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A Hybrid Approach for E�cient
Unique Column Combination Discovery

Thorsten Papenbrock1, Felix Naumann2

Abstract: Unique column combinations (UCCs) are groups of attributes in relational datasets that
contain no value-entry more than once. Hence, they indicate keys and serve data management tasks,
such as schema normalization, data integration, and data cleansing. Because the unique column
combinations of a particular dataset are usually unknown, UCC discovery algorithms have been
proposed to find them. All previous such discovery algorithms are, however, inapplicable to datasets
of typical real-world size, e.g., datasets with more than 50 attributes and a million records.

We present the hybrid discovery algorithm H�UCC, which uses the same discovery techniques as
the recently proposed functional dependency discovery algorithm H�FD: A hybrid combination of
fast approximation techniques and e�cient validation techniques. With it, the algorithm discovers
all minimal unique column combinations in a given dataset. H�UCC does not only outperform all
existing approaches, it also scales to much larger datasets.

Keywords: unique column combinations, data profiling, metadata, hybrid.

1 Unique Column Combinations

A unique column combination (UCC) is a set of attributes whose projection contains
no duplicate entry. Knowing these unique combinations is particularly important when
choosing key constraints for a given relational dataset, because the values in such columns
uniquely identify all records in the dataset. Unique column combinations are moreover
known to be useful for schema normalization, data cleansing, query optimization, schema
reverse engineering, and many other tasks.

If not explicitly declared as key constraints, the UCCs of a particular dataset are typically
unknown and need to be discovered. This is particularly true in “data lake” scenarios,
which involve many external data sources. Data profiling is the computer science discipline
that describes the investigation of a dataset for its metadata [AGN15]. The discovery
of UCCs is an important profiling task, which has led to the development of various
discovery algorithms [He13, Si06, AN11]. The task for these algorithms is to find all
minimal UCCs that hold in a given relational instance. The search is restricted to minimal
UCCs, i.e., sets of attributes from which no attribute can be removed without invalidating
the uniqueness of the described column combination, because all non-minimal UCCs can
easily be derived from the set of minimal UCCs. Furthermore, most use cases, such as
database key discovery [Ma16], are interested in only the minimal UCCs.
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The discovery of UCCs is a computational expensive task, because the search is NP-
hard [Gu03] and even the solution space is exponential [He13]. For this reason, all known
algorithms are limited to small datasets. We propose a new UCC discovery algorithm called
H�UCC that takes UCC profiling a step forward, now being able to e�ciently process
datasets that are much larger than current limits. In fact, with H�UCC the discovery time
becomes less of an issue than the ability of the executing machine to cope with the size of
the UCC result set, which can grow exponentially large.

In a recent publication [PN16], we proposed the H�FD algorithm for the discovery of
functional dependencies. Its fundamental ideas are also the basis for our new algorithm
H�UCC, because FD discovery and UCC discovery are quite similar, i.e., many FD discovery
techniques can also be used to profile UCCs and vice versa. So the main contributions of
this short paper can be summarized as follows:

1. Hybrid UCC algorithm. We present a hybrid algorithm for the discovery of all minimal
unique column combinations in relational datasets: The algorithm combines known row-
and column-e�cient techniques to cope with both long and wide datasets.

2. Evaluation. We evaluate our algorithm on several datasets demonstrating its superiority
over existing UCC discovery algorithms. The experiments show that the algorithm is capable
of computing both large numbers of rows and columns.

We first discuss related work in Section 2. Then, Section 3 introduces the intuition of our
hybrid approach. Section 4 describes how these ideas can be implemented by explaining the
di�erences to H�FD. In Section 5, we evaluate our algorithm and conclude in Section 6.

