
Efficient mapping of large cDNA/EST databases to
genomes: A comparison of two different strategies

Christian Wawra∗ Mohamed I. Abouelhoda∗ Enno Ohlebusch∗

Abstract: This paper presents a comparison of two strategies for cDNA/EST map-
ping: The seed-and-extend strategy and the fragment-chaining strategy. We derive
theoretical results on the statistics of fragments of type maximal exact match. More-
over, we present efficient fragment-chaining algorithms that are simpler than previ-
ous ones. In experiments, we compared our implementation of the fragment-chaining
strategy with the seed-and-extend strategy implemented in the software tool BLAT.

1 Introduction

The first step in gene expression is transcription of the genetic information contained in
DNA into RNA. In this process, the RNA polymerase generates a primary RNA transcript
that extends from the initiation site to the termination site in a perfect complementary
match to the DNA sequence used as a template. In eukaryotes, however, not all tran-
scribed RNA is destined to arrive in the cytoplasm as mRNA. Rather, by an incompletely
understood process, sequences complementary to introns are excised from the primary
transcript, and the ends of exon sequences are joined together in a process termed “splic-
ing.” The exons are short segments ranging from tens to hundreds of base pairs, while the
introns are normally several orders of magnitude longer. To make a cDNA library, one
isolates all the mRNA from a cell or tissue. Then, using this mRNA as a template, reverse
transcriptase makes cDNA copies of each mRNA molecule in the mixture. A completely
sequenced cDNA is termed “full-length” cDNA. For economical reasons, however, cDNA
is often only partially sequenced, yielding expressed sequence tags (ESTs). As mentioned
above, cDNA consists only of the exons of the transcribed gene because the introns have
been spliced out. The problem of cDNA mapping is to find the gene and its exon/intron
structure on the genome from which the cDNA originated; see Figure 1. In this way, cDNA
libraries can be used to identify previously unknown genes or to annotate a genomic se-
quence.

The software tool BLAT (the BLAST-Like Alignment Tool) [Ken02] allows a fast mapping
of a cDNA/EST sequence to a genomic sequence as follows. First, the genomic sequence
(the database) is divided into consecutive non-overlapping K-mers (subsequences of K
contiguous bases). Then, the position of each occurrence of each K-mer is stored in a

∗Computer Science Faculty, Theoretical Bioinformatics, University of Ulm, 89069 Ulm, Germany. Email:
eo@informatik.uni-ulm.de

29

exon 1 exon 3exon 2

exon 2 exon 3

intron intron

exon 1
cDNA

Genome

Figure 1: An example of cDNA mapped to a genomic sequence.

hash table. Searching for a cDNA/EST sequence (the query sequence) in the genome is
done by obtaining from the hash table the “hits” for each K-mer in the query sequence. In
other words, in the “search stage” one looks for all K-mers that are shared by the query
sequence and the database. Other software tools like e.g. SSAHA [NCM01] use the same
strategy. Because extensions of these shared regions are likely to be homologous, BLAT
examines these regions in more detail and in an “alignment stage” produces alignments
for the regions that are indeed homologous according to some criteria. Thus, BLAT uses
a seed-and-extend strategy: The exact K-mer matches are the seeds that are extended
in the alignment stage. BLAT also supports alternative search methods, in which a seed
consists of either a near perfect match (with at most one mismatch) or multiple exact
K-mer matches that are constrained to be near each other.

Our method is not a seed-and-extend method; it rather resembles the anchor-based multiple
alignment methods. To be precise, we first build a suffix tree from the genomic sequence.
Then, maximal exact matches1 (MEMs)—exceeding a length threshold k—between the
genomic sequence and the query sequence are determined by matching the query against
the suffix tree. In fact, instead of a suffix tree, we use a data structure that requires less
memory. This data structure, called enhanced suffix array [AKO04], requires only 5 bytes
per character in the database. Finally, the MEMs computed in the search stage are clustered
by a suitable chaining algorithm.

2 Searching with single exact matches

Besides K (the K-mer size) and k (the length threshold on MEMs), we will use the fol-
lowing parameters:

H : The size of a homologous region. For a human exon this is typically 50-200 bp.

M : The probability that two corresponding nucleotides in two homologous regions coin-
cide. Roughly speaking, M is the match ratio between homologous regions.

G: Length of the genomic sequence. For example, the human genome contains 3 · 109 bp.

Q: Length of the query sequence. For cDNA/EST mapping this is typically 500 bp.

1A maximal exact match is an exact match that is bounded by mismatches.

30

A: The alphabet size. Here A = 4 because we solely consider nucleotide sequences.

P : Probability that homologous regions of length H will be found.

F : Expected number of (random) matches, based on the assumption that G and Q are
random sequences (i.e., at each position each nucleotide occurs with probability 1

A = 1
4).

