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Abstract: Despite the wide use of deep neural network for periocular verification, achieving smaller
deep learning models with high performance that can be deployed on low computational powered
devices remains a challenge. In term of computation cost, we present in this paper a lightweight deep
learning model with only 1.1m of trainable parameters, DenseNet-20, based on DenseNet architec-
ture. Further, we present an approach to enhance the verification performance of DenseNet-20 via
knowledge distillation. With the experiments on VISPI dataset captured with two different smart-
phones, iPhone and Nokia, we show that introducing knowledge distillation to DenseNet-20 training
phase outperforms the same model trained without knowledge distillation where the Equal Error
Rate (EER) reduces from 8.36% to 4.56% EER on iPhone data, from 5.33% to 4.64% EER on
Nokia data, and from 20.98% to 15.54% EER on cross-smartphone data.
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1 Introduction

The rapid growth of smartphone users (3.2 billion in 2019 [St20]) has also increased the
interest in secure authentication application using smartphones. Biometric modalities like
fingerprint, voice, periocular and face are widely employed on smartphones to achieve
secure, convenient, and reliable authentication.

Of the many other modalities, periocular region provides a distinct trade-off between us-
ing iris or entire face for identity verification by considering a small area around the eye
including eyelids, lashes, and eyebrows as biometric trait [PRJ09]. Given the performance
under relaxed settings, periocular biometrics is recently well preferred for various use
cases such as mobile platform [Al19] and embedded device [Bo19, Bo20a, Bo20b]. Mo-
tivated by such new applications, we focus on periocular modality for smartphone based
biometric identity verification in this work.

Although the integration of biometrics in smartphone devices has enabled several advan-
tages, deploying such a solution to a smartphone device faces several challenges. One of
these challenges is the high variability between probe and gallery images produced when
the images are acquired using different devices, different cameras, or under different en-
vironmental conditions, requiring a highly generalized solution. This challenge is well
addressed in the literature as reported in the previous works [Al19, Ah17]. Yet another
major challenge is related to the limited computational resources available in smartphone
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devices, especially when considering a solution based on a deep neural network with ex-
tremely high number of parameters. Recent works [Ga18, Ah17] have addressed this issue
with the smartphone based periocular recognition using deep learning, albeit with less fo-
cus on the limited computation resource available on the smartphone devices where both
models [Ga18, Ah17] contain more than 12 million of trainable parameters. Despite the
use of deep learning, the challenge of customizing the solutions to smartphone devices
with limited computational resources is not well addressed.

We therefore focus this work on reducing the number of parameters in the deep mod-
els to make them easily adaptable to mobile devices with limited computation resources
by utilizing knowledge distillation noted as KD [HVD15] for periocular verification. To
truly establish the applicability of the proposed approach for periocular verification, we
provide the baseline performance of three DenseNet architectures [Hu17]: DenseNet-201,
DenseNet-169, and DenseNet-121. Further, we propose a compact model which we refer
to as DenseNet-20 based on the dense block containing 1.1 million of trainable parameters.
The experimental results on VISPI dataset [KRB20] of 152 unique pericoular instances
with 6682 images captured with 2 different smartphones (iPhone 5S and Nokia Lumia
1020) shows that the DenseNet-20 model achieves a comparable verification performance
using a shallow architecture. With the obtained performance, we argue that deploying such
a model to a low computational resource device is more realistic than other deeper mod-
els. Motivated by this, we also focus on enhancing the accuracy and generalizability of the
shallow model for periocular recognition by successfully introducing the KD method to
the training process. Although introducing knowledge distillation to the training process
does not change the model capacity, the gradient descent induced by distillation loss func-
tion allows this model to find a very favorable minimum of the training objective [PL19].
Thus, our proposed approach improves the verification performance of the distilled model,
in comparison to the same model trained without knowledge distillation, the Equal Error
Rate (EER) is reduced from 8.36% to 4.56% on iPhone data, from 5.33% to 4.64% EER
on Nokia smartphone data, and from 20.98% to 15.54% EER on cross-smartphone data.

2 Methodology
The goal of this work is to present a solution to improve the accuracy and generalizability
of shallow CNN models for smartphone periocular verification. Particularly, we first eval-
uate deep representations extracted from periocular region using three different DenseNet
[Hu17] architectures: DensNet-121, DensNet-169, and DenseNet-201. We further present
our proposed compact CNN model, DenseNet-20, containing only 1.1 million trainable
parameters. To further improve the generalizability and accuracy of the small CNN model,
we introduce knowledge distillation (KD) to the DenseNet-20 model training process. This
section presents the details of the employed DenseNet model along with the KD method.

