
Exploring Transactional Service Properties for Mobile
Service Composition

Katharina Hahn, Heinz F. Schweppe
Institute for Computer Science, Freie Universität Berlin

Takustr. 9, 14195 Berlin
{khahn,schweppe}@mi.fu-berlin.de

Abstract: Service oriented computing provides suitable means to technically support
distributed collaboration of heterogeneous devices such as in mobile environments.
However, wireless communication links are unstable. When supporting collaboration
in such environments, failures have to be optimistically coped with in order to still
provide suitable correctness guarantees and avoid inconsistent system states. In this
paper, we explore transactional properties of services in order to reasonably integrate
transactional coordination with composition of services in mobile networks and pro-
vide suitable correctness guarantees.

1 Introduction

When deploying applications in mobile networks, one has to provide suitable means to
cope with the characteristics of such environments. Due to the mobility of participants
and the wireless networking technologies, mobile networks are more dynamic than fixed
networks. This leads to less stability of communication links. On account of the inherent
network dynamics, the execution environment of an application is not known at designtime
and might differ from execution to execution. This also holds for the heterogeneity of
portable devices which can be integrated in collaborative wireless computing.

Service oriented architectures are a powerful approach to support collaboration in such
heterogeneous environments as they allow for loosely coupling of components thus re-
specting to their autonomy. Services can be dynamically discovered and composed into
new value-added, so called composed services. Service discovery and binding at runtime
provides suitable means to deal with composition of services in mobile environments in
which the execution context, i.e., available services at runtime, is not previously known.

Especially due to the possibly physical distribution of several services and less stability of
network links, it is indispensable to be able to cope with failures of different kinds to guar-
antee correct execution. This might come at the cost of relaxing correctness criteria such as
the strict atomicity and isolation of all components which are guaranteed in databases. As
strict guarantees rely on blocking of resources, services might be blocked for an arbitrary
long time in case of disconnections of participants. In order to avoid blocking, “correct-
ness” is relaxed and e.g. assured by avoiding any inconsistent and non-recoverable system
states. This is achieved either through forward-recovery by still allowing the workflow

39

39



to successfully complete or backward-recovery by resetting the system to a previously
consistent state.

In this paper, we develop a relaxed atomicity criterion for composed services which ex-
plores the non-functional (i.e. in this context transactional) properties of services. While
avoiding blocking if possible to respect the autonomy of mobile participants, transactional
coordination of services is reasonably integrated in workflow management. We adapt the
composition of services at runtime in order to support correct execution, which we define
by the notion of a relaxed atomicity criterion (see Section 5).

Consider for example a Tourist Ticketing System which supports users in finding points
of interest and booking activities according to their previously defined preferences. An
example of a mobile ticket vendor, whose business model is to sell tickets for touristic
events, such as an exhibition, is shown in Figure 1. To make his offer more attracting to
the user, he additionally offers to organize and book according transportation facilities to
the exhibition venue and reserve a table at a nearby restaurant.

UReq

Restaurant
Reservation

ExhibitionTicket

AND PrintTransportation AND XOR

PayCC

PayCh

Figure 1: Combined ticketing for tourists.

After specifying the user’s request (UReq), including e.g. number of persons, the workflow
is split to parallely buy tickets for the exhibition, book transportation facilities and reserve
a restaurant table. If all three components successfully finish, the tickets are printed, and
the user is then asked to either pay by credit card or by cash. In this workflow, no failure
handling has been specified yet. We argue, that it can be automated by exploring the
workflow and participating services.

The rest of the paper is structured as follows: In Section 2 related work is presented. Sec-
tion 3 introduces the formal model of transactional composition of services. In Section 4,
transactional properties of components are explored, while Section 5 defines the atomic-
ity guarantee. In Section 6, we outline alterations of the composition in order to support
transactional execution. We conclude in Section 7.

2 Related Work

Many advanced transaction models (ATM), e.g. [GMS87, WS92] have been proposed
which support transactional processing in distributed and heterogeneous databases [JK97].
These use less strict notions of atomicity and isolation in order to avoid blocking situ-
ations. Although they are very powerful, they are not capable of integrating structural
requirements of complex applications in one transaction. A variety of mobile transaction
models (such as [GGGG04, PA00, PA02]) have been proposed, which are able to cope with

40

40



failures due to frequent disconnections. However, they are not able to integrate different
structural patterns as well.

