
Organizing the KnowledgeUsedin SoftwareMaintenance

MárcioGreyck BatistaDias,NicolasAnquetil, KáthiaMarçal deOliveira
UCB - UniversidadeCatlicadeBraslia
SGAN 916Mdulo B - Av. W5 Norte

Braslia- DF - 70.790-160,Brazil
myck@brturbo.com,

�
kathia,anquetil � @ucb.br

Abstract: Knowledge engineering emergedasa very promisingareato helpimprove
softwareengineering practice. Oneof its possibleapplicationswould be to help in
solving the numerousproblemsthat affect the softwaremaintenance activity. Main-
tainersof legacy systemsdeveloped yearsago with obsoletetechniquesand tools,
andnot documented,needall kindsof knowledge (applicationdomain,programming
skills, softwareengineering techniques,etc.) It is generallyassumedthatformalizing
all this knowledgeandrecordingit would bea worthwhileeffort. However, research
is still in a earlystageandnumerousquestionsneedto beanswered:Whatknowledge
shouldbetargetedfirst?Whereto find this knowledge? etc.

Toanswerthesequestions,oneneedsapreciseunderstanding of whatknowledgeis
atstakehere.We,therefore,proposeanontologyof theknowledgeneeded to perform
softwaremaintenance.This ontologywould bemostusefulasa framework for future
researchin knowledge engineeringfor softwaremaintenance.

1 Intr oduction

Knowledgemanagementtechniquesareraisinggreatexpectationin thesoftwareengineer-
ing community. Of particular interestare the possibilitiesthat knowledgemanagement
opens to solve thenumerousproblems in maintenance. Softwaremaintenance muststill
copewith systemsdevelopedyearsago, with languagesandprocessesnow considered
deficient,for computerswith severelimitations imposingconvolutedalgorithms. This is
a knowledgeintensive activity, maintainers needsknowledge of the application domain,
of theorganizationusingthesoftware,of pastandpresentsoftwareengineeringpractices,
of different programminglanguages(in their differentversions),programmingskills, etc.
Concurrentlyarecurring problemof softwaremaintenanceis thelackof systemdocumen-
tation. Studiesreportthat 40% to 60% of the softwaremaintenanceeffort is devoted to
understandingthesystem[Pfl01, p.475] [Pig96, p.35].

To helpmaintainersfacethesedifficulties,onecouldenvision specializedtoolsproviding
easyaccessto thevariousdomains of knowledgerequired. However, gatheringall these
informationswould be a tremendouswork with probably mixed results. Therearefew
studiesto indicatewhataspectstoprioritize. Forexample,althoughit is generally assumed
that application domainknowledgeis a fundamentalassetfor softwaremaintenance,an
initial studyconductedby oneof the authors [MFR02], hintedthat it wasquantitatively

65

muchlessimportantthancomputerscienceknowledge.

In thisarticle,weproposeanontology of theknowledgerelevant to softwaremaintenance.
In thefollowing sectionswe briefly definewhatanontology is andhow it is beingdevel-
oped(� 2), we presentour ontology on theknowledgeusedduring softwaremaintenance
(� 3), we discusssomeinitial resultson validation (� 4) andrelatedwork (� 5). Thearticle
endswith a conclusionandpropositionof future work.

2 Ontology Definition and Methodology

An ontology is a descriptionof entitiesandtheir properties,relationships,andconstraints
[GF95]. Ontologiescanpromoteorganization andsharingof knowledge,aswell asinter-
operability among systems.Thereexist variousmethodologiesto designanontology (e.g.,
[GF95]), all considerbasicallythe following steps: definition of the ontology purpose,
conceptualization,validation, andfinally coding. Theconceptualizationis thelongeststep
and requires the definition of the scopeof the ontology, definition of its concepts, de-
scriptionof eachone(througha glossary, specificationof attributes,domain values, and
constraints). It representstheknowledgemodeling itself.

Wedefinedourontology usingthesestepsThepurposeis to defineanontology describing
the knowledgerelevant to softwaremaintenance. The conceptualization stepwasbased
on study of the literatureand the experienceof the authors. We identified motivating
scenariosandcompetency questions (i.e., requirementsin the form of questionsthat the
ontology mustanswer[GF95]). It resultedin asetof all theconceptsthatwill bepresented
in thenext section.Thevalidationwill bediscussedin section4. Thevalidationcanleadto
review theconceptualizationphase.The formalizationwill consistin theimplementation
of a tool to gather andmake theknowledgeavailable(see� 6)..

We spentthreemonths to definethis ontology, the main investigatorworking part-time,
andthe two othersparticipating in weekly validation meetings.Our first difficulty was
to defineclearly which was to be the focusof the ontology. This was solved defining
scenarios(seedown) for theuseof theknowledge. A seconddifficulty wasto review the
pertinent literaturein searchof definitionsandvalidationof theconcepts. As wewereboth
thedomainexpertsandknowledgeengineers, we deemedimportant to basetheconcepts
on independentsources.