2 Related Work

There are basically two classes of UCC discovery algorithms: row-based discovery algo-
rithms, such as GORDIAN [Si06], and column-based algorithms, such as HCA [AN11].
Row-based algorithms compare pairs of records in the dataset, derive so-called agree or
disagree sets, and finally derive the UCCs from these sets. This discovery strategy performs
well with increasing numbers of attributes, but falls short when the number of rows is high.
Column-based algorithms model the search space as a powerset lattice and then traverse this
lattice to identify the UCCs. The traversal strategies usually di�er, but all algorithms of this
kind make extensive use of pruning rules, i.e., they remove subsets of falsified candidates
from the search space (these must be false as well) and supersets of validated candidates
(which must be valid and not minimal). The column-based family of discovery algorithms
scales well with larger numbers of records, but large numbers of attributes render them
infeasible. Because both row- and column-e�cient algorithms have their strengths, we
combine these two search strategies in our H�UCC algorithm.

The currently most e�cient UCC discovery algorithm is DUCC [He13], a column-based
algorithm. The algorithm finds UCCs with a random walk approach through the search
space lattice making maximum use of the known pruning rules. Because this algorithm has
shown to be faster than both GORDIAN and HCA, it serves as our evaluation baseline.
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The H�FD algorithm is a hybrid FD discovery algorithm that already proposed to mix
row- and column e�cient discovery techniques in order to scale with both dimensions of
a relational dataset [PN16]. In a sense, the H�UCC algorithm is the sister algorithm of
H�FD, which we modified in certain selected components to find UCCs instead of FDs.
The changes we made are presented in this paper; the achieved performance improvements
are comparable, as our evaluation shows.

3 Hybrid UCC discovery

The core idea of hybrid UCC discovery is to combine techniques from column-based and
row-based discovery algorithms into one algorithm that automatically switches back and
forth between these techniques, depending on which technique currently performs better.
The challenge for these switches is to decide when to switch and to convert the intermediate
results from one model into the other model, which is necessary to let the strategies support
each other. In the following, we first describe the two individual discovery strategies; then,
we discuss when and how the intermediate results can be synchronized.

Row-e�cient strategy. Column-based UCC discovery algorithms, which are the family of
algorithms that perform well on many rows, model the search space as a powerset lattice of
attribute combinations where each edge represents a UCC candidate. The search strategy
is then a classification problem of labelling each node as non-UCC, minimal UCC, or
non-minimal UCC. Figure 1 depicts an example lattice for five attributes A, B, C, D, and E
with labeled nodes.

Fig. 1: UCC discovery in a powerset lattice.

For our hybrid algorithm, we propose a simple bottom-up traversal strategy: First, we test
all candidates of size one, then of size two and so on. The lattice is generated level-wise
using the apriori-gen algorithm [AS94]. Minimality pruning assures that no implicitly valid
UCCs, i.e., non-minimal UCCs are ever generated [He13]. All discovered minimal UCCs
must be stored as the algorithm’s result.

An important characteristic of this discovery strategy is that all intermediate results during
the discovery are correct but incomplete, that is, each discovered UCCs must be valid but
not all UCCs have been discovered. Because correctness is guaranteed, we will always end
the hybrid algorithm in a phase with this discovery strategy. Another characteristic of the
bottom-up lattice traversal is that it might have to wade through many non-UCCs until
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it reaches the true UCCs, because these are all placed along the virtual border between
non-UCCs (below in the lattice) and true UCCs (above in the lattice). The fact that the
number of these non-UCCs increases exponentially with the number of columns hinders
algorithms of this family to scale well with increasing numbers of attributes – the lattice
becomes extremely “wide”. Hence, we need to utilize an alternative discovery strategy to
skip most of the non-UCC nodes to reach the true UCCs faster.

Column-e�cient strategy. Row-based / column-e�cient UCC discovery strategies compare
all records pair-wise and derive agree set from these comparisons. An agree set is a negative
observation, i.e., a set of attributes that have same values in the two compared records and
can, hence, not be a UCC; so agree sets correspond to non-UCCs in the attribute lattice.
When all (or some) agree sets have been collected, there are e�cient techniques to turn
them into true UCCs [FS99].