Workflow execution and transactional coordination standards for Web-Services (WS) are
two separate concerns. The execution of workflows is usually defined in BPEL (Business
Process Execution Language), and controlled by workflow engines (e.g. [Apa]). Those
provide support for the design, execution, visualization and analysis of workflows but do
not integrate transactional guarantees. Transactional coordination has been specified by
the WS-Transaction Framework (WS-Tx) [IBM05] which offers means for coordination
of different services. It specifies different coordination types for short- and long-running
activities and employs convenient backward recovery mechanisms to guarantee correct
execution. As with most advanced transaction models proposed for asynchronous and de-
centralized transaction processing, WS-Tx lacks the flexibility to map different structural
patterns to different transaction semantics.

Forward-recovery for composite services as e.g., proposed by [SDN07], is a promising
approach to deal with the unstable availability of single participants in service oriented
computing. In [SDN07], the authors propose the use of an abstract service provider. Its
responsibility is to dynamically replace a failing service at runtime with a semantically
equivalent service. Thus, specific failure situations are covered. But transactional execu-
tion of the whole workflow or subparts of it, is not considered.

Fauvet et. al [FDDB05] propose a high level operator for composing Web-Services ac-
cording to transactional properties. Transactional execution relies on the tentative hold
protocol (THP). Services are distinguished according to their additional capabilities: Sup-
port of 2PC, compensatability or neither. While this approach is interesting and powerful it
uses a proprietary operator. We rather try to integrate transactional composition in existing
standards by exploring non-functional properties.

In order to verify the execution of Web-Service workflows, several formalisms have been
used, such as petri nets [HB03] or finite-state-machines [BFHS03]. These introduce pow-
erful means to formally verify the execution of composite Web-Services but do not focus
on transactional verification. Gaaloul et al. [GRGH07] use an event based-approach to
model transactional composite services. As it provides suitable means to specify transac-
tional behavior, we base our work on this formalism. It captures static verification however
adaptation of the workflow in order to guarantee correct execution is left to the designer.

Binding services at runtime is integrated in existing workflow languages, e.g. in BPEL
using dynamic bindings using lookups as partner links and can be performed by workflow
engines. However, in mobile environments, discovery and matching of services at runtime
is a challenging task. Many powerful approaches to service discovery in mobile networks
exist, such as [RFH+01, CJFY06, RCJF02], as well as semantic description languages,
e.g., OWL-S, WSDL-S or DSD [MDS02, WSD05, Kle04] to support matching of service
offers and requests.

We also want to relate to the work done in the area of workflow scheduling, which iden-
tifies the problem of finding correct execution sequences for workflow activities, obeying
inherent constraints, e.g. temporal or causality constraints [ASSR93, DKRR96]. Other
approaches focus on minimizing communication costs or ensuring prearranged QoS obli-

41

41



gations defined in service level agreements [DD07]. As opposed to those, our work focuses
on the analysis in order to reschedule activities to guarantee transactional correctness.

3 Formally Modeling Transactional Composition of Services

In the following, we introduce the model used to focus on the transactional behavior of
services and composite services. The model is based on the event-algebra presented by
[GRGH07]. It is also used to specify the relaxed transactional guarantees to be given for
composite services, which we define in Section 5.

3.1 Service Model

The behavior of a service is modeled using a state-machine. Regardless its properties, a
service has at least the following states: Initial indicates that it has not been activated yet,
after activation its status is active. Failed and canceled indicate failed execution (i.e., no
changes are made persistent), either due to an internal error or externally triggered. If
the service completed successfully, its state is completed. Additionally, if the service is
compensatable, such as the example in Figure 2, it also has a compensated state.

The transitions between these states are either internally triggered (indicated by solid
lines), i.e., by the service itself, or externally triggered (indicated by dashed lines), i.e.,
by another entity, such as the workflow engine, another service or a person.

Initial Active Completed

CompensatedFailedCancelled

activate

fail
cancel

complete

compensateredo

Figure 2: State machine of service.

3.2 Transactional Composition of Services

A composite service consists of a set of components and a set of axioms which define
the correlation between the components. The normal execution defines the execution flow
in case no failure occurs. Transactional composition of services additionally defines the
relation of the components in case of failure in order to avoid inconsistent states, e.g. by
compensation. So far, failure handling is left to the designer. By defining a workflow, the
designer defines the regular execution; using compensation handler, he is able to specify
behavior in case of specific failure situations. Thus, transactional guarantees for the whole
workflow are not generally given.