2.1 Densely Connected Convolutional Networks

DenseNet [Hu17] is a convolutional neural network designed for image classification to
achieve low classification error rates while having fewer parameters than ILSVRC 2015
winner, ResNet model [He16]. The architecture is based on connecting each convolutional
layer to every other layer in a feed-forward fashion as shown in Figure 1. Thus, each layer
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`th receives collective knowledge from all preceding layers x0,x1, ...,x`−1 and passes on
its knowledge to all subsequent layers. Given that each layer produces k feature maps, the
input feature map for `th layer is k0 + k× (`− 1) where k0 is the number of channels in
the input layer and k refers to the growth rate of the network. In this work, we evaluate
three different DenseNet architectures as baselines: DenseNet-121, DenseNet-169, and
DenseNet-201 where 121, 169, and 201 refer to the number of the convolutional layers
in each model (network depth). The growth rate for all the networks is set to k = 32. The
DenseNet-121, DenseNet-169, and DenseNet-201 models contain 7.1, 12.6 and 18.2m of
trainable parameters, respectively.

We apply transfer learning on these models pretrained on ImageNet dataset [De09] by fine-
tuning all the layers on images from our training dataset with Softmax classifier. In the test
phase, the Softmax classifier is removed from all models and the feature f is extracted
from the last layer which is of the dimension 7×7×1920.

2.2 Proposed Compact DenseNet

We further propose a new model based on DenseNet architecture - DenseNet-20. Similar
to the original DenseNet model, DenseNet-20 has 4 dense blocks with 1, 2, 8, and 6 lay-
ers in dense block 1, 2, 3, and 4, respectively. We train the compact DenseNet-20 model
from scratch with Softmax classifier. The proposed DenseNet-20 contains 1.1m trainable
parameters as compared to 18.2 million parameters with DenseNet-201. Similar to the
original DenseNet models, the Softmax classifier is removed in the testing phase from the
model to extract the feature f from the last layer with the dimension of 7×7×1920.
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Fig. 1: An overview of the proposed KD approach for periocular verification based on DenseNet
architecture.

2.3 Proposed Compact DenseNet-20 with Knowledge Distillation

We explore KD to improve the performance of DenseNet-20 model by employing a student-
teacher relation where each of DenseNet-121, DenseNet-169, and DenseNet-201 models
are used as a teacher to distill the knowledge to student model, DenseNet-20. We present
the details of KD for the convenience of the readers.

KD is a technique to improve the performance and generalization ability of smaller mod-
els by transferring the knowledge learned by a cumbersome model (teacher) to a single
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small model (student). The key idea is to guide the student model to learn the relationship
between different classes discovered by the teacher model that contains more informa-
tion beyond the ground truth labels [HVD15]. Suppose we have teacher model T , student
model S, and training dataset X ,Y ∈ D, where X is the training images and Y is their class
labels. The output of the teacher model for any input xi ∈ X is a vector of class proba-
bilities PT computed for each class using softmax function by converting the logits, zT

into probabilities that sum to one PT (x) = so f tmax(zT ). Specifically, the probability pi

of class i is computed by comparing zi with other logits as given: pi =
exp(zi)

∑
N
j=1 exp(z j)

. This

probability distribution will have a high probability value of pi for the correct class yi ∈ Y
with all other class probabilities close to zeros. Thus, it does not provide more valuable
information than ground truth labels. Therefore, Hinton et al. [HVD15] proposed to scale
the logits using a temperature parameter t > 1 before applying the softmax function. Thus,
the teacher model can produce a softer distribution of the class probabilities, which pro-
vides more valuable information about classes similar to the predicted class. In this case,
the output of the teacher model is PT

s (x) = So f tmax(zT/t) and the probability pi of class
i is given as: pi =

exp(zi/t)
∑

N
j=1 exp(z j/t)

. Similarly, student S can produce a soft class probability

distribution using the temperature parameter t, PS
s (x) = So f tmax(zS/t). The final loss for

the student model is a weighted sum of two loss functions, cross-entropy loss Lce and
Kullback Leibler Divergence loss Lkld , as follows:

LKD = λ ∗Lce(Y,PS(x))+(1−λ )∗ t2 ∗Lkld(PS
s (x),P

T
s (x)),

where Y is the ground truth label, PS(x) standard softmax output produced by student,
PS

s (x) parameterized softmax output produced by student, PT
s (x) parameterized Softmax

output produced by teacher and λ ∈ [0,1] is the weight parameter. Since the gradients of
the Lce loss is smaller than gradients of the Lkld where the logits used for Lkld is divided
by t, the Lkld is multiplied by t2 as suggested by Hinton et al. [HVD15].

We thus use the student-teacher based KD for all three DenseNet models - DenseNet-201,
DenseNet-169 and DenseNet-121 by setting each of them as teacher and our proposed
DenseNet-20 as the student model as shown in the Figure 1.

3 Experimental setup

Details
Smartphone

iPhone 5S Nokia Lumia 1020

Capture Scenario Mixed Mixed
Illumination Illumination

Resolution 12 Mp 41 Mp
Number of subjects 76 76
Unique periocular 152 152
instances
Total images 3341 3341

Tab. 1: Distribution of periocular
database employed in this work.

To demonstrate the applicability of our proposed
approach, we evaluate it on a public dataset of peri-
ocular images - VISPI database [KRB20]. We em-
ploy the subset of database containing 152 unique
periocular instances captured from 76 unique sub-
jects using two different smartphones - iPhone 5S
and Nokia Lumia 1020. The 152 periocular in-
stances are captured from both left and right eyes-
76 instances are captured from the left eye and 76
instances are captured from the right eye. Each unique periocular image has multiple sam-
ples captured in different instances. The total distribution of the images in the database
used for the evaluation in this work is presented in the Table 1.
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The ocular images are captured in a mixed illumination environment using the rear camera
of the smartphones in a semi-cooperative manner. The images in the database also present
everyday appearance variations that include the make-up and non-uniform illumination.
Beside, the images in the VISPI database present various forms of degradation due to
motion blur and eye blinking. Further, the influence of both the external sunlight illumi-
nation and the artificial room light illumination along with other degrading factors make
the cross-sensor/cross-smartphone comparison challenging. The sample images from the
periocular database as depicted in Figure 2 illustrate a set of variation and degradation in
terms of appearance under different smartphones both across the phones and the subjects.
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4 Fig. 2: Sample images from VISPI database

Of the 152 unique periocular instances, the
first 100 instances (from 50 subjects, i.e.,
50 instances captured from the left eye and
50 instances captured from the right eye)
are used for the training and the other 52
instances (from 26 independent subjects,
i.e., 26 instances captured from the left eye
and 26 instances captured from the right
eye) are used for testing. Further, a random
subset of 200 images (two images per instance) is selected from the training split to vali-
date the model during the training phase.

All the images are uniformly resized to a size of 224× 224 pixels to match the input
layer size of DenseNet model. The training data is augmented by applying horizontal and
vertical random shifting by up to 20% of the image width and/or height, and random
horizontal flipping. All models are trained with a batch size of 16 and SGD optimizer
with Nesterov momentum 0.9. The initial learning rate is set to γ = 0.001 and γ = 0.1 for
teacher models and student model, respectively and it is dropped by a factor of 0.1 when
the accuracy on the validation dataset does not improve by a value of 0.1 for 5 consequent
epochs. The initial number of epochs is set to 100 and early-stopping patience parameter is
set to 10 causing DenseNet-20, DenseNet-121, DenseNet-169 and DenseNet-201 to stop
after 29, 11, 11, 11 epochs, respectively. The training of the student model, DenseNet-
20, trained KD loss stopped after 29, 34, and 28 epoch using teacher model DenseNet-
121, DenseNet-169 and DenseNet-201, respectively. In practice, the training is performed
offline once and the trained model is deployed on mobile devices, which makes the size
of the model the most critical deployment factor. We followed the common choice for the
KD hyperparameters [HVD15, CH19, Fu18] with Temperature t >= 4 and λ = 0.9.

The verification performance is reported using the cosine similarity measure for com-
paring the features extracted from the learnt models. The result is reported first for the
DenseNet-20, DenseNet-121, DenseNet-169, and DenseNet-201 models without applying
the KD. In addition, we report the result of the KD on the student model DenseNet-20
with DenseNet-121, DenseNet-169 or DenseNet-201 as a teacher which we note as as
DenseNet-20-KD121, DenseNet-20-KD169 and DenseNet-20-KD201 respectively.

For each of the settings, we investigate the verification performance under three different
evaluation scenarios defined as following:
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• iPhone verification scenario: The reference and the probe images are acquired using
the camera of iPhone smartphone.

• Nokia verification scenario: Similar to the previous scenario, the reference and the
probe images are acquired using Nokia smartphone.

• Cross-smartphone verification scenario: the reference images are captured using iPhone
camera and the probe images are captured using Nokia camera.

The verification performance is reported using Receiver Operating Characteristic (ROC)
curves, Area under the curve (AUC), False Match Rate (FMR) at fixed False Non-Match
Rate (FNMR) (FMR10, the lowest FNMR for FMR≤10%), and Equal Error Rate (EER).
The verification performances of the different experimental settings are presented in Figure
3 along with the EER and FMR10 values in Table 2. Each of the Figures 3.a-c shows the
achieved ROC of iPhone, Nokia, and cross-smartphone verification scenario.
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Fig. 3: The achieved ROC for different experimental settings. One can be clearly noticed the im-
provement in the DenseNet-20 verification performance using KD method.

4 Results and Discussion
One can clearly notice from Table 2 that the verification performances are consistently
better based on the model size when same training procedure is followed. The first four
rows in Table 2 present the verification performances of the DenseNet-201, DenseNet-169,
DenseNet-121, and DenseNet-20 trained without the KD method. The highest verification
performance among all evaluated models is achieved by the DenseNet-201 model, where
the achieved EER was 9.71% for cross-smartphone verification scenario, 1.60% for iPhone
verification scenario, and 2.57% for Nokia verification scenario. Also, it can be observed
from the Table 2 that the DenseNet-20 model aims at maintaining (to a large degree) the
verification performance of deeper model where the achieved EERs were 8.36%, 5.33%
and 20.98% for iPhone, Nokia and cross-smartphone verification scenarios, respectively.

It can be further noticed that the verification performances degrade for all models when the
references and probes images are captured from different smartphones in comparison to
the case where the probe and the reference images are captured from the same smartphone
as shown in the Table 2. However, this degradation in the performance is a common prob-
lem for cross-smartphone verification scenario as reported in the previous works [Al19].

4.1 Impact of Knowledge Distillation

The results of the proposed approach based on KD are presented in the Table 2 and Figure
3. We make the following observations from the obtained results:
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Model Inference Num. of. Teacher
iPhone Nokia Cross-smartphone

time parameters EER FMR10 EER FMR10 EER FMR10
DenseNet-201 5.4ms 18.2 - 0.0160 0.0026 0.0257 0.0105 0.0971 0.0949
DenseNet-169 4.7ms 12.6 - 0.0220 0.0093 0.0256 0.0052 0.1224 0.1459
DenseNet-121 3.8ms 7.1 - 0.0396 0.0212 0.0417 0.0213 0.1666 0.2257
DenseNet-20 2.1ms 1.1m - 0.0836 0.0782 0.0533 0.0227 0.2098 0.3556

DenseNet-20-KD201 2.1ms 1.1m DenseNet-201 0.0515 0.0340 0.0538 0.0404 0.1709 0.2640
DenseNet-20-KD2169 2.1ms 1.1m DenseNet-169 0.0617 0.0440 0.0496 0.0376 0.1711 0.2582
DenseNet-20-KD121 2.1ms 1.1m DenseNet-121 0.0456 0.0298 0.0464 0.0240 0.1554 0.2251

Tab. 2: Performance obtained for different experimental settings along with inference time (in mil-
lisecond) and the number of trainable parameters (in million) for each of the evaluated models. The
first four rows of the table present the achieved result for the three teacher models and for the stu-
dent models (without using KD). The last three rows of the table present the achieved verification
performance by including KD in the training process.

• It is noticed that introducing the KD to the DenseNet-20 model training significantly
improved the verification performance and outperforms teacher model in some cases.
For example, in the cross-smartphone verification scenario, the student outperformed its
teacher DenseNet-121 where the achieved EER by the student was 15.54% and by its
teacher was 16.66%. Similar observations is also reported in in previous work [Fu18].

• The best verification performance is achieved using DenseNet-121 model as teacher,
where the achieved EERs in this case were 5.56% 4.64% and 15.54% for iPhone, Nokia
and cross-smartphone verification scenarios.

• Using a larger and more accurate teacher model did not serve as better supervision to
the student model as seen in Table 2. This can be explained by the fact that as the teacher
model becomes more accurate using a deeper architecture, the soft probabilities produced
by the teacher will contain more complex information about the class distributions and the
small student model will not be able to learn all this complex information considering the
small student capacity. Similar conclusion is also reported in the previous work [CH19].

5 Conclusion

We presented in this work a new approach for periocular verification exploiting the idea
of Knowledge distillation (KD). The proposed models have resulted in significantly lower
model size but with comparable performance to larger deep models. Through the experi-
ments on public periocular dataset consisting of 152 unique periocular instances captured
with two different smartphones, we showed that applying KD on DenseNet-20 training
process achieves an EER of 4.5% on iPhone data, 4.6% on Nokia data, and 15.54% on
cross-smartphone data, in comparison to EER of 8.36% on iPhone data, 5.33% on Nokia
data, and 20.98% on cross-smartphone data when the same model trained without KD. In
the future works in this direction, we intend to investigate the proposed method on larger
datasets captured in multiple sessions to gain insights on generalizability aspects.
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