For the single K-mer match strategy described above, the values of P and F can be

computed by the equations [Ken02]: P = 1 − (1 − MK)�H
K � and F = (Q − K +

1)(G/K)(1/A)K . For example, if M = 97% and H = 100, then the probability that
two homologous regions contain an exact match of length K = 16 exceeds 99%. In other
words, if one searches for all K-mers of length 16 and extends these seeds appropriately,
then two homologous regions will be found with probability P ≥ 99%. To put it dif-
ferently, given M and H we can asked for the largest K such that P ≥ 99%. Table 1
shows the values of K for varying M . Furthermore, it shows the respective values of F
for G = 3 · 109 and Q = 500. The value of F gives a hint of how many false positive
seeds are to be expected by chance. A large value of F means that one can expect that a
lot of work in the alignment stage will be wasted, because many alignments of extended
seeds will be “thrown away” because of poor quality.

single exact near perfect near perfect two exact K-
K-mer match single MEM K-mer match MEM mer matches two MEMs

M K F k F K F k F K F k F
81% 6 6.0e+7 8 1.7e+7 10 4.4e+6 13 5.9e+5 5 4.8e+6 7 2.4e+5
83% 6 6.0e+7 9 4.2e+6 11 1.1e+6 14 1.6e+5 5 4.8e+6 7 2,4e+5
85% 7 1.3e+7 10 1.1e+6 12 2.7e+5 15 42773 6 2.0e+5 8 1.5e+4
87% 8 2.8e+6 11 2.6e+5 12 2.7e+5 17 3043 6 2.0e+5 9 905
89% 9 6.3e+5 12 65625 13 67124 18 807 7 9233 10 55
91% 10 1.4e+5 13 16373 16 1037 21 15 8 427 11 3.3
93% 11 31861 15 1019 19 16 24 0.3 9 21 12 0.2
95% 14 389 18 16 22 0.2 29 0.0 11 0.1 14 0.0
97% 16 21 23 0.0 29 0.0 36 0.0 14 0.0 18 0.0

Table 1: Given M , the table shows the largest K (k, respectively) for which P ≥ 99%, where
H = 100, G = 3 · 109 and Q = 500. The F columns show the corresponding numbers of matches
that are expected by chance.

In order to compare the single K-mer match strategy with the single MEM strategy, we
will show how P and F can be computed for the latter. The probability that two ho-
mologous regions of length H contain an exact match of length ≥ k is the same as the
probability that H coin flips (where the probability of the event head is M and that of
tail is 1 −M) produce a sequence of ≥ k consecutive heads. The probability of such a
headrun can be obtained by the 0-order Markov model depicted in Figure 2.

The Markov model starts in state 0 and the transition probabilities pi,i+1 from state i to
state i + 1 are M for 0 ≤ i < k. Moreover, we have pi,0 = 1 − M for 0 ≤ i < k
and pk,k = 1, while all other transition probabilities are 0. Thus the transition matrix

31

✒✑✓✏✒✑✓✏✒✑✓✏✒✑✓✏✒✑✓✏✒✑✓✏✒✑✓✏✒✑✓✏
✲M ✲M ✲M ✲M ✲M

...

✢ ✢ ✢ ✢ ✢ ✢
1−M

✗
✖

✲ ✔
✕✖

✛

1

❄
0 1 2 3 4 k-1 k

Figure 2: Markov model for the probability of a headrun of length ≥ k.

P = (pi,j) is:

P =

0BBBB@
p0,0 p0,1 ... p0,k

p1,0 p1,1 ... p1,k

...
pk−1,0 pk−1,1 ... pk−1,k

pk,0 pk,1 ... pk,k

1CCCCA =

0BBBB@
1 − M M 0 0 ... 0 0
1 − M 0 M 0 ... 0 0

...
1 − M 0 0 0 ... 0 M

0 0 0 0 ... 0 1

1CCCCA
After H time steps, the Markov model is in state k if and only if a headrun of length
≥ k occurred. Let P = p

(H)
0,k denote the probability of this event. It is a consequence

of the Chapman-Kolmogorov equations [Pap84] that the entries in the H th power of the
transition matrix give the H step transition probabilities. Hence p

(H)
0,k = (PH)0,k. Again,

for H = 100 and varying M , Table 1 shows the largest k such that P ≥ 99%.2 It is not
difficult to verify that if two homologous regions of 100bp contain exactly 3 mismatches,
then they contain at least one MEM of length ≥ �100/(3 + 1)� = 25; see [KCO+01].
Thus the reader may wonder why, according to Table 1, for M = 97% the largest k such
that P ≥ 99% is 23 and not 25. The explanation for this discrepancy is that M = 97%
(recall that M is the probability that two corresponding nucleotides in two homologous
regions coincide) does not mean that any two homologous regions have 3% mismatches.