The regular execution of services is modeled using normal execution dependencies. A

42

42



normal execution dependency between services Si and Sj states that the completion of Si

triggers the activation of Sj :
Normal execution dependency: depNrm(Si, Sj) : Si.complete() ⇒ Sj .activate()

The standard failure handling mechanisms are cancellation of active services, compensa-
tion for completed services or activation of alternatives. According to these mechanisms
and the possible failure situations, the following dependencies are defined:1

• Alternative dependency: depAlt(Si, Sj) := Si.fail() ⇒ Sj .activate()

• Fail-Cancel dependency: depF lCln(Si, Sj) := Si.fail() ⇒ Sj .cancel()

• Fail-Compensate dependency: depF lCps(Si, Sj) := Si.fail() ⇒ Sj .compensate()

• Cancel-Cancel dependency: depClnCln(Si, Sj) := Si.cancel() ⇒ Sj .cancel()

• Cancel-Compensate dependency:
depClnCps(Si, Sj) := Si.cancel() ⇒ Sj .compensate()

• Compensate-Compensate dependency:
depCpsCps(Si, Sj) := Si.compensate() ⇒ Sj .compensate()

In order to guarantee transactional execution, we propose to automatically add these trans-
actional dependencies and thus provide transactional guarantees. In the stated example
(recall Figure 1), an alternative dependency has to be added between PayCC and PayCh,
since the later is an alternative for the former one. Additionally fail-cancel dependencies
are to be added between the ticketing, transportation and reservation services, as those
should either all complete or none. Which dependencies are to be added, depends on the
transactional properties of a service as well as its structural context. This is examined
using workflow patterns.

3.3 Workflow Patterns

The structure of a composite service is represented by workflow patterns. Formally,
a workflow pattern is a function that given a set of services returns the control flow
[ABEW00]. Components of patterns are either services or contained patterns. By WP(S),
we denote a workflow pattern with a set of elements S. In the following, we exemplary
present three common workflow patterns and their characteristics for transactional work-
flow management.

SEQUENCE-Pattern This is a basic pattern which is used by the designer to specify, that
one service is activated after the completion of the previous one. It is also known
as sequential or serial routing. The invocation of the services is done in the same
control thread. Arranging services Si and Sj in sequence always infers a normal
execution dependency (see Section 3.2) between Si and Sj .

1Note, that besides the alternative dependency, their denotation encodes cause and effect.

43

43



AND-Pattern Services, which are arranged in an AND-pattern are executed in parallel.
Thus, the control flow is split up in parallel threads which are executed indepen-
dently of each other. Therefore, we assume that not data dependencies between
components of one AND-pattern exist. The control flow is synchronized at the join
point and the subsequent workflow is activated as soon as all elements of the AND-
pattern are completed. E.g., in our example print is invoked if ticketing, transporta-
tion and reservation are completed. The AND-pattern is also known as parallel split
or parallel routing.

XOR-Pattern Based on any control data, one branch out of many is chosen. As these
branches are never executed in parallel, the workflow is continued as soon as one
branch completes. The XOR-pattern is also known as exclusive choice, switch or
conditional routing. We focus on situations in which the choice relies on non-
functional properties of services. Considering the formal model, alternative exe-
cution dependencies between elements of an XOR-pattern exist, as the failure of one
can be recovered by the execution of another one. Thus, the XOR-pattern can be
used to integrate forward-recovery, as the failure of one participant might be com-
pensated by the execution of another one (e.g. PayCC and PayCh).

These patterns specify the control flow of the composite service and additionally the ex-
ecution semantics. In an AND-pattern all included elements have to be completed while
an XOR-pattern specifies, that one and only one element is to be completed. This already
indicates the transactional dependencies to be added to avoid inconsistent states: E.g., the
semantics of the AND-pattern infer, that in case that one element fails, all of the others
have to be canceled. Thus fail-cancel dependencies between all elements are added. By
contrast, if an element within an XOR-pattern fails, an alternative can be executed, thus
alternative dependencies are added between elements of the XOR-pattern. However, the
transactional dependencies are also influenced by the transactional properties of services,
which are studied in the next section.