A major weakness of this discovery strategy is that comparing all records pair-wise is
usually infeasible. So suppose we stop the comparison of records at some time during
the discovery; we basically compare only a sample r 0 of all r record pairs. When turning
whatever agree sets we found so far into UCCs, these UCCs are most likely not all correct,
because sampling might have missed some important agree sets. However, the intermediate
result has three important properties (see [PN16] for proofs):

1. Completeness: Because all supersets of UCCs in the result are also assumed to be
correct UCCs, the set of r 0-UCCs is complete: It implies the entire set of r-UCCs,
i.e., we find at least one X 0 in the r 0-UCCs for each valid X in r-UCCs with X 0 ✓ X .

2. Minimality: If a minimal r 0-UCC is truly valid, then the UCC must also be minimal
with respect to the real result. For this reason, the early stopping cannot lead to
non-minimal or incomplete results.

3. Proximity: If a minimal r 0-UCC is in fact invalid for the entire r , then the r 0-UCC is
still close to one or more valid specializations. In other words, most r 0-UCCs need
fewer specializations to reach the true r-UCCs on the virtual border than the unary
UCCs at the bottom of the lattice so that the stopping approximates the real UCCs.

Hybrid strategy. For the hybrid UCC discovery strategy, we refer to the column-e�cient
search as the sampling phase, because we inspect carefully chosen subsets of record pairs
for agree sets, and to the row-e�cient search as the validation phase, because this phase
directly validates individual UCC candidates. Intuitively, the hybrid discovery uses the
sampling phase to jump over possibly many non-UCCs and the validation phase to produce
a valid result. We obviously start with the sampling phase, switch back and forth between
phases, and finally end with the validation phase. The questions that remain are when and
how to switch between the phases.

The best moment to leave the sampling phase is when most of the non-UCCs have been
identified and finding more non-UCCs becomes more expensive than simply directly
checking their candidates. Of course, this moment is known neither a-priori nor during the
process, because one would need to know the result already to calculate the moment. For
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this reason, we switch optimistically back and forth whenever a phase becomes ine�cient:
The sampling becomes ine�cient, when the number of newly discovered agree sets per
comparison falls below a certain threshold; the validation becomes ine�cient, when the
number of valid UCCs per non-UCC falls below a certain threshold. With every switch, we
relax this threshold a bit, so that the phases are considered e�cient again. In this way, the
hybrid discovery always progressively pursues the currently most e�cient strategy.

To exchange intermediate results between phases, the hybrid algorithm must maintain
all currently valid UCCs in some central data structure (we later propose a prefix-tree).
When switching from sampling to validation, we update this central data structure of UCCs
with the discovered agree sets. This means that we replace every single UCC for which
a negative observation, i.e., an agree set exists with its valid, minimal refinements. The
validation phase, then, directly operates on this data structure so that many non-UCCs are
already excluded from the validation procedure. When switching from the validation to the
sampling, the algorithm must not explicitly update the central data structure, because the
validation already performs all changes directly to it. However, the validation automatically
identifies record pairs that violated certain UCC candidates, and these record pairs should
be suggested to the sampling phase for full comparisons as it is very likely that they indicate
larger agree sets. In this way, both phases benefit from one another.

4 The HyUCC algorithm

We now describe our implementation of the hybrid UCC discovery strategy H�UCC.
Because this algorithm is similar to the hybrid discovery algorithm H�FD, we omit certain
details that can be found in [PN16]. The di�erences that make H�UCC discover unique
column combinations instead of functional dependencies are in particular a prefix tree (trie)
to store the UCCs, a UCC-specific validation, and UCC-specific pruning rules.
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Fig. 2: Overview of H�UCC and its components.