In order to compute F for the single MEM-strategy, let Il,i,j be the following random
variable:

Il,i,j =
�

1, if there is a MEM of length l ending at position i in Q and at position j in G
0, otherwise

The expected value of Il,i,j is

E(Il,i,j) = P (Il,i,j = 1) =
�

1− 1
A

� �
1
A

�l �
1− 1

A

�
because this is the probability of l matching characters bounded by mismatches. Thus, F

2If a headrun is a rare event, then the probability that headrun of length ≥ k occurs can be obtained by
the Chen-Stein method; see [Wat95]. However, these events are not rare in our context, because we deal with
homologous regions.

32

can be calculated as follows.

F = E

0@ QX
l=k

GX
i=l

QX
j=l

Il,i,j

1A =

QX
l=k

GX
i=l

QX
j=l

E(Il,i,j) ≤
QX

l=k

GX
i=k

QX
j=k

„
1 − 1

A

«2 „
1

A

«l

=

QX
l=k

(G − k + 1)(Q − k + 1)

„
1 − 1

A

«2„
1

A

«l

Using the formula
�n

i=0 ci = 1−cn+1

1−c for c �= 1 yields
�Q

l=k(1
A)l =

QX
l=0

„
1

A

«l

−
k−1X
l=0

„
1

A

«l

=

1 − ` 1

A

´Q+1

1 − ` 1
A

´ − 1 − ` 1
A

´k

1 − ` 1
A

´ ! =

 „
1

A

«k

−
„

1

A

«Q+1
!

Since
�

1
A

�Q+1
is really small (GQ

�
1
A

�Q+1 = 3.5·10−290 for Q = 500, G = 3·109, A =
4), we can compute F approximately by

F ≈ (G − k + 1)(Q − k + 1)

„
1 − 1

A

«„
1

A

«k

Table 1 shows the values of F for varying M .

Kent [Ken02] also derived formulas for the computation of P and F for the cases in which
a seed consists of either a near perfect match (with at most one mismatch) or two exact K-
mer matches that are constrained to be near each other. We did the same for MEMs instead
of K-mer matches. For space reasons, the derivations of the corresponding formulas are
omitted, but the respective values of P and F can be found in Table 1. The strategy
of using MEMs instead of K-mers has the advantage that less matches are expected by
chance. For example, if M = 93%, then K = 11 and k = 15 guarantee that homologous
regions are found with probability P ≥ 99% by the single match strategy. In this case
31861 random K-mer matches are expected, but only 1019 random MEMs. If one uses
a seed-and-extend method, then this implies that 30 times more random seeds have to be
examined in the single K-mer match strategy than in the single MEM strategy.

By default BLAT uses a two K-mer matches strategy with K = 11. Our chaining algo-
rithm that will be explained in the next section can be viewed as a single MEM strategy.

3 Chaining instead of seed-and-extend

In contrast to BLAT, we do not use a seed-and-extend method. Instead we search for the
highest scoring chain of colinear matches (MEMs) between the cDNA and the genomic
sequence. To make this precise, we need some preliminaries.

33

GGACACAGTACCCGCC

(a)

genome

cDNA/EST

GGACACAGT GTACCCGCC

(b)

genome

cDNA/EST

GGACACAGT GTGTACCCGCC

GGACACAGTGTACCCGCC

Figure 3: Overlapping MEMs.

3.1 Preliminaries

Definition 3.1 An exact match between two sequences G and Q is a triple (l, p, q) such
that G[p..p + l − 1] = Q[q..q + l − 1], i.e., the l-character-long substring of G starting
at position p coincides with the l-character-long substring of Q starting at position q. An
exact match is left maximal if G[p−1] �= Q[q−1] and right maximal if G[p+l] �= Q[q+l].
A maximal exact match (MEM) is a left and right maximal exact match.

A maximal unique match (MUM) is a MEM (l, p, q) such that the substring G[p..p + l −
1] = Q[q..q + l− 1] occurs exactly once in G and exactly once in Q.

Definition 3.2 Let (l1, p1, q1) and (l2, p2, q2) be two MEMs with p1 < p2 and q1 < q2.
We say that (l1, p1, q1) overlaps with (l2, p2, q2)

• in G if and only if p2 ≤ p1 + l1 − 1 < p2 + l2 − 1

• in Q if and only if q2 ≤ q1 + l1 − 1 < q2 + l2 − 1

Figure 3 (a) shows two MEMs that overlap in Q but not in G, while Figure 3 (b) shows
two MEMs that overlap in both G and Q.

A MEM (l, p, q) can be represented by a rectangle in R2 with the two extreme corner
points (p, q) and (p + l − 1, q + l − 1); see Figure 4. Such a rectangle is also called
fragment. In the following, we will identify a MEM (l, p, q) with its fragment f in R2

and denote the two extreme corner points by beg(f) = (beg(f).x, beg(f).y) = (p, q)
and end(f) = (end(f).x, end(f).y) = (p + l − 1, q + l − 1). Furthermore, we define
f.length = l. That is, f.length denotes the length of the MEM corresponding to f .

Definition 3.3 The relation � on the set of fragments is defined as follows. f � � f if
and only if the following two conditions hold:

1. beg(f �).x < beg(f).x and beg(f �).y < beg(f).y.