4 Exploring Non-Functional Service Properties

Within this section, we introduce non-functional properties of services which are relevant
to define appropriate failure handling mechanisms. Additionally, we derive properties for
workflow patterns according to the contained elements.

4.1 Transactional Service Properties

In order to ensure correct execution of composite services, we examine the transactional
behavior of services: I.e., whether services can fail, whether completed services can be
compensated for and whether they need to be recovered in case of failure. The first two
properties (redoability and compensatability) have already been considered in the context

44

44



of flexible transactions [ZNBB94]. We additionally classify services according to their
need for compensation in case of failure.

Compensatability

The compensatability of a service indicates whether its effects can be undone after com-
pletion. Thus a service S is compensatable (denoted as S.comp = 1 and S.comp = 0
accordingly for non-compensatable services) if there exists a service C which semanti-
cally undoes the effects of S.2 This is formally specified by the compensate-transition and
a compensated-state as shown in Figure 2.

Redoability

The redoability of services specifies whether the service’s execution can fail, i.e. a redoable
service S (denoted as S.redo = 1) will definitely complete after being activated. This is
important for example for compensating services, as it is assumed that their execution will
not fail. Redoability of a service is modeled by an internal redo-transition (see Figure 2).
Thus, once invoked the completion of the service can be guaranteed.

Consistent Closure

By including a service in a workflow, the designer states whether its completion is in-
evitable for the success of the workflow (e.g., if no alternatives exist). So far, it is vice
versa assumed, that a service is only allowed to be completed if the workflow is com-
pleted. However, some services may allow for inconsistent closure, i.e. they complete
although the workflow may be canceled. This is usually given by semantics of the service
or the consistency demands of the data it operates on. Examples are a log-in service which
authenticates the user to the provider or a printing service which prints a confirmation. We
therefore additionally consider the following transactional property of services:

A service S demanding consistent closure3 (denoted as S.consCompl = 1) needs recov-
ery in case the workflow is rolled back. Thus, its completion infers the completion of
the workflow. A service, that is allowed to complete inconsistently (S.consCompl = 0)
does not need recovery, in case the workflow execution fails. Thus it states, whether the
effects of a service have to be undone in case of recovery. Within our model, {fail, can-
cel, compensate}-compensate dependencies (*-compensate dependencies for short) to a
service demanding consistent completion have to be added.

Derived Property: Recoverability

For validation and defining the appropriate backward recovery mechanisms, i.e. adding
the transactional dependencies, it is of interest to know, whether a service (or a pattern)
can be backward-recovered in case of failure. We denote this by recoverability of an ele-
ment. A service S is recoverable (S.recover = 1), if and only if it is compensatable or
does not need consistent completion. This property is especially interesting for patterns:
A pattern is regarded to be recoverable (denoted as WP (S).recover = 1), if all of the ex-
ecuted services which demand consistent completion are compensatable and all contained
patterns are recoverable.

2Non-compensatable services are sometimes also referred to as pivot services.
3We use the term consistent completion interchangeably.

45

45



4.2 Inferring Pattern Properties

As stated before, we want to analyze the workflow with the bound services at runtime.
We thus analyze the composite service bottom-up and derive the transactional proper-
ties for patterns according to the contained elements, as indicated by the dashed lines
in Figure 1. The transactional properties of a pattern WP (S) are denoted just as the
transactional service properties: WP (S).comp, WP (S).consCompl, WP (S).redo and
WP (S).recover. They are determined according the properties of in included elements as
well as the pattern (i.e., its execution semantics). As the SEQUENCE and the AND-pattern
both state that all included elements have to be completed, their transactional properties
are determined in the same way.

Transactional Properties of the SEQUENCE and AND-Pattern

A pattern WP (S) which is a SEQUENCE-pattern or an AND-pattern

• is compensatable, if and only if all included services are compensatable:
WP (S).comp = 1 ⇔ ∀Si ∈ S : Si.comp = 1

• needs consistent completion, as soon as one service needs consistent completion:
WP (S).consCompl = 1 ⇔ ∃Si ∈ S : Si.consCompl = 1

• is redoable, if all included services are redoable:
WP (S).redo = 1 ⇔ ∀Si ∈ S : Si.redo = 1

• is recoverable, if all included services are either compensatable or allow for incon-
sistent completion:
WP (Si).recover = 1 ⇔ ∀Si ∈ S : Si.comp = 1 ∨ Si.consCompl = 0

Transactional Properties of the XOR-pattern

Due to the different execution semantics (one and only one included element is to be exe-
cuted), the transactional pattern properties for an XOR-pattern are determined differently
than for the SEQUENCE- and the AND-pattern. As it cannot be previously to execution
stated which service will complete, the pattern properties can only be previously deter-
mined for the following (not all) cases. Otherwise they cannot be determined until execu-
tion. The XOR-pattern

• is compensatable, if all included services are compensatable. It is non-compensa-
table, if all included services are non-compensatable. Otherwise, it is not known
previous to execution.
WPXOR(S).comp = 1 ⇐ ∀Si ∈ S : Si.comp = 1
WPXOR(S).comp = 0 ⇐ ∀Si ∈ S : Si.comp = 0

• needs consistent completion, if all included services demand consistent completion.
If none of the included services demands consistent closure, the pattern allows for
inconsistent closure. Otherwise, it is not known until execution.
WPXOR(S).consCompl = 1 ⇐ ∀Si ∈ S : Si.consCompl = 1
WPXOR(S).consCompl = 0 ⇐ ∀Si ∈ S : Si.consCompl = 0

46

46



• is redoable, if at least one service is redoable. This service can be invoked in case of
failure of any other included service. Else, the pattern is non-redoable.
WPXOR(S).redo = 1 ⇔ ∃Si ∈ S : Si.redo = 1

• is recoverable, if all included services are either compensatable or allow for incon-
sistent completion.
WPXOR(S).recover = 1 ⇐ ∀Si ∈ S : Si.Comp = 1 ∨ Si.consCompl = 0
WPXOR(S).recover = 0 ⇐ ∀Si ∈ S : Si.comp = 0 ∧ Si.consCompl = 1

An arbitrary combination of the properties compensatability, consistent closure and redoa-
bility is possible. The recoverability is derived by the former properties for services and
by the properties of the included components for patterns. Note, that for verification pur-
poses, the compensatability of a service is disregarded in case of inconsistent completion.
However, it is important when adding transactional dependencies to a composite service.
We denote the transactional properties of a service or a pattern S as PS defined as follows:

PS = (S.comp, S.consCompl, S.redo, S.recover)

Accordingly, a service S with PS = (0, 1, 1, 0) is a service which is not compensatable,
demands consistent completion, is redoable and thus not recoverable. Based on the this
model, we will now introduce the transactional guarantees that we support when dealing
with transactional workflows.

5 Relaxing Atomicity for Transactional Composite Services

Blocking of resources is counterproductive in the environment of loosely coupled and es-
pecially mobile services. Due to the autonomy of mobile services and the fluctuant avail-
ability of those, relaxed atomicity guarantees have to be defined. These specify the criteria
for correct execution. In order to avoid blocking situations, different notions of relaxed
atomicity e.g., semantic atomicity [GM83] and semi-atomicity [ZNBB94], which allow
the commitment of subtransactions at different times have been proposed for database
transactions. Convenient backward-recovery mechanisms ensure that already commit-
ted subtransactions are recovered in case of failure. In the model of flexible transactions
[ZNBB94], semi-atomicity is validated by reviewing the order of subtransactions accord-
ing to their non-functional properties: The commitment of compensatable subtransactions
precedes the commitment of pivot subtransactions. As their commitment infers the com-
mitment of the whole transaction, it is only followed by redoable subtransactions.

We adapt the model of semi-atomicity defined for flexible transactions and extend it to
comprise transactional workflow management in mobile environments. By defining ac-
cepted termination states (ATS), the designer defines representational sets of services
whose completion reflect the successful execution of the composite service. Multiple sets
exists, if alternatives in the workflow exist (or even multiple ATS exist).

We define semi-atomic execution of the workflow with respect to the transactional proper-
ties of components (as presented in Section 4) as follows:

47

47



Semi-Atomicity of Composite Services: Semi-atomic execution of a composite services
with defined ATS is ensured if

• either all services belonging to one valid execution path to an ATS are completed
and all other services which demand consistent completion are not completed

• or no service demanding consistent completion is completed.

As recovery for services which do not demand consistent completion is disregarded, this
relaxes the semi-atomicity as defined for flexible transactions.