Figure 2 gives an overview of H�UCC and its components. Given a relational dataset as a
collection of records, the algorithm first runs them through a Preprocessor component
that transforms the records into two smaller index structures: P��s and P��Records. Then,
H�UCC starts the sampling phase in the Sampler component. When the sampling has
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become ine�cient, the algorithms passes the discovered agree sets, i.e., the non-UCCs, to
the Inductor component, which turns them into candidate-UCCs: UCCs that hold true on
the sample of record pairs that was seen so far. Afterwards, the algorithm switches to the
validation phase in the Validator component. This component systematically checks and
creates candidate-UCCs. If the checking becomes ine�cient, H�UCC switches back into
the sampling phase handing over a set of comparison suggestions; otherwise, the validation
continues until all candidates have been checked and all true UCCs can be returned. We
now discuss the components of H�UCC in more detail.

Data Preprocessor. To determine a unique column combination, H�UCC must know the
positions of same values in each attribute; it must not know the values itself. For this reason,
the Preprocessor component transforms all records into the well-known and compact
position list indexes (P��s) data structure (also known as stripped partitions [Hu99]). A P��
is a set of record ID sets, where each record in a set has the same value in the attribute
described by the P��. Using the P��s, the Preprocessor also creates P��Records, which
are the records from the input dataset with dictionary compressed values. These are needed
for the record comparisons in the Sampler component.

Record Pair Sampler. The Sampler component compares the P��Records to derive agree
sets, i.e., non-UCCs. As stated earlier, a non-UCC is simply a set of attributes that have
same values in two records. Because the sampling phase should be maximally e�cient, the
Sampler chooses the record pairs for the comparisons deliberately: Record pairs that are
more likely to reveal non-UCCs are progressively chosen earlier in the process and less
promising record pairs later. Intuitively, the more values two records share, the higher their
probability of delivering a new non-UCC is. Vice versa, records that do not share any values
cannot deliver any non-UCC and should not be compared at all.

So because the P��s already group records with at least one identical value, H�UCC only
compares records within same P�� clusters. For all records within same P�� clusters, we
must however define a possibly e�cient comparison order. For this purpose, the Sampler
component first sorts all clusters in all P��s with a di�erent sorting key (see [PN16] for
details). This produces di�erent neighborhoods for each record in each of the record’s
clusters, even if the record co-occurs with same other records in its clusters. After sorting,
the Sampler iterates all P��s and compares each record to its direct neighbor. In this step,
the algorithm also calculates the number of discovered non-UCCs per comparison for each
P��. This number indicates the sampling e�ciency achieved with this particular P��. In a
third step, the Sampler can then rank the di�erent P��s by their e�ciency, pick the most
e�cient P�� and use it to compare each record to its second neighbor. This comparison run
updates the e�ciency of the used P��, so that it is re-ranked with the other. The Sampler
then again picks the most e�cient P�� for the next round of comparisons. This process
of comparing records to their n + 1 next neighbors progressively chooses most promising
comparisons; it continues until the top ranked P�� is not e�cient any more, which is the
condition to switch to the validation phase.

UCC Candidate Inductor. The Inductor component updates the intermediate result of
UCCs with the non-UCCs from the Sampler component. We store these UCCs in a prefix
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tree, i.e., trie, where each node represents exactly one attribute and each path a UCC. Such
a UCC tree allows for fast subset-lookups, which is the most frequent operation on the
intermediate results of UCCs. The UCC tree in H�UCC is much leaner than the FD tree
used in H�FD, because no additional right-hand-sides must be stored in the nodes; the
paths alone su�ce to identify the UCCs.

Initially, the UCC tree contains all individual attributes, assuming that each of them is
unique. The Inductor then refines this initial UCC tree with every non-UCC that it receives
from the Sampler: For every non-UCC, remove the UCC and all of its subsets from the
UCC tree, because these must all be non-unique. Then, create all possible specializations
of each removed non-UCC by adding one additional attribute; these could still be true
UCCs. For each specialization, check the UCC tree for existing subsets (generalizations) or
supersets (specialization). If a generalization exists, the created UCC is not minimal; if a
specialization exists, it is invalid. In both cases, we ignore the generated UCC; otherwise,
we add it to the UCC tree as a new candidate.