2. end(f �).x < end(f).x and end(f �).y < end(f).y.

If f � � f , then we say that f � precedes f . The fragments f � and f are colinear if either
f � precedes f or f precedes f �.

34

C

C

o

f

o

D

BA

f

A B

CD

Q Q

G Gpp

q q

2

1

(a) (b)

Figure 4: (a) The four cases that have to be considered in Shibuya and Kurochkin’s approach.
(b) The two cases A ∪ B and C ∪ D that have to be considered in our approach.

Thus, two fragments are colinear if they appear in the same order in both sequences. Note
that if we further have end(f �).x < beg(f).x and end(f �).y < beg(f).y, then f � and f
are colinear and non-overlapping.

3.2 A new chaining algorithm for cDNA mapping

In cDNA mapping, the score score(C) of a chain C of colinear and non-overlapping
MEMs is the sum of the lengths of the MEMs in C. That is, gaps between the matches
are not penalized because large gaps correspond to introns. Thus, a highest-scoring chain
contains MEMs that best “cover” the cDNA and hence the locations of these matches in
the genomic sequence are the most promising exon candidates. It is well-known that a
highest-scoring chain can be computed in O(m log m) time using the technique of sparse
dynamic programming [EGGI92], where m denotes the number of matches. We have
shown in [AO05] that highest-scoring chains for more than two sequences can also be
computed in subquadratic time using range maximum queries (RMQs) based on range
trees or kD-trees. Contemporaneously, Shibuya and Kurochkin [SK03] showed that the
chaining problem for two sequences can be solved with dynamic RMQs based on AVL
trees. To take overlaps into account, they defined the overlap length of two MEMs to be the
maximum of the amount of overlap in G and in Q. In their paper, the score score(C) of a
chain C of colinear MEMs is the sum of the lengths of the MEMs in C minus their overlap
lengths. As a consequence of their definition of the overlap length, in the computation of
a highest-scoring chain Cf of colinear MEMs ending with MEM f , one has to consider
four different regions, namely A, B∪C1, C2, and D; see Figure 4 (a). Each of these cases
yields a candidate MEM fi and a highest-scoring chain Cfi of colinear MEMs ending
with fi, 1 ≤ i ≤ 4. Then, score(Cf) is computed by score(Cf) = maxi{score(Cfi) +
f.length − overlap length(f, fi)}; see [SK03] for details. Shibuya and Kurochkin’s
algorithm runs in O(m log m) time, but it is rather complicated because it is a mixture of
RMQs and the candidate list paradigm.

35

We argue that for cDNA mapping Shibuya and Kurochkin’s penalty for overlaps is not
suitable. In our opinion, the overlap length of two MEMs should be defined solely as
the amount of their overlap in the cDNA because in the problem at hand one wants to
maximize the coverage of the cDNA. In other words, we suggest to not penalize an overlap
in the genomic sequence G. The consequences of our approach are illustrated in Figure
4 (b). The x-axis corresponds to the genomic sequence G, while the y-axis corresponds
to the cDNA sequence Q. Each MEM that can precede the MEM f in a chain must start
in region A. Those that do not overlap with f in Q must end in region A or B. Those that
do overlap with f in Q must end in region C or D. We will show next that this means that
the cDNA mapping problem can be solved by two two-dimensional RMQs in the regions
A ∪B and C ∪D.

Definition 3.4 For any two fragments f � � f , the amount of overlap in the cDNA se-
quence is

overlapy(f �, f) =
�

end(f �).y − beg(f).y + 1, if end(f �).y ≥ beg(f).y
0, otherwise

In our opinion, the cDNA mapping problem should be formulated as follows.

Definition 3.5 Given a set of m fragments, find a chain C of colinear fragments
f1, f2, . . . , ft (i.e., f1 � f2 � . . . � ft) such that score(C) =

�t
i=1 fi.length −�t−1

i=1 overlapy(fi, fi+1) is maximal.

Thus, we want to maximize the amount of cDNA sequence mapped to the genomic se-
quence. It is easy to see that a perfect mapping has a score that equals the cDNA length.

In the following, f.score denotes the maximum score of all chains ending with the frag-
ment f . When we speak about the score of the points beg(f) = (beg(f).x, beg(f).y) and
end(f) = (end(f).x, end(f).y) we implicitly mean the score of f . Clearly, f.score can
be computed by the recurrence

f.score = f.length + max{f �.score− overlapy(f �, f)|f � � f}

Algorithm 3.6 is a geometric solution to this recurrence. It uses a line sweep proce-
dure w.r.t. the genomic sequence and range maximum queries to find the fragment that
maximizes the score. There are two data structures D1 and D2 to efficiently answer
2-dimensional range maximum queries with activation. In this algorithm, the function
RMQDi([x1..x2], [y1..y2]), i ∈ {1, 2}, is a range maximum query that retrieves the point
of maximum score in the set of active points stored in the data structure Di and within
the rectangular region defined by the intervals [x1..x2] in G and [y1..y2] in Q. For greater
details, we recommend the reader to consult our paper [AO05].