6 Ensuring Semi-Atomicity for Composite Services

In this section, we present how semi-atomicity of a composite service as defined in Section
5 is supported. Due the increased autonomy of mobile devices as opposed to fixed wired
networks, we try to avoid the use of blocking protocols such as the 2PC. By exploring
the transactional service properties in the context of workflow patterns at runtime, the
structure of the composite service is altered and choice on alternatives is influenced to
support semi-atomic execution.

6.1 Alter Execution Type and Order

At first, we consider the execution order of components. It is initially given by the work-
flow pattern, they are arranged in (either parallel or sequential). In case of failure, it has
to be ensured, that all already completed services are recoverable or forward-recovery for
the failing services exists. This is identified by considering the transactional properties of
components. Recall, that the transactional properties of a component S are denoted as:

PS = (S.comp, S.consCompl, S.redo, S.recover)

Assuming no data dependency between two services Si and Sj , then their execution is
aligned (i.e., Si precedes Sj) in the following cases.

1. PSi = (∗, ∗, 0, 1) and PSj = (0, 1, ∗, 0), or

2. PSi = (0, 1, 0, 0) and PSj = (0, 1, 1, 0).

Otherwise, in case Sj completes but Si fails, the semi-atomicity of the workflow is harmed
as in all stated cases, Sj cannot be recovered. If at least two services Si and Sj both are not
recoverable and not redoable, i.e. PSi = PSj = (0, 1, 0, 0), then semi-atomic execution is
only assured by coordinating them within a subtransaction, e.g. using WS-Tx. Otherwise,
in case of failure of one of them and the completion of the other, the composite service is
in an inconsistent state which cannot be recovered.

48

48



Any other combination of elements can be executed independently of each other without
harming the semi-atomicity of the execution.

Recall the example of the combined ticketing from Figure 1. The designer indicated to
execute the ticketing Ti, transportation Ta and reservation R services in parallel. The Ti be
a local service with PTi = (1, 1, 0, 1). Providers for Ta and R are discovered at runtime.
Assume that services with the properties PTa = (0, 1, 1, 0) and PR = (0, 0, 1, 1) are
discovered. The workflow is then altered as shown in Figure 3a. Ti precedes the execution
of Ta, R is executed parallely.

UReq
Ta

AND Print

Ti

AND R

UReq

Ta

R
AND Print

Ti
AND

a)

b)

Figure 3: Altering execution order of components.

Assume that executed again different services with the following properties PTa = (1, 1, 0, 1)
(i.e., compensatable) and and PR = (0, 1, 0, 0) (i.e., non-compensatable and non-redoable),
then the composition is altered as shown in Figure 3b. The execution of Ta and Ti is par-
allelized, while R is executed after them. Otherwise, if the workflow was executed as
originally intended, then failure of either Ta or Ti with concurrent completion of R would
lead to a non-recoverable system state. In both cases the non-functional properties of the
pattern WP included in the dashed lines are PWP = (0, 1, 0, 0).

6.2 Service Selection According to Transactional Properties

According to their context, transactional properties of services are used to determine a
preference relation on which service to include in an XOR-pattern. Consider for example
Figure 4: At runtime, either branch Si or Sj is to be taken within the XOR-pattern, before
the subsequent workflow Ssubseq is invoked. Let the transactional properties be PSi =
(1, 1, 0, 1) and PSj = (0, 1, 1, 0). According to Section 4.2, the XOR-pattern is thus
redoable, as Sj is redoable. If PSprev = (1, 1, ∗, 1) and Ssubseq.redo = 0 then, Si

must be chosen in order to guarantee semi-atomicity. Otherwise, in case of failure of
Ssubseq , the XOR-pattern cannot be recovered. If in contrast PSprev = (0, 1, ∗, 0) and
Ssubseq.redo = 1, then the XOR-pattern has to complete to ensure semi-atomicity. This is
given trough the redoability of pattern which is already assured through the presence of Sj

(as Sj .redo = 1). Thus, in this case, the choice between those two services can be done
according to other non-functional properties.

49

49



Sprev SsubseqXOR

Si

Sj

XOR

Figure 4: Choosing Si or Sj according to transactional properties.

6.3 Automation of Recovery: Adding Transactional Dependencies

After dynamically adjusting the workflow, transactional dependencies have to be added at
runtime in order to define the appropriate forward- and backward-recovery mechanisms.
We will add dependencies according to the workflow patterns and alter those according to
the non-functional properties of services.

1. All components Si and Sj for which a normal execution dependency in the form
depNrm(Si, Sj) exists, the appropriate backward-recovery in case of failure, cancel-
lation or compensation are added. Thus dependencies of the form depF lCps(Sj , Si),
depClnCps(Sj , Si) and depCpsCps(Sj , Si) are added (dep ∗ Cps(Sj , Si) for short).

2. All components which do not need consistent completion, are omitted in backward
recovery. Thus if Sj does not need consistent closure and any transactional dependencies
in the form depXCps(Sk, Sj) and depXCps(Sj , Si) exist, for X ∈ {Fl, Cln,Cps},
then those are consolidated to an appropriate dependency of the form depXCps(Sk, Si).
Thereby, Sj is skipped in case of backward recovery.

3. All compensatable components in an AND-pattern WPAND(S) are to be compensated
in case of failure. Thus, the following dependencies are added to the compensatable com-
ponents Sc ∈ S from the subsequent workflow Ssub: dep ∗ Cps(Ssub, Sc). Additionally,
all parallely arranged components are to be cancelled, if failure or cancellation of one of
them occurs. Thus, for all Sj ∈ S, depF lCln(Sj , S) and depClnCln(Sj , S) are added.

4. Components aligned in an XOR-pattern WPXOR(S) are considered to be alterna-
tives. After analyzing their preference relation, alternative dependencies of the form
depAlt(Si, Sj), regarding the ranking order are added (i.e., Sj is an alternative for Si).
If Sj is redoable, the alternative dependency in the form of depAlt(Sj , Sk) is deleted, as
failure of Sj will not occur.

5. Finally, for any Sj in the composite service, which is not compensatable, any de-
pendency of the form dep ∗ Cps(Sk, Sj) is deleted (as it is not compensatable). On the
other hand, if Sj is redoable, then it cannot fail, thus any failure dependency in the form
depF l ∗ (Sj , Sk) is deleted.

The approaches introduced in Section 6.1 to 6.3 enable adaptations of the composite ser-
vice at runtime according to transactional properties of all components. These adaptations
and the appropriate recovery mechanisms support semi-atomic execution of the workflow.

50

50



7 Conclusion

In this paper, we have introduced adapted notion of semi-atomicity which explores transac-
tional properties of services to define correct execution for composition of mobile services.
This is especially interesting for mobile networks, as those are more dynamic and error-
prone. We considered the properties whether services can fail, can be compensated and
need to be compensated in the context of workflow patterns. As the execution context is
not previously known in mobile environments, we outlined dynamical adaptations of the
composition at runtime in order to support semi-atomic execution in the current execu-
tion context. Appropriate backward- and forward recovery mechanisms are integrated by
transactional dependencies.

By adapting the workflow, i.e. changing order and type of invocation, and influencing the
preference relation for alternatives, it is possible to support semi-atomic execution. Order-
ing services avoids coordination through blocking and still provide transactional execution
guarantees. As opposed to existing approaches, we explore existing standards for service
composition to automate transactional execution of composite services. As part of future
work, we want to design an adaptive, mobile workflow engine which exploits transactional
service properties to automate transactional execution at runtime.

References

[ABEW00] W. v. d. Aalst, P. Barthelmess, C.A. Ellis, and J. Wainer. Workflow Modeling Using
Proclets. In Proceedings of the 7th International Conference on Cooperative Informa-
tion Systems (COOPIS’2000), pages 198–209, 2000.

[Apa] Apache Orchestration Director Engine. http://ode.apache.org/.

[ASSR93] P. C. Attie, M. P. Singh, A. Sheth, and M. Rusinkiewicz. Specifying and Enforcing
Intertask Dependencies. In Proceedings of the 19th VLDB Conference, 1993.

[BFHS03] Tevfik Bultan, Xiang Fu, Richard Hull, and Jianwen Su. Conversation Specification:
A New Approach to Design and Analysis of E-service Composition. In WWW ’03:
Proceedings of the 12th International Conference on World Wide Web, pages 403–410,
New York, NY, USA, 2003. ACM.

[CJFY06] Dipanjan Chakraborty, Anupam Joshi, Tim Finin, and Yelena Yesha. Toward Dis-
tributed Service Discovery in Pervasive Computing Environments. IEEE Transactions
on Mobile Computing, February 2006.

[DD07] Dmytro Dyachuk and Ralph Deters. Service Level Agreement Aware Workflow
Scheduling. In Proceedings of International Conference on Services Computing (SCC),
volume 0, pages 715–716. IEEE Computer Society, 2007.

[DKRR96] H. Davulcu, M. Kifer, C. R. Ramakrishnan, and I. V. Ramakrishnan. Logic Based Mod-
eling and Analysis of Workflows. In Proceedings of the 17th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, pages 1–3. ACM Press, 1996.

[FDDB05] M.-C. Fauvet, H. Duarte, M. Dumas, and B. Benatallah. Handling Transactional Prop-
erties in Web Service Composition. In WISE, pages 273–289, 2005.

51

51



[GGGG04] Ankur Gupta, Nitin Gupta, R. K. Ghosh, and M. M. Gore. Team Transaction: A New
Transaction Model for Mobile Ad Hoc Networks. In ICDCIT, 2004.

[GM83] Hector Garcia-Molina. Using semantic knowledge for transaction processing in a dis-
tributed database. ACM Trans. Database Syst., 8(2):186–213, 1983.

[GMS87] H. Garcia-Molina and K. Salem. Sagas. SIGMOD Rec., 16(3):249–259, 1987.

[GRGH07] Walid Gaaloul, Mohsen Rouached, Claude Godart, and Manfred Hauswirth. Verifying
Composite Service Transactional Behavior Using Event Calculus. In OTM Conferences
(1), pages 353–370, 2007.

[HB03] Hamadi and Benatallah. A Petri Net-based Model for Web Service Composition. In
Proceedings of the 14th Australasian Database Conference (ADC’03), 2003.

[IBM05] WebServices AtomicTransaction, 2005. http://www.ibm.com/developerworks/
library/specification/ws-tx/.

[JK97] Sushil Jajodia and Larry Kerschberg, editors. Advanced Transaction Models and Ar-
chitectures. Kluwer, 1997.

[Kle04] Michael Klein. Handbuch zur DIANE Service Description. Technical Report 2004-17,
Universität Karlsruhe, Faculty of Informatics, December 2004.

[MDS02] F.V. Harmelen J.Hendler I.Horrocks D.L. McGuinness P.F. Patel-Schneider M. Dean,
D. Connolly and L.A. Stein. Web Ontology Language (OWL) Reference Version 1.0,
2002. http://www.w3.org/TR/2002/WD-owl-ref-20021112.

[PA00] G. Pardon and G. Alonso. CheeTah: a Lightweight Transaction Server for Plug-and-
Play Internet Data Management. In VLDB ’00: Proceedings of the 26th International
Conference on Very Large Data Bases, pages 210–219, San Francisco, CA, USA, 2000.
Morgan Kaufmann Publishers Inc.

[PA02] A. Popovici and G. Alonso. Ad-Hoc Transactions for Mobile Sevices. In Proceedings
of the 3rd VLDB Workshop on Transactions and Electronic Services (TES ’02), 2002.

[RCJF02] O. Ratsimor, D. Chakraborty, A. Joshi, and T. Finin. Allia: Alliance-based Service
Discovery for ad-hoc Environments. In Proceedings of the 2nd international workshop
on Mobile commerce, pages 1–9, New York, NY, USA, 2002. ACM.

[RFH+01] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content
addressable network. In Proccedings of ACM SIGCOMM, 2001.

[SDN07] Michael Schäfer, Peter Dolog, and Wolfgang Nejdl. Engineering Compensations in
Web Service Environment. In Proceedings of 7th Intl. Conference on Web Engineering
(ICWE), pages 32–46, Como, Italy, 2007.

[WS92] Gerhard Weikum and Hans-Jorg Schek. Concepts and Applications of Multilevel Trans-
actions and Open Nested Transactions. In Database Transaction Models for Advanced
Applications, pages 515–553. 1992.

[WSD05] Web Service Semantics WSDL-S, 2005. http://www.w3.org/Submission/WSDL-S/.

[ZNBB94] A. Zhang, M. Nodine, B. Bhargava, and O. Bukhres. Ensuring Relaxed Atomicity for
Flexible Transactions in Multidatabase Systems. SIGMOD Rec., 23(2), 1994.

52

52