UCC Validator. The Validator component traverses the UCC tree level-wise from bottom
(individual attributes) to top (union of all attributes). This traversal is implemented as a
simple breadth-first search. Each leaf-node represents a UCC candidate X that the algorithm
validates. If the validation returns a positive result, the Validator keeps the UCC in the
lattice; otherwise, it removes the non-UCC X and adds all X A to the tree with A < X and
X A is both minimal (X A has no specialization in the UCC tree) and valid (X A has no
generalization in the UCC tree). After validating a level of UCC candidates, the Validator
calculates the number of valid UCCs per validation. If this e�ciency value does not meet a
current threshold, H�UCC switches back into the sampling phase; the Validator, then,
continues with the next level when it gets the control flow back.

To validate a column combination X , the Validator intersects the P��s of all columns in
X . Intersecting a P�� with one or more other P��s means to intersect all the record clusters
that they contain [Hu99]. The result is again a P��. If this P�� contains no clusters of size
greater than one, its column combination X is unique; otherwise, X is non-unique and the
records in the clusters greater than one violate it. The algorithm suggests these records to the
Sampler as interesting comparison candidates, because they have not yet been compared
and may reveal additional non-UCCs of greater size.

An e�cient way to calculate the P�� intersections is the following: First, pre-calculate the
inverse of each P�� (this is done in the Preprocessor already). Then, take the P�� with the
fewest records as a pivot P�� (recall that P��s do not contain clusters of size one so that the
numbers of records usually di�er). This pivot P�� requires the least number of intersection
look-ups to become unique. For each cluster in the pivot P�� do the following: Iterate all
record IDs and, for each record ID, look-up the cluster numbers in the inverted P��s of all
other attributes in X; store each retrieved list of cluster numbers in a set. If this set already
contains a cluster number sequence equal to the sequence the Validator wants to insert,
then the algorithm found a violation and can stop the validation process for this candidate.
In this case, the current record and the record referring to the cluster number sequence in
the set are sent to the Sampler as a new comparison suggestion.
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Memory Guardian. The Guardian is an optional component that monitors the memory
consumption of H�UCC. If at any point the memory threatens to become exhausted, this
component gradually reduces the maximum size of UCCs in the result until su�cient
memory becomes available. Of course, the result is then not complete any more, but
correctness and minimality of all reported UCCs is still guaranteed. Also, the result
limitation only happens if the result becomes so large that the executing machine cannot
store it any more. Other algorithms would simply break in such cases. To reduce the size,
the Guardian deletes all agree sets and UCCs that exceed a certain maximum size. It then
forbids further insertions of any new elements of this or greater size.

5 Evaluation

We evaluate and compare H�UCC to its sister algorithm H�FD [PN16] and to the UCC
discovery algorithm DUCC, which the authors have shown to be superior over other
approaches [He13]. All three algorithms have been implemented for the Metanome data
profiling framework, which defines standard interfaces for profiling algorithms [Pa15]. The
algorithms and the framework are available online3. Our experiments use a Dell PowerEdge
R620 with two Intel Xeon E5-2650 2.00 GHz CPUs and 128 GB RAM. The server runs on
CentOS 6.4 and uses OpenJDK 64-Bit Server VM 1.7.0_25 as Java environment. Details
about our experimental datasets can be found in [PN16] and on our repeatability website4.
Note that the experiments use the null = null semantics, because this was also used in
related work; H�UCC can compute UCCs with null , null as well, which makes the
search faster, because columns with null values become unique more quickly.

5.1 Varying the datasets

In this experiment, we measure the discovery times for the three algorithms on eight
real-world datasets. The datasets, their characteristics, and the runtimes are listed in Table 1.
The results show that H�UCC usually outperforms the current state-of-the-art algorithm
DUCC by orders of magnitude: On most datasets, H�UCC is about 4 times faster than
DUCC; on the flight dataset, it is even more than 1,000 times faster. Only on zbc00dt
DUCC is slightly faster, because only one UCC was to be discovered and DUCC does not
pre-compute P��Records or inverted P��s as H�UCC does. Furthermore, the runtimes of
H�FD show that UCC discovery is considerably faster than FD discovery. Because H�FD
and H�UCC use similar discovery techniques, this speedup is due to the smaller result sets.

Because we can easily parallelize the validations in H�UCC and H�FD, the experiment also
lists the runtimes for their parallel versions. With 32 cores available, the parallel algorithms
use the same number of threads. On the given datasets, H�UCC could in this way achieve
1.2 (uniprot) to more than 9 (isolet) times faster runtimes than its single-threaded version
(less than 32, because only the validations run in parallel).

3 www.metanome.de

4 www.hpi.de/naumann/projects/repeatability.html

www.metanome.de
www.hpi.de/naumann/projects/repeatability.html
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Dataset Cols Rows Size FDs UCCs DUCC HyFD HyUCC HyFD HyUCC
[#] [#] [MB] [#] [#] parallel parallel

ncvoter 19 8 m 1,263.5 822 96 706.1 1,009.6 220.1 239.8 157.9
hepatitis 20 155 0.1 8,250 348 0.6 0.4 0.1 0.4 0.1
horse 27 368 0.1 128,727 253 0.8 5.8 0.2 3.7 0.2
zbc00dt 35 3 m 783.0 211 1 57.7 191.1 58.2 69.4 58.2
ncvoter_c 71 100 k 55.7 208,470 1,980 170.3 2,561.6 51.3 533.4 14.9
ncvoter_s 71 7 m 4,167.6 >5 m 32,385 >8 h >8 h >8 h >8 h 5,870.2
flight 109 1 k 0.6 982,631 26,652 4,212.5 54.1 3.7 19.5 1.5
uniprot 120 1 k 2.1 >10 m 1,973,734 >8 h >1 h 92.5 >1 h 76.7
isolet 200 6 k 12.9 244 m 1,241,149 >8 h 1,653.7 410.9 482.3 45.1

Tab. 1: Runtimes in seconds for several real-world datasets
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Fig. 3: Row scalability on ncvoter_s (71 columns) and column scalability on isolet (6238 rows).

5.2 Varying columns and rows

We now evaluate the scalability of H�UCC with the input’s number of rows and columns.
The row-scalability is evaluated on the ncvoter_s dataset with 71 columns and the column-
scalability on the isolet dataset with 6238 rows. Figure 3 shows the measurements for
DUCC and H�UCC. The measurements also include the runtimes for the parallel version
of H�UCC; the dotted line indicates the number of UCCs for each measurement point.

The graphs show that the runtimes of both algorithms scale well with the number of UCCs
in the result, which is a desirable discovery behavior. However, H�UCC still outperforms
DUCC in both dimensions – even in the row-dimension that DUCC is optimized for: It is
about 4 times faster in the row-scalability experiment and 4 to more than 310 times faster
in the five column-scalability measurements that we could create for DUCC. H�UCC’s
advantage in the column-dimension is clearly the fact that the non-UCCs derived from the
sampling phase allow the algorithm to skip most of the lower-level UCC candidates (and
the number of these candidates increases exponentially with the number of columns); the
advantage in the row-dimension is also this sampling phase of H�UCC, allowing it to skip
many candidates and, because the number of UCCs also increases when increasing the
number of rows, this gives H�UCC a significant advantage.
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6 Conclusion & Future Work

In this paper, we proposed H�UCC, a hybrid UCC discovery algorithm that combines
row- and column-e�cient techniques to process relational datasets with both many records
and many attributes. On most real-world datasets, H�UCC outperforms all existing UCC
discovery algorithms by orders of magnitude.

For future work, we suggest to find novel techniques to deal with the often huge amount of
results. Currently, H�UCC limits its results if these exceed main memory capacity, but one
might consider using disk or flash memory in addition for these cases.
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