Algorithm 3.6
Sort all start points of the m fragments in ascending order w.r.t. their x coordinate

36

and store them in the array points.
Store all the end points as inactive in the data structures D1 and D2.
for 1 ≤ i ≤ m

determine the fragment f with beg(f).x = points[i]
q1 := RMQD1([0..end(f).x− 1], [0..beg(f).y − 1])
q2 := RMQD2([0..end(f).x− 1], [beg(f).y..end(f).y − 1])
determine the fragment f1 with end(f1) = q1

if f1 = ⊥ then score1 = 0
else score1 = f1.score
determine the fragment f2 with end(f2) = q2

if f2 = ⊥ then score2 = 0
else

if beg(f2).y < beg(f).y) then
score2 = f2.score− (end(f2).y − beg(f).y)

else f2 = ⊥, and score2 = 0
f.score = f.length + max{score1, score2}
if score1 ≥ score2 > 0 then connect f1 to f else if score2 > 0 then connect f2 to f
activate (end(f).x, end(f).y) in D1 with score f.score
activate (end(f).x, end(f).y) in D2 with score f.score− end(f).y

Before proving the correctness of this algorithm, we would like to explain it. When the
start point of a fragment f is scanned, we search for a fragment f � that precedes f and
maximizes f �.score − overlapy(f �, f). To take overlaps into account, we have to divide
the search region into two subregions. The first subregion is the rectangle ([0..end(f).x−
1], [0..beg(f).y− 1]); this is the region A∪B in Figure 4 (b). In the following this region
will be denoted by AB(f) to emphasize its dependence on f . Any fragment in this region
that precedes f does not overlap with f in the cDNA sequence Q. The second subregion
is the rectangle ([0..end(f).x − 1], [beg(f).y..end(f).y − 1]), denoted by CD(f); see
region C ∪ D in Figure 4 (b). Any fragment in this region that precedes f overlaps with
f in the cDNA sequence Q. In order to penalize this overlap, we activate each end point
in D2 with f.score− end(f).y instead of f.score. This guarantees, as we shall see in the
correctness proof, that a fragment f2 will be found such that f2.score − overlapy(f2, f)
is maximal in CD(f). However, it may happen that beg(f2).y ≥ beg(f).y. That is,
beg(f2) /∈ A(f), where A(f) denotes the rectangle ([0..beg(f).x− 1], [0..beg(f).y− 1]).
In this case, we simply ignore f2. This does not affect the correctness of the algorithm,
because then there is a fragment in AB(f) whose score is at least as high as that of f2.
Finally, if f1.score ≥ f2.score− overlapy(f, f2), then f1 is connected to f . Otherwise,
f2 is connected to f .

For a formal correctness proof, we need the following definition and lemmata.

Definition 3.7 The priority of a fragment f �, denoted by f �.priority, is defined as
f �.priority = f �.score− end(f �).y.

Lemma 3.8 Let f � and f �� be fragments with end(f �) ∈ CD(f) and end(f ��) ∈ CD(f).
37

We have f ��.priority < f �.priority if and only if f ��.score − overlapy(f ��, f) <
f �.score− overlapy(f �, f).

Proof

f ��.priority < f �.priority
⇔ f ��.score− end(f ��).y < f �.score− end(f �).y
⇔ f ��.score− (end(f ��).y − beg(f).y) < f �.score− (end(f �).y − beg(f).y)
⇔ f ��.score− overlapy(f ��, f) < f �.score− overlapy(f �, f)

Note that in the lemma < can be replaced with ≤. ✷

Thus, if f � is a fragment with highest priority in CD(f), then f �.score− overlapy(f �, f)
is maximal in CD(f). The priority of a fragment f � is independent of f . Hence, it can be
computed in constant time when f � is scanned. This has the advantage that the overlaps
between all fragments need not be computed in advance (note that this would yield a
quadratic time algorithm).

Lemma 3.9 Let C be a chain composed of the fragments f1, . . . , ft. For every index i,
1 ≤ i ≤ t− 1, we have fi+1.priority ≤ fi.priority.

Proof

fi+1.priority = fi+1.score− end(fi+1).y
= fi.score + fi+1.length− overlapy(fi, fi+1)− end(fi+1).y
= fi.score− beg(fi+1).y − overlapy(fi, fi+1) + 1
≤ fi.score− end(fi).y
≤ fi.priority

Not that if overlapy(fi, fi+1) = 0, then fi+1.priority < fi.priority. ✷

Theorem 3.10 Algorithm 3.6 correctly computes an optimal chain.

Proof When the sweep-line reaches the start point beg(f) of fragment f , the end points
of all fragments that started before beg(f).x are already activated in the data structures
D1 and D2. The end points of the remaining fragments are still inactive. This guaran-
tees that each fragment whose end point lies in AB(f) or CD(f) but whose start point
occurs after beg(f).x will not be considered in what follows. Because each fragment
with end point in region AB(f) does not overlap with f in the cDNA sequence, the two-
dimensional RMQD1 retrieves the fragment f1 of maximum score in the region AB(f)
by searching in the set of active end points in D1. Analogously, because a fragment f �

with end point in region CD(f) overlaps with f in the cDNA sequence, it is activated in
D2 with priority f �.score− end(f �).y. The two-dimensional RMQD2 yields the fragment
f2 of the highest priority in CD(f), by searching in the set of active end points in D2.

38

By Lemma 3.8, f2.score − overlapy(f2, f) is maximal in CD(f). Suppose first that
beg(f2).y < beg(f).y, i.e., the start point of f2 lies in A(f). In this case we connect f2 to
f , if f2.score−overlapy(f2, f) > f1.score. Otherwise, we connect f1 to f provided that
f1 �= ⊥, and we are done. Now suppose that beg(f2).y ≥ beg(f).y, i.e., the start point
of f2 lies in CD(f). This implies overlapy(f2, f) ≥ f2.length. According to Lemma
3.9, if there is a fragment f � connected to f2 (i.e., f � is the predecessor of f2 in a highest-
scoring chain ending with f2), then the end point end(f �) of f � must lie in A(f). Hence,
overlapy(f �, f2) = 0 and we have

f �.score = f �.score− overlapy(f �, f2)
= f2.length + f �.score− overlapy(f �, f2)− f2.length

= f2.score− f2.length

≥ f2.score− overlapy(f2, f)

Recall from Lemma 3.8 that f2.score − overlapy(f2, f) is maximal in CD(f). Now it
follows from f �.score ≥ f2.score − overlapy(f2, f) in conjunction with f �.score ≤
f1.score that f2 can safely be ignored.

There is one remaining case: f2 has no predecessor. Again, f2 can be ignored by Lemma
3.8 because f2.score− overlapy(f2, f) = f2.length− overlapy(f2, f) ≤ 0. ✷

The complexity of Algorithm 3.6 depends on the complexity of the RMQs with activation
supported by the data structures D1 and D2. If D1 and D2 are implemented as range trees
supported by the technique of fractional cascading and enhanced with priority queues as
shown in [AO05], then the complexity of the algorithm is O(m log m log log m) time and
O(m log m) space. If the kd-tree is used instead of the range tree, then the algorithm takes
O(m1.5) time in the worst case and O(m) space. Interestingly, the query time of kd-tree
can be improved in practice using a set of programming tricks [Ben90]. If the gaps between
successive fragments in a chain are constrained to be at most W characters long (e.g., W
could be set to the estimated maximum intron length), then RMQD1 and RMQD2 have to be
limited to the regions ([end(f).x−W..end(f).x−1], [beg(f).y−W..beg(f).y−1]), and
([end(f).x−W..end(f).x− 1], [beg(f).y..end(f).y− 1]), respectively. This restriction
increases the complexity of the algorithm using the range tree to O(m log2 m) time and
O(m log m) space (because the priority queues can no longer be used). The complexity
using the kd-tree remains the same.

3.3 Special cases

In Algorithm 3.6, the range maximum queries are two-dimensional to guarantee that
beg(f �) ∈ A(f) and end(f �) ∈ {A ∪ B ∪ C ∪ D}. However, one-dimensional RMQs
suffice if beg(f �) ∈ A(f) implies end(f �) ∈ {A ∪B ∪C ∪D} and vice versa. There are
two interesting special cases that meet this requirement. The first is the usage of MUMs
or rare-MEMs instead of MEMs and the second is the restriction to a certain amount of
overlapping.

39

f
f

f

f

f

f

C

D f

B

A

G

Q

o

2

1

3

6

4

5

Figure 5: Fragment f1 is embedded in fragment f in Q, while f is embedded in f2 in Q and in f3

in G. Such embeddings cannot occur if MUMs are used instead of MEMs.

3.3.1 MUMs or rare-MEMs

Suppose one uses MUMs instead of MEMs. When the sweep-line reaches the start point
beg(f) of fragment f , then it is sufficient to use the one-dimensional range maximum
queries RMQD1([0..beg(f).y − 1]) and RMQD2([beg(f).y..end(f).y − 1]) instead of the
two-dimensional RMQs of Algorithm 3.6. This is because RMQD1([0..beg(f).y − 1]) con-
siders only the end points that where activated before, that is, the corresponding start point
must occur before beg(f).x. In summary, the RMQ yields a fragment f � with beg(f �) in
A(f). If end(f �) were not contained in the region AB(f), then f would be embedded in
f �; cf. fragment f3 in Figure 5. However, a MUM cannot be embedded in another MUM.
(If such MUMs would exist, then the substring of the embedded MUM would occur more
than once in G or Q, which contradicts with the definition of MUMs). Analogously, one
can show that RMQD2([beg(f).y..end(f).y − 1]) retrieves the end point of a fragment f ��

such that beg(f ��) ∈ A(f) and end(f ��) ∈ CD(f). Clearly, this implies that the algorithm
sketched above requires O(m log m) time and O(m) space. (For a one-dimensional RMQ
the range tree and kd-tree are equivalent.) The algorithm can be modified to deal with
rare-MEMs in O(rm log m) time and O(m) space.

3.3.2 Restricting the amount of overlapping

Suppose that the minimum fragment length is k. If we tolerate overlappings of at most k−1
characters between any two successive fragments f � and f in a chain, (i.e., end(f �).x <
beg(f).x + k and end(f �).y < beg(f).y + k), then it follows that beg(f �) ∈ AB(f) (i.e.,
beg(f �).x < beg(f).x and beg(f �).y < beg(f).y). This property can be used to reduce
the dimension of the RMQs to one. To this end, we attach to each fragment f the virtual
point v(f) = (beg(f).x+k, beg(f).y+k). When the sweep-line reaches v(f), we launch
RMQD1([0, beg(f).y − 1]) and RMQD2(beg(f).y, v(f).y − 1]) to find the fragments of
highest score. Algorithm 3.11 shows how to compute a chain of maximum score allowing
only overlaps of at most k − 1 characters. (For ease of presentation, we ignore the case in
which the fragments retrieved by RMQD1 or RMQD2 are ⊥.)

40

Algorithm 3.11
Sort all virtual and all end points of the m fragments in ascending order w.r.t. their x1

coordinate and store them in the array points.
Store all the end points (ignoring their x1 coordinate) as inactive in D1 and D2.
for 1 ≤ i ≤ 2m

if points[i] is the point v(f) then
q1 := RMQD1(0, beg(f).y − 1)
q2 := RMQD2(beg(f).y, beg(f).y + k − 1)
determine the fragment f1 with end(f1) = q1

determine the fragment f2 with end(f2) = q2

score1 = f.length + f1.score
score2 = f.length + f2.score− (end(f2).y − beg(f).y)
f.score = max{score1, score2}
if f.score = score1 then connect f to f1 else connect f to f2

else /6 points[i] is the end point of a fragment f 6/
activate end(f).y in D1 with score f.score
activate end(f).y in D2 with score f.score− end(f).y

4 Experimental results

We mapped the Fantom database [OFK+02] (version 2.1.1, 60770 full cDNA sequences
of total length 120 Mbp) to the mouse chromosome 19 (UCSC Genome Browser) using
BLAT and our method. More precisely, we used the Vmatch package developed by Ste-
fan Kurtz (http://www.vmatch.de) to generate all MEMs of minimum length 20
(approx. 1.4 million) and the program CHAINER [AO04] to compute the highest-scoring
chains of MEMs. (Although Table 1 suggests to use k = 23 for the experiments, we found
that k = 20 results in a better coverage of the chains.) We tested BLAT using the default
options (in particular K = 11) with and without the option that excludes K-mers that
occur too often. BLAT took 442 minutes without this option and 12 minutes with this op-
tion. The running time of Vmatch and CHAINER was 18 minutes: 16 minutes to obtain the
MEMs and 2 minutes to build the chains. Using the unmasked chromosome, BLAT took
39 hours even when over-repeated K-mers were excluded, while Vmatch and CHAINER
took 2 hours when over-repeated MEMs were excluded. The experiments were performed
on a Sun Fire 280 computer equipped with 6 GB RAM and two processors (UltraSPARC
III Cu 1.015 GHz).

We compared our results on two levels with those obtained by BLAT, taking the annotation
as a reference. The first level measures whether the cDNA is mapped or not. The second
level measures the amount of correctly mapped exons in each cDNA. Table 2 shows the
results of this comparison. These results are w.r.t. the positive strand only. From the
table, one can see that BLAT and CHAINER have the same sensitivity on the gene level.
However, the specificity of BLAT on that level is lower than that of CHAINER. Although
we removed BLAT hits whose percentage identity is less than 50%, there are still 113 false
positives. There are 41 genes that are contained solely in the annotation; this is due to the

41

Gene Level
a ∧ b ∧ c a ∧ b a ∧ c b ∧ c a b c

985 1 1 123 41 113 0

Exon Level
a ∧ b ∧ c a ∧ b a ∧ c b ∧ c a b c

5056 8 9 53 43 20 11

Table 2: Accuracy of the cDNA mapping on the gene and exon level. The symbol a stands for the
annotation, b refers to BLAT results, and c denotes CHAINER results. The term a∧ b∧ c stands for
the set of genes/exons contained in a, b, and c.

0− 50− 60− 70− 80− 90− 100

0 42 63 89 147 616 29

0− 50− 60− 70− 80− 90− 100

0 17 23 20 34 29 0

Table 3: Coverage w.r.t. CHAINER. Left: Coverage of the chains that are in the annotation. Right:
Coverage of the chains that are not in the annotation.

fact that their regions were masked in the chromosomal sequence used.

On the exon level, we considered only the exons of the genes that occur in the annotation
and that were found by both BLAT and CHAINER. On this level, BLAT also has less
specificity than CHAINER. We examined the 20 hits found only by BLAT and found that
all of them are false positives. Usually these hits correspond to the boundaries of the
mapped cDNA and the hits lie far away from the corresponding annotated position in the
genomic sequence. Interestingly, some of the 11 exons found only by CHAINER seem to
be missing from the annotation. All 53 exons found by BLAT and CHAINER that are not
in the annotation seem to be true positives.

Table 3 shows the coverage (percentage identity) of the chains obtained by CHAINER.
We measured the coverage to estimate the amount of work needed to post-process the
chains by means of a standard dynamic programming algorithm on the character level
that takes splice site signals into account. From the table, one can see that about 90%
of the annotated cDNAs have chains whose coverage is higher than 70%. This shows
that dynamic programming has to be applied only to short regions. The cDNA sequences
not occurring in the annotation that were mapped by BLAT and CHAINER have varying
coverage levels. Table 3 (right) shows the coverage of these potentially false positives.
Note that some of them have a rather high coverage, so one cannot rule out the possibility
that these are in fact genes.

Finally, Table 4 quantifies the number and the amount of overlaps. It is interesting to
note that most of the overlaps occur in the cDNA sequences and the size of the overlap is
usually two, due to the splice site signals.

References

[AKO04] M.I. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replacing Suffix Trees with Enhanced
Suffix Arrays. Journal of Discrete Algorithms, 2:53–86, 2004.

42

In the Annotation
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 − 19

Q 3071 796 1187 857 465 169 84 27 13 8 16 17 3 6 28
G 6472 69 73 29 9 4 12 5 13 11 11 8 7 4 20

Not in the Annotation
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 − 19

Q 1844 25 29 13 5 2 7 0 7 0 0 0 0 0 2
G 1892 6 3 13 5 0 10 3 1 0 0 0 0 1 0

Table 4: Amount of overlapping between the MEMs in the chains. The row titled Q contains overlaps
in the cDNA sequence, while that titled G contains overlaps in the genomic sequence. The total
number of overlaps occurring in both the cDNA and the genome is 264 (226 occur in the annotation
and 38 do not occur in the annotation).

[AO04] M.I. Abouelhoda and E. Ohlebusch. CHAINER: Software for Comparing Genomes.
In 12th International Conference on Intelligent Systems for Molecular Biology/3rd
European Conference on Computational Biology, 2004. Short paper available at
http://www.iscb.org/ismbeccb2004/short%20papers/19.pdf.

[AO05] M.I. Abouelhoda and E. Ohlebusch. Chaining Algorithms for Multiple Genome Com-
parison. Journal of Discrete Algorithms, 3:321–341, 2005.

[Ben90] J.L. Bentley. K-d trees for Semidynamic Point Sets. In Proc. 6th Annual ACM Sympo-
sium on Computational Geometry, pages 187–197, 1990.

[EGGI92] D. Eppstein, Z. Galil, R. Giancarlo, and G.F. Italiano. Sparse dynamic programming.
I: Linear cost functions; II: Convex and concave cost functions. Journal of the ACM,
39:519–567, 1992.

[KCO+01] S. Kurtz, J.V. Choudhuri, E. Ohlebusch, C. Schleiermacher, J. Stoye, and R. Giegerich.
REPuter: The Manifold Applications of Repeat Analysis on a Genomic Scale. Nucleic
Acids Research, 29(22):4633–4642, 2001.

[Ken02] W.J. Kent. BLAT—The BLAST-Like Alignment Tool. Genome Research, 12:656–664,
2002.

[NCM01] Z. Ning, A.J. Cox, and J.C. Mullikin. SSAHA: A Fast Search Method for Large DNA
Databases. Genome Research, 11(10):1725–1729, 2001.

[OFK+02] Y. Okazaki, M. Furuno, T. Kasukawa, J. Adachi, H. Bono, S. Kondo, I. Nikaido, N. Os-
ato, R. Saito, and H. Suzuki et al. Analysis of the mouse transcriptome based on func-
tional annotation of 60770 full-length cDNAs. Nature, 420(6951):563–573, 2002.

[Pap84] A. Papoulis. Probability, Random Variables, and Stochastic Processes. McGraw-Hill,
New York, 1984.

[SK03] S. Shibuya and I. Kurochkin. Match Chaining Algorithms for cDNA Mapping. In Proc.
3rd International Workshop on Algorithms in Bioinformatics, volume 2812 of Lecture
Notes in Bioinformatics, pages 462–475, Berlin, 2003. Springer-Verlag.

[Wat95] M.S. Waterman. Introduction to Computational Biology: Maps, Sequences and
Genomes. Chapman Hall, 1995.

43