3 An Ontology for Software Maintenance

We startedtheontology definitionby looking for motivatingscenarioswheretheknowl-
edgecaptured would be useful. Someof thosescenariosare: decidingwho is the best
maintainer to allocateto a modification requestbasedon her-his experienceof the tech-
nology and the systemconsidered; or what knowledgea maintainershouldhave on a
systems-hewill modify. Thoseand othersituationsshowed us that we needto orga-

66

nizetheknowledgearound differentaspects:knowledgeabout thesoftware systemitself;
knowledgeabout theneededskills in computer science; knowledgeaboutthemaintenance
activity; knowledge about the organization structure; andknowledge about the applica-
tion domain. Consequently, we divided our ontology into five sub-ontologies to cover
eachof theseaspects.For eachoneof thesub-ontologieswe definedcompetency ques-
tions,capturedthenecessaryconceptsto answerthesequestions,establishedrelationships
among theconcepts,describedtheconcepts in a glossaryandvalidatedthemwith experts
(the threeauthors). In the following, we presenteachsub-ontology, their concepts and
relations.For lackof space,someconcepts will notbediscussed,or only alludedto.

Figure1 shows thefirst sub-ontologyon thesystem. Thecompetency questionsfor this
ontology are: What arethe softwareartifactsof a system?How do they relateto each
other? Which software and hardware resourcesare usedby a system? What type of
human resourcesinteractwith thesystem?Answeringthesequestionsleadsto ataxonomy
of softwareartifactsthatcomposeasoftwaresystemandataxonomy of resources(human,
hardware,andsoftware)thesystemuses.

programming
language

execution
hardware
resource

human
resource resource

software
execution

engineer
software maintenance

manager

execution
suport
CASE

*

relation:
is_a relation:

concept: name

name *sub−ontology:
from other

name

work
product

component

vertical
mapping

horizontal
mapping

artifact

component
deployementproduct

related

task*

uses

*

resourcesystem

consumer

providermaintainer user client

componentdocument

......

...

has

functionality

has

implements

Figure1: Systemsub-ontology (for lack of space,someconceptswereomitted)

The artifactsof a systemcangenerallybe decomposedin documentationandsoftware
components.Briand [BBKS94] considers threekinds of documentation: (i) product re-
lated,describing the systemitself (i.e., softwarerequirementspecification, softwarede-
signspecification, andsoftwareproductspecification); (ii) processrelated,usedto conduct
softwaredevelopmentandmaintenance(i.e.,softwaredevelopment plan,qualityassurance
plan,testplan,andconfigurationmanagementplan); and(iii) support related,helpingto
operate the system(i.e., usermanual, operator manual, software maintenance manual,
firmwaresupport manual).

Softwarecomponentsrepresentall thecodedartifactsthatcomposethesoftwareprogram
itself. Booch[BRJ97]classifythemin: (i) execution components, generatedfor thesoft-
wareexecution; (ii) deploymentcomponents,composingtheexecutableprogram;and(iii)
work productcomponents,thatarethesourcecode,thedata,andanythingfrom whichthe
deploymentcomponentsaregenerated.

67

All thoseartifactsare,in someway, relatedoneto theother. For example, a requirement
is relatedto designspecificationswhicharerelatedto deploymentcomponents. Thereare
alsorelations amongrequirements.We call thefirst kind of relationa verticalmapping,
relatingtwo artifactsof differentabstractionlevels.We call thesecondkind of relationan
horizontalmapping, relatingtwo artifactsof thesamelevel of abstraction.

The identificationof the resourcesusedby a software systemare basedon [BBKS94,
Pig96, KTvM � 99]. At theupperlevel, weconsideredthehuman,software,andhardware
resources. The human resources areall the peoplerelatedto the system(software engi-
neers,clients,users,andmanagers), thesoftwareresources areall theCASEtoolsusedin
a softwareexecution (e.g.,DBMS, network, andoperationalsystem).

programing
language

modeling
CASE

Testing
CASE

suporting
CASE

execution
suport
CASE

configuration
management

CASE

documentation
CASE

basic
software

computer
science

technology

requirement
elicitation
technique

modeling
technique

analysis
technique

design
technique

modeling
language

*software
engineer

*domain
concept

relation:
is_a relation:

concept: name

sub−ontology:
from other

name *

name

CASEprocedure

IDEdirectivetechnique method debugger

editor

knows

...

compiler

understands

DBMS ...

has

us
es

has

has

uses

uses

kn
ow

s

Figure2: ComputerScienceskills sub-ontology

Figure2 showsthesecondsub-ontology ontheskills in computer scienceasoftwaremain-
tainerneeds.A scenarioof usewouldbetobeabletoselectthebestparticipants in mainte-
nanceof agiventype.Somecompetency questionsweidentifiedare:Whatkind of CASE
doesthesoftwaremaintainerhave experiencewith? Whatkind of procedures(methods,
techniques,andnorms) doess-heknow? Whatprogramingandmodelinglanguagesdoes
s-heknow?

Pressman[Pre01] givesa very completelist of CASEtools,with toolsfor designing, de-
veloping, testing,andsupporting. Thesupport toolsmaysupport theexecution, documen-
tation,or configurationmanagement.

According to [KTvM � 99] proceduresareall structuredguidelinesusedin a softwarede-
velopment activity like methods,techniques, and directives. Basedon [CR96, LW00,
Pre01], we classifiedthe techniquesin: reverseengineering(e.g.,slicing), requirement
elicitation (e.g.,interviews, brainstorming, . . .), programming (e.g., structured or object
oriented), testing(e.g.,white/blackbox), andmodeling (e.g.,analysisor design).

68

Finally themodeling languagerepresentsthegraphical,andsemanticrulesusedin adesign
methods, and the programming language, the syntacticalandsemanticrulesdefinedto
codeaprogram.

Figure3 shows themainconcepts of thethird sub-ontology on themaintenanceprocess.
Here,we were interestedin organizing concepts from the modification request (andits
causes)to the maintenance activities. Possiblecompetency questions are: What arethe
typesof modification requests?Who cansubmitthem?Whataretheir possiblesources?
What arethe activities performedduringmaintenance?What doesoneneedto perform
them?Whoperformthem?Whatdo they produce?

activity
maintenance

management
activity

quality
assurance
activity

computer
science

technology
*

execution
hardware
resource

*

investigation
activity

modification
activity

corrective
maintenance

adaptative
maintenance

perfective
maintenance

preventive
maintenance

origin
maintenance

requirementsecurityexecution ...

modification
request

enhancement
request

problem
report

*cliente

subm
its

relation:
is_a relation:

concept: name

sub−ontology:
from other

name *

name
*artifactresource

human*

project
maintenance uses

reports

uses

u
p

d
a

te
s

has

u
se

s

perform
s

includes

preceeds
yields

Figure3: Maintenanceprocesssub-ontology

According to [Pig96] a problem resolutionprocess is initiated whenever a modification
request is generated. This requestis classifiedeitherasaproblem report (correctivemain-
tenance)or enhancementrequest (adaptative or perfective maintenance).A modification
request canoriginate in problemswith the on-line documentation, interoperability with
othersystems,datastructure,security, new requirements,etc. All thesereasonsmotivate
the client to requestsomemodification. The softwaremaintenance teamresponds to a
request initiating amodificationproject whichwill includedifferentkindsof activity. This
part of the ontology is basedon [KTvM � 99]. A maintenanceactivity usesandupdates
someartifacts,it is insertedin a sequenceof activities (themaintenanceprocess),it uses
various resources,andmaybedecomposedin: (i) investigationactivity, assessingtheim-
pactof undertakinga modification; (ii) managementactivity, relatingto themanagement
of themaintenanceprocessor to theconfigurationcontrol of theproducts;(iii) qualityas-
suranceactivity, aimingat ensuring thatthemodificationdoesnotdamage theintegrity of
theproduct;and(iv) modificationactivity, takingoneormoreinputartifactsandproducing
oneor moreoutputartifacts.Following [Pfl01, Pig96], we classifiedthemodificationac-
tivity asadaptative,perfective,corrective,or preventive.Otherauthors(e.g.,[KTvM � 99])
only considerenhancementandcorrection. All activitiesusesomecomputersciencetech-
nology. Differentpeople (humanresource) canparticipatein theseactivities.

69

Thefourth sub-ontology, on theorganizationalstructure, is not picturedherefor lack of
space.Weconsideredatraditional definition of anorganization (seefor example [FBG96])
which is composedof unitswheredifferentfunctionsareperformedby humanresources.
We alsoincludedthefactthatanorganizationdefinesnorms or rulesto befollowed in the
execution of its functions.

Finally the fifth sub-ontology organizesthe concepts on the application domain. We
chooseto representit ataveryhighlevel thatcouldbeinstantiatedfor any possibledomain.
Weactuallydefinedameta-ontologyspecifying thatadomain is composedof domaincon-
cepts,relatedto eachotherby somerelationsandhaving propertieswhichcanbeassigned
values.This meta-ontologywouldbestbeinstantiatedfor eachapplicationdomainwith a
smalldomainontology asexemplified for example in [OTMR99].

4 Ontology Validation

Thevalidationof theontology is still underway, we planto usethreedifferent techniques
and compare their results: (i) study of software engineersduring their work to record
whatthey doandidentify theconcepts they areusing; (ii) studyof thedocumentationand
sourcecodeof a systemandidentificationof theconcepts; (iii) askingsoftwareengineers
to identify whatinstances(identified in (ii)) of eachconcepts they usedafteraday’swork.

Eachmethodshouldhave its own strengths andweaknesses:(i) is not biasedby whatthe
softwareengineersthink they use,but imposeswe guesswhat they are thinking which
introducesanotherbias,it is themostdifficult approach;(ii) is easier, but wehavenoguar-
anteethattheconceptsreferredin thedocumentationareactuallyuseful;(iii) doesnotneed
our interpretationof whatthesoftwareengineers think, but they coulduseunconsciously
concepts thatthey wouldnot indentify.

Table1: Someresultof validationexperiments(i) and(ii), seeaccompanying text for explanation
sub-ontologies # of concepts

total (i) (ii) (i & ii)
System 23 8 14 15
Skills 24 9 18 19
Maint. Activity 17 4 11 12
Organization 4 2 4 4
Domain 4 1 3 3

We alreadydid five sessionsobserving two softwareengineersworking on two different
systems(method (i)), andwe completedthestudyof thedocumentationof oneothersys-
tem(method(ii)). Someresultsof thesetwo instantiationapproachesareoutlinedin Table
1. Onecanobserve thatonly about 70%of theconceptshave beenactuallyimplemented.
We attributethis to thesmallsizeof theexperiment,for example in theMaintenanceac-
tivity, thereare 7 possiblesubconceptsof “MaintenanceOrigin” (e.g. documentation,
execution, requirements,security, . . .), unlesswe have a fairly large setof modification

70

requests(which is notyet thecase),weareunlikely to instantiateall theseconcepts.Still,
it maybethecasethat in thefuture we decidethatsomeconceptsaretoo rareandshould
beeliminated.

We also considered the number of instancesof eachconcepts,it variesfrom 1 to 300
(Componentsof a System),beingnormally lessthan10. Thefrequency of apparition of
aninstancevary from 1 to 6.

5 RelatedWork

Thiswork is partof abroaderprojectwhichaimsatdevelopingmethodsandtoolsto study
andsupport knowledgemanagementin softwaremaintenance.

In [MFR02], oneof usstartedto studytheknowledgeusedduringsoftwaremaintenance.
Thisearlierworkcontainedaverycrudeidentification of variousknowledgedomainscon-
nectedwith thisactivity. Thedomains identifiedwere:ComputerScienceDomain, Appli-
cationDomainandGeneral Domain (common senseknowledge). Thecurrent researchis
a follow-up on thepreceding paperanddescribestheresultof our efforts to formally and
completely identify theknowledgeusefulduring softwaremaintenance.

In [BBKS94], Briandet al. characterizedanddescribedvariousconceptsrelatedto soft-
waremaintenanceprocesses.Although they did not actuallydescribean ontology, their
article list anddiscussvarious concepts in suchgeneral topicsas: the organization, the
documentation, thetools,theprocess,etc.

Thework mostrelatedto whatwe did is thatof Kitchenhamet al. [KTvM � 99] defining
an “ontology of software maintenance”. This other ontology hasfor goal to “provide
a framework for categorizing” studieson softwaremaintenanceand“allow to provide a
context” for them. We, on theotherhand,wereconsidering theknowledgethat is useful
whendoingmaintenance.This differenceof focus resultedin a different organization of
theconcepts, anddifferencesin thelevel of detailwe considered. This appearsclearly in
various occasions aswhendomainis anattributeof thesystemin [KTvM � 99] anda sub-
ontology in ourwork. Neverthelessbothontologiesdohavemany conceptsin common.

6 Conclusionand OngoingWork

In thisarticle,wegavearapidoverview of anontology of theknowledgeusedin software
maintenance.Thisontologywouldbeusefulasaframework toguidefutureresearchtrying
to improvesoftwaremaintenanceusingknowledgeengineering techniques.It couldbethe
baseof studiesto answerquestions as: What knowledgeshouldbe taken into account
whenconsidering softwaremaintenance?Whatkind of knowledgeis mostimportant?etc.

Our ontology wasbasedbothon expert experienceanda studyof the relevant literature.
We arecurrentlyvalidatingthis ontology studyingsoftwaremaintainersin their daily ac-
tivities.

71

Ongoing and future work include developing a small tool to browse the ontology and
instantiateits concepts.This tool could beusedin a first stepto helpusdo morevalida-
tion experimentson theontology, but we alsoplanto extendit in a secondphaseto help
manage the individual competenciesof a softwareteam. We arealsoplanning to starta
smallexperiencefactory for maintenancewhichwