaf node has between M and 2M entries. An
inner node with k entries has k child nodes.

• Each entry of a leaf node is a probabilistic vector consisting of d probabilistic fea-
tures (µi, σi), 1 ≤ i < d.

• An entry of a non-leaf node is a minimum bounding rectangle of dimensionality
2 · d defining upper and lower bounds for every feature value [µ̌i, µ̂i] and every
uncertainty value [σ̌i, σ̂i] as well as the address of the child node.

• All leaf nodes are at the same level.

In Figure 2, we see an example of a Gauss-tree consisting of 3 levels. In the middle, we
have depicted the minimum bounding rectangle of a leaf node for one of the probabilistic
features. This minimum bounding rectangle allows to store feature values between µ̌ =
3.0 and µ̂ = 4.0 and uncertainty values between σ̌ = 0.6 and σ̂ = 0.9. A few sample pfv
which are stored in this data page are also depicted. The Gaussian functions (probability
density functions, pdf) which correspond to these pfv are also shown on the right side of
Figure 2 in gray lines.

For query processing, we need a conservative approximation of the probability density
functions which are stored on a page or in a certain subtree. Intuitively, the conservative
approximation is always the maximum among all (possible) pdfs in a subtree. This max-
imum can be efficiently derived from the minimum bounding rectangle. In Figure 2, the
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Figure 2: A 3 level Gauss-tree.

maximum function which has been derived from the depicted minimum bounding rectan-
gle is shown on the right side using a solid black line. As a formula, the approximating
pdf N̂µ̌,µ̂,σ̌,σ̂(x) is given as:

N̂µ̌,µ̂,σ̌,σ̂(x) = max
µ∈[µ̌,µ̂],σ∈[σ̌,σ̂]

{Nµ,σ(x)}

With a case distinction involving seven different cases, N̂...(x) can be efficiently and ana-
lytically computed:

N̂µ̌,µ̂,σ̌,σ̂(x) =

8>>>>>>>><>>>>>>>>:

Nµ̌,σ̂(x) if x < µ̌− σ̂ (I)
Nµ̌,µ̌−x(x) if µ̌− σ̂ ≤ x < µ̌− σ̌ (II)

Nµ̌,σ̌(x) if µ̌− σ̌ ≤ x < µ̌ (III)
Nx,σ̌(x) if µ̌ ≤ x < µ̂ (IV )
Nµ̂,σ̌(x) if µ̂ ≤ x < µ̂ + σ̌ (V )

Nµ̂,x−µ̂(x) if µ̂ + σ̌ ≤ x < µ̂ + σ̂ (V I)
Nµ̂,σ̂(x) if µ̂ + σ̂ ≤ x (V II)

Since we assume independence in the uncertainty attributes, we can safely determine
N̂µ̌,µ̂,σ̌,σ̂(x) in each dimension separately. Please note that N̂µ̌,µ̂,σ̌,σ̂(x) is not really a
probability density function as it does not integrate to 1 for the whole data space. It is the
conservative approximation of a set of probability density functions.

Similarly to the other index structures from the R-tree family, the Gauss-tree is constructed
by iteratively inserting new objects. A node split operation is performed whenever a node
exceeds its defined capacity (M ). For the selection of a branch of the Gauss-tree upon
insertion of a new object and for the determination of a split dimension, strategies have
been proposed which minimize the integral of N̂µ̌,µ̂,σ̌,σ̂(x).

Several query types for databases of Gaussian pfv have been defined. Query objects
may either be conventional d-dimensional feature vectors (exact queries) or probabilis-
tic feature vectors (probabilistic queries). Probabilistic queries can be processed like exact
queries if the variances of the query are added to the corresponding variances of the pfv
stored in the database. The first defined query type is the k-most likely identification
query (k-MLIQ) which reports the k objects having maximum probability-based simi-
larity. Given the query vector q, the algorithm accesses the nodes of the Gauss-tree in

138



increasing order of N̂µ̌,µ̂,σ̌,σ̂(x). A priority queue [HS95] is used to support this access
order. Query processing stops when k pfv have been retrieved having a higher probability
at the query point than the hull function N̂µ̌,µ̂,σ̌,σ̂(x) of the top page in the priority queue.

In a similar way, probability threshold queries are processed. For this query type, the user
specifies the threshold PΘ of the probability of the query answers rather than the number
of answers.

3 Video Retrieval using Probabilistic Feature Vectors

In this section, we will formalize video summarization using sets of probabilistic feature
vectors (pfvs) following a Gaussian density function. Additionally, we will provide the
probabilistic framework for comparing queries to movies and specify the new types of
queries.

As mentioned before, the video part of a movie is a sequence of images which can be trans-
formed into d-dimensional feature vectors f ∈ Rd. Applying summarization techniques, a
video is represented by a set of pfvs. Let us note that there are other notions of pfvs which
are based on different density functions, but in this paper the distribution function of a pfv
is considered to be Gaussian. Thus, our pfvs are defined as proposed in definition 1.

To represent a movie, we employ a set of pfvs. Each pfv is considered to represent a set
of similar frames in the movie. Let us note that a pfv does not necessarily correspond
to a single shot. Instead, we summarize similar frames without considering shots first.
Additional to each pfv, we consider a weight wi expressing the average amount of frames
represented by the given pfv vi in the complete movie. Thus, pfvs representing more
frames have larger weights than pfvs representing a smaller fraction of the frames. We can
now define a movie descriptor as follows:

Definition 3 A movie descriptor M is a set of pfvs {v1, . . . , vk} and a weighting
{w1, . . . , wk}. wi corresponds to the a priori likelihood that a frame in the movie is

described by the pfv vi. Furthermore, the following condition holds:
k∑

i=1

wi = 1

A query is posed by specifying a video clip or only a part of it. To calculate the likelihood
that the query is contained in some database object, we first of all have to apply some
feature transformation to the query as well. Thus, a query Q can be considered as a
set of feature vectors {q1, . . . , ql} with qi ∈ Rd. To calculate the probability that Q is
contained in a movie described by M , we first of all have to derive a probability for a
single query frame qi for being contained in a given pfv vj ∈ M having the weight wj .
A pfv corresponds to a density function over Rd. Thus, we can calculate the density of
qi w.r.t. vi. However, to calculate a probability for a single vector in a continuous space,
we would have to integrate over some interval. Since for a single vector this interval
converges to 0, the probability of the vector converges to 0 as well. However, since we
already observed qi, we actually do not need to calculate the probability that exactly qi
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occurs in the given video. Instead, we can apply the theorem of Bayes and calculate the
conditional probability that qi belong to vj under the condition it appeared at all. To
formalize this condition, we have to distinguish three cases. First, qi belongs indeed to vj .
Second, qi belongs to some other pfv vk in the same movie M . Finally, qi is not contained
in M but is part of some other movie. To approximate the last case, we specify H0(qi)
which is modeled by a uniform distribution or the average density of any known pfv for the
vector qi. Additionally, we multiply this density with the number of pfvs in the compared
movie descriptor to have a weighting which is equal to the movie descriptor.

Thus, the probability that qi appears at all is the sum of the probabilities p(qi|vi) that
qi belongs to some vi describing the current movie M and the probability that qi is not
contained in M . The later probability is expressed by H0(qi). Formally, we can calculate
the probability P (vj |qi) :

P (vj |qi) =
wj · p(qi|vj)∑

v̂∈V ŵ · p(qi|v̂) + H0(qi)

Since a movie is given by a set of pfvs, the probability that a frame qi is contained in the
complete movie described by M , can be computed by summing up the probabilities for
each pfv:

P (M |qi) =
∑

vj∈M

P (vj |qi)

Finally, we have to consider all frames qi ∈ Q of a query. Thus, we calculate the average
probability for any frame in the query qi for being contained in the given movie descriptor
M by:

P (M |Q) =

∑
q∈Q P (M |q)

|Q|

If a query comprises large numbers of frames this method yields performance problems.
Thus, we have to reduce the number of frames for the query object as well. If the query
must be answered in interactive time, sophisticated summarization techniques cannot be
applied. Thus, we propose a simple reduction by considering every ith frame only. If
time is less important, summarization by sets of pfvs is applicable. In this case, the query
is represented by a movie descriptor itself. For calculating the probability that a movie
descriptor Mq describes frames which are contained in the movie described by M , we will
proceed as follows. We first of all determine the probability that a query pfv vq describes
the same set of feature vectors as a pfv vm contained in the movie. This probability can be
defined as follows:

The probability density of two Gaussians for describing the same vector can be specified
as follows:

p(vq, vm) =
∫ +∞

−∞
p(vq|x)p(vm|x)dx
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Having this probability, we can calculate the conditional probability for vm under the
condition of vq in the following way:

P (vm|vq) =
wm · wq · p(vq, vm)∑

v̂∈M ŵ · wq · p(vq, v̂) + H0

Using this probability, we can proceed as above. The probability for P (M |Mq) is the
average probability of P (M |vq) which is the sum over all P (vj |vq) in M :

P (M |Mq) =

∑
vq∈Mq

∑
vj∈M P (vj |vq)

|Q|

Based on these probabilities, we can specify probabilistic queries retrieving any movie
in the database having a large enough probability for containing a query video clip. To
decide which probability is large enough for being contained in the result set, there are
two general approaches. The first is to define a fixed probability threshold, e.g. 80%.
Thus, we retrieve all movies containing the specified query frames with a probability of
more than 80%. Formally, we can define a set-valued probabilistic threshold query on
movie descriptors as follows:

Definition 4 (Set-Valued Probabilistic Threshold Query) (SVPTQ) Let DB be a database
of movie descriptors, let Q be a set of query frames and let Pθ ∈ [0 . . . 1] be a probability
threshold. The answer of a threshold identification query is defined as follows:

SV PTQDB(Q,Pθ) = {M ∈ DB|P (M |Q) ≥ Pθ}

The second method for deciding containment in the query result is to retrieve the k most
likely results. Thus, the threshold is relative to the database content. An example for this
type of query is: Retrieve the 5 movies from the database having the highest probability
for containing the query scene. We will call this type of query set-valued probabilistic
ranking query (SVPRQ). In the following we will formalize SVRCQs:

Definition 5 (Set-Valued Probabilistic Ranking Query)
(SVPRQ) Let DB be a database of movie descriptors M , let Q be a set of query frames
and let k ∈ N be a natural number. Then, the answer to a set-valued probabilistic ranking
query (SVPRQ) on DB is defined as the smallest set RQk(Q) ⊆ DB with at least k
elements fulfilling the following condition:

∀Ma ∈ RQk(Q),∀Mdb ∈ DB \RQk(Q) : P (Ma|Q) > P (Mdb|Q)

4 Indexing Summarized Videos

After describing the queries, we are now introducing our solution for efficient query pro-
cessing based on sets of probabilistic feature vectors.
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4.1 Answering Set-Valued Queries

In contrast to searching in a database where each object is represented by a single pfv, our
application requires the use of set-valued objects for both the query and the database ob-
jects. For query processing, we have to match all the elements of the query representation
(being traditional or probabilistic feature vectors) against all the movie descriptors in the
database. The difficulty of this task lies in the problem that even if a movie descriptor
offers a high likelihood for containing one of the elements of our query, the corresponding
movie needs not necessarily to be a likely candidate for containing the complete query.
Thus, in order to prune a movie descriptor from the search space, it is necessary to approx-
imate the probability of the complete movie descriptor for matching the complete query.

Our new method for indexing movie descriptors uses a single Gauss-tree for managing
all pfvs belonging to any movie descriptor in the database. Each pfv is identified by its
movie ID and an additional sequence number identifying the pfv within the movie. To
utilize this data structure for answering matching queries, we will describe conservative
approximations of the likelihood that the elements of a query Q are described by some
movie descriptor being stored in a set of nodes belonging to the Gauss-tree.

Therefore, we will first of all calculate the probability of a query element qi ∈ Q that qi is
contained in some movie M descriptor which is completely stored in a set of nodes P :

Lemma 1 Let Q be a set-valued query, let P = {p1, . . . , pm} be a set of nodes in the
Gauss-tree T containing the pfvs of a movie Descriptor M ∈ DB. We define the function
maxDenseP (q) as follows:

maxDenseP (q) = max
pi∈P

Npi
(q)

Then the following condition holds for all q ∈ Q:

∀M ∈ P : P (M |q) ≤ maxDenseP (q)
maxDenseP (q) + H0

Proof 1

P (M |q) =

∑
vi∈M

wi · p(q|v)∑
vi∈M

wi · p(q|v) + H0(q)
≤

max
pj∈P

Npj (q)

max
pj∈P

Npj (q) + H0(q)

⇔
∑

vi∈M

wi · p(q|v) ≤ max
pj∈P

Npj
(q)

⇔
∑

vi∈M

wi · p(q|v) ≤
∑

vi∈M

wi · max
pj∈P

Npj (q)

= max
pj∈P

Npj (q) ·
∑

vi∈M

wi = max
pj∈P

Npj (q) · 1
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Based on this lemma, we can determine the maximum probability for each element q of the
query Q of being contained in a movie M which is completely stored in the set of pages P .
To employ this lemma for approximating the likelihood of the complete query Q, we must
take the average of the conservative approximations over all elements of the query Q. The
average of a set of conservative approximations must be a conservative approximation of
the average of the exact values. Since each part of the sum in the average of approximations
is greater or equal to the exact value, the sum of approximations is greater or equal than
the sum of exact values as well. The average is the mentioned sum divided by the number
of elements. Therefore, the following condition holds:

∀M ∈ P : P (M |Q) ≤ 1
|Q|

·
∑
qi∈Q

maxDenseP (q)
maxDenseP (q) + H0(q)

Though we can now approximate the probability that Q matches some movie M ∈ P ,
the approximation is potentially depending on several nodes p ∈ P at the same time.
For ranking and pruning nodes in the query algorithms, we therefore prove the following
lemma:

Lemma 2 Let Q be a set-valued query, let P = {p1, . . . , pm} be a set of nodes in the
Gauss-tree T containing the pfvs of any movie descriptor M ∈ DB. Then the following
condition holds:

∀M ∈ P : P (M |Q) ≤ max
p∈P,q∈Q

Np(q)
Np(q) + H0(q)

= max
p∈P

maxProb(Q,n)

Proof 2

∀M ∈ P : P (M |Q) ≤ 1
|Q|

·
∑
q∈Q

max
p∈P

Np(q)

max
p∈P

Np(q) + H0(q)

≤ |Q|
|Q|

·max
qi∈Q

max
p∈P

Np(q)

max
p∈P

Np(q) + H0(q)

= max
q∈Q

max
p∈P

Np(q)
Np(q) + H0(q)

= max
p∈P,q∈Q

Np(q)
Np(q) + H0(q)

We can now approximate the probability P (M |Q) that M is completely stored in the set
of nodes P on the basis of a single node pmax where pmax is the node p maximizing
maxProb(Q, p). An important property of this approximation is that it can be used to
rank the access order of the nodes in the Gauss-tree for query processing. Additionally,
we will employ this lemma for pruning unnecessary pages and terminate our queries.

Our algorithms employ two data structures. The first is a priority queue containing the
nodes of the Gauss-tree that have not been examined yet. The priority is ranked with re-
spect to maxProb(Q, p) in descending order. Due to Lemma 2, maxProb(Q, p) yields an
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upper bound of the probability of a movie descriptor to be completely stored in the remain-
ing nodes of the tree. Additionally, maxProb(Q, p) can be considered as the maximum
probability for all query elements that are yet unknown.

The above lemmas describe the case that there is a set of the nodes which are guaranteed
to contain the complete set of considered movie descriptors. However, during query pro-
cessing we will encounter the case that we already retrieved some pfvs for a movie M ,
but there are still some v ∈ M which are stored in the part of the Gauss-tree that has
not been examined yet. For those movie descriptors, we have to store the already known
densities in the so-called candidate table until the complete set of pfvs is retrieved. Each
entry in the candidate table corresponds to a movie descriptor. For each movie stored in
the candidate table, we additionally store the sum of the densities for each query element
q and each density function vi that has been retrieved so far. Let us note that each density
p(q|vi) in each sum is weighted with wi which is the weight of the pfv vi in the descriptor
M . Finally, we store the number of all already retrieved density functions for each movie
descriptor M . Based on this data and the current maxProb(Q, p) on the top of our prior-
ity queue, we can also approximate the density of any partly known movie descriptor. The
approximation is formulated in the following lemma:

Lemma 3 Let M be a partially retrieved movie descriptor, A ⊂ M be the set of already
known pfvs with weight wa and let B ⊂ M be the still unknown elements of M . Further-
more, let P be the set of node in the Gauss-tree P containing B. We define the function
partDensityA(q) as follows:

partDensityA(q) =
∑
vi∈A

wi · p(q|vi) + (1−
∑
vi∈A

wi) ·maxDenseP (q)

Then, the following condition holds:

P (M |q) ≤ partDensityA(q)
partDensityA(q) + H0(q)

Furthermore, we can state for the complete query Q:

P (M |Q) ≤ 1
|Q|

·
∑
q∈Q

partDensityA(q)
partDensityA(q) + H0(q)

Proof 3 The proof is analogue to the proof of lemma 2.

4.2 Set-Valued Probabilistic Threshold Query

In our first query, we have a fixed global probability threshold PΘ which can be employed
to decide whether a movie is part of the result set. We will now explain our algorithm for
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SVPTQ(Query Q, float PΘ)
activePages := new PriorityQueue(descending)
candidateTable := new CandidateTable()
result := new List()
pruned := new List()
activePagesQueue.insert(root, 1.0)
DO

aktNode = activePages.removeFirst()
IF aktNode is a directory node THEN

FOR each node in aktNode DO
activePages.insert(node,maxProb(Q, node))

END FOR
END IF
IF aktNode is a data node THEN

FOR each pfv in aktNode DO
IF pfv.MovieID in pruned THEN

CONTINUE
END IF
candidateTable.update(pfv.MovieID, pfv(Q))
candidateEntry := candidateTable.get(pfv.MovieID)
IF candidateEntry.isComplete THEN

IF candidateEntry.probability(Q) ≥ PΘ THEN
result.add(pfv.MovieID)

END IF
candidateTable.delete(pfv.MovieID)

ELSE
IF andidateEntry.approximation(Q) ≤ PΘ THEN

pruned.add(pfv.MovieID)
candidateTable.delete(pfv.MovieID)

END IF
END IF

END FOR
END IF

WHILE((not candidateTable.isEmpty
or activePages.topProbability > PΘ)
and not activePages.isEmpty())

RETURN result;

Figure 3: Pseudocode of Set-Valued Probabilistic Threshold Query.

processing SVPTQs using the Gauss-tree. The pseudo code of this algorithm is displayed
in Figure 3. The algorithm starts by reading the root node of the Gauss-tree. For each node
p being a child node of the root, we now calculate maxProb(Q, p) and insert the nodes
into the priority queue which is sorted in descending order. Afterwards, the algorithm
enters its main loop which iterates until the priority queue is empty. Additionally, the
algorithm terminates if we can guarantee that there cannot be any movie descriptor left
matching the given query Q with a likelihood larger than PΘ. In each step, the algorithm
removes the top element of the queue. If the element is a node, it is loaded and pointers
to its child nodes are inserted into the priority queue, ranked by maxProb(Q, p). If the
top element of the queue is a pfv, we check if there is already an entry in the candidate
table corresponding to the movie descriptor M of the pfv. If not, we insert a new entry
into the candidate table. In both cases, we can update the sum for each query element for
the movie descriptors in the candidate table. If the current entry for the movie descriptor
M is complete, i.e. all of its pfvs have been retrieved, we can calculate the likelihood. If
this likelihood is larger than t, we can add M to the result set. Finally, the entry for M is
removed from the candidate table.
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SVPRQ(Query Q, integer k)
activePages := new PriorityQueue(descending)
resultQueue := new PriorityQueue(ascending)
candidateTable := new CandidateTable()
pruned := new List()
activePagesQueue.insert(root, 1.0)
DO

aktNode = activePages.removeFirst()
IF aktNode is a directory node THEN

FOR each node in aktNode DO
activePages.insert(node,maxProb(Q, node))

END FOR
END IF
IF aktNode is a data node THEN

FOR each pfv in aktNode DO
IF pfv.MovieID in pruned THEN

CONTINUE
END IF
candidateTable.update(pfv.MovieID, pfv(Q))
candidateEntry := candidateTable.get(pfv.MovieID)
IF candidateEntry.isComplete THEN
prob := candidateEntry.probability(Q)

IF prob≥ resultQueue.topProbability THEN
IF resultQueue.size = k THEN

resultQueue.removeFirst
END IF
resultQueue.add(pfv.MovieID,prob)

END IF
candidateTable.delete(pfv.MovieID)

ELSE
IF candidateEntry.approximation(Q) ≤

resultqueue.topProbability THEN
pruned.add(pfv.MovieID)
candidateTable.delete(pfv.MovieID)

END IF
END IF

END FOR
END IF

WHILE((not candidateTable.isEmpty
or activePages.topProbability > resultqueue.topProbability)
and not activePages.isEmpty())

RETURN result;

Figure 4: Pseudocode of Set-Valued Probabilistic Ranking Query

If the movie descriptor M is not complete after updating the priority queue, we approxi-
mate the current maximum likelihood of M and Q. If the conservative approximation is
smaller than t, we can exclude M from the result set. Thus, we store the ID of M in a
separated pruning list and delete its entry from the candidate table. If we later encounter
a pfv belonging to M , we can safely skip its computation after checking the pruning list.
Our algorithm terminates if maxProb(Q, p) for the top element of the priority is smaller
than PΘ. Additionally, we have to continue processing until the candidate table is empty,
to make sure that the result is complete.
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4.3 Set-Valued Probabilistic Ranking Query

The second query type proposed in this paper are SVPRQs. For SVPRs the minimum
probability for a result depends on the movie having the k highest probabilities for con-
taining the query set. The idea of the algorithm is quite similar to the previous algorithm.
However, for this type of query, we need a second priority queue storing those k movies
which currently have the largest probabilities for containing Q. We will sort this second
priority queue in ascending order and refer to it as result queue. The pseudo code for this
algorithm is displayed in Figure 4. We start again by ordering the descendant nodes of the
root page w.r.t. maxProb(Q, p). Afterwards we enter the main loop of the algorithm and
remove the top element of the queue. If this element is a node, we load its child nodes.
If these child nodes are nodes themselves, we determine maxProb(Q, p) and update the
priority queue. If the child nodes are pfvs, we check the candidate table for corresponding
movie descriptor M and insert a new descriptor, in the case that there is not already a
descriptor for the movie M . Afterwards, we can update the candidate table as mentioned
before. If a movie descriptor M has been read completely, we can delete it from the candi-
date table and compare its probability P (M |Q) to the probability of the top element of the
result queue, i.e. the movie descriptor encountered so far having the k highest probability.
If the probability of M is higher than that of the top element, we need to add M to the
queue. However, to make sure that we do not retrieve more than k elements, we have to
check the size of the result queue. If there are already k elements, we have to remove the
top element before inserting M . In the case, that the entry in the candidate table does not
contain the complete information about M yet, we still can calculate a probability estima-
tion and compare it to the top element of the result queue. If P (M |Q) is smaller than the
k highest probability in the result queue, we can guarantee that M is not a potential re-
sult. Thus, M is deleted from the candidate table and stored in our list for excluded movie
descriptors. The algorithm terminates if the top of the priority containing the remaining
notes provides a lower value than the top of the result queue and the candidate table is
empty.

5 Experimental Evaluation

5.1 Testbed

All experiments were performed on a workstation featuring a 2.2 GHz Opteron CPU
and 8GB RAM. All algorithms are implemented in Java 1.5. We evaluated our SVTCQ,
SVRCQ and their comparison partner using a database of 902 music video clips recorded
from various TV stations. The average length of a video clip within our collection is 4
minutes and 6 seconds. We extracted the image representations of the videos on a per-
frame basis, i.e. we generated 25 features/second for PAL and 30 features/second for
NTSC videos. From each image, we extracted a color histogram. For the color histogram,
we used the HSV color space which was divided into 32 subspaces, 8 ranges of hue and 4
ranges of saturation.
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(b) Recall.

Figure 5: Precision and recall achieved on similarity search by SVPRQ and its comparison partners
on complete video retrieval.

In order to obtain the summarization for each video clip, we applied the EM clustering
algorithm. The EM clustering provided us with approximately 100 multivariate Gaussians
per video clip. In our experiments, we performed video similarity search. As setup step,
we picked 40 query videos from our database and manually selected a set of videos which
are similar to the query videos.

To generate queries, we employed two methods for collecting query frames. The first
method tried to capture the complete video clip. Thus, we sampled every 50th frame from
the complete clip to derive a representative sample of frames. The second method simu-
lated queries which are posed by giving only a scene or shot from the video. Therefore,
we sampled a random interval from the sequence of all frames in the video corresponding
to about 500 frames, i.e. 20 seconds. For this type of query, we used every 10th frame
of the query interval, i.e. we used 50 frames per query. Additional to these queries, we
also generated queries which are represented by sets of probabilistic feature vectors. For
representing the complete video, we again employed EM clustering for 100 clusters on the
complete set of frames in one video clip. For the queries on the scenes, we clustered the
500 frames, deriving 5 Gaussians.

To have comparison partners for retrieving videos on sets of ordinary feature vectors, we
generated a database containing color histograms for all frames of every video clip in
our test set. We employed two well-established distance measures for set-valued objects
to pose queries to this database, the Hausdorff(HD) distance and the sum of minimum
distances (SMD)[EM97]. For these methods we could only use the query consisting of
sets of feature vectors.

Our first set of experiments examined the precision and recall of video retrieval for all
4 types of generated queries. Therefore, we performed kNN queries for our comparison
partners and SVPRQ for the methods proposed in this paper. The result for the queries
on the complete video clips is displayed in Figure 5. As a first result it can be seen that
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(b) Recall.

Figure 6: Precision and recall achieved on similarity search by SVPRQ and its comparison partners
using scene retrieval.
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Figure 7: Elapsed average query time for SVPRQs and SVPTQs for the query on the complete video
clips.

our new method significantly outperformed the compared methods w.r.t. precision and
recall. For k = 1, we should retrieve the database object from which the query was
generated, we achieved a precision of almost 1.0. For the 2nd nearest neighbor our method
still achieved a precision of about 0.9 which is about 40% better than the best of our
comparison partners (SMD). The chart displaying the recall of our query results displays
a similar picture. The recall of our new methods considerably outperformed the compared
methods. Furthermore, we achieved a recall of over 70 % for k = 3 which is the average
number of similar videos for a query object in our test bed.

The experiments on the queries on parts of video clips display similar results. Our meth-
ods outperformed the compared method w.r.t both precision and recall. Though the per-
formance advantage w.r.t. precision was smaller than in the previous experiment, our
proposed method still managed to outperform the best comparison partner, SMD, by more
than 20% for all values of k. The results w.r.t. recall display similar improvements as
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well. To conclude, representing video clips as sets of Gaussians is well suited for accurate
video retrieval and outperforms method based on sets of feature vectors w.r.t. precision
and recall.

For measuring the efficiency of our new methods for query processing, we recorded the
time taken for processing all 40 queries representing the complete movie. For each query
object, we performed several queries corresponding to several parameter setting (1 < k <
7 and 0.1 < PΘ < 0.7). The results are displayed in Figure 7. The average query
time for our new methods was approximately 7 times smaller than that of the compared
methods. Additionally, it can be seen that using sets of probabilistic feature vectors as
query representation did not cause a considerable longer average query time. Let us note
that the time for generating the Gaussians of the query was not added to the query time.
To conclude our new query algorithm considerably outperformed the compared methods
w.r.t. efficiency as well.

6 Conclusions

In this paper, we have proposed efficient techniques for high performance video retrieval.
Our methods are based on a summarization technique using probabilistic feature vectors,
i.e. Gaussian probability density functions. For storage and efficient retrieval of prob-
abilistic feature vectors, a specialized index structure, the Gauss-tree, has been applied.
Every video clip in the database is associated to a set of probabilistic feature vectors. A
query video clip is also transformed into either a set of conventional feature vectors or into
a set of probabilistic feature vectors. In both cases, query processing involves matching of
sets of vectors. We have defined two kinds of set-valued queries, set-valued probabilistic
ranking queries and set-valued probabilistic threshold queries, and have proposed efficient
algorithms for query evaluation on top of the Gauss-tree. Our experimental evaluation us-
ing over 900 music video clips demonstrates the superiority of our approach with respect
to both accuracy as well as efficiency of retrieval.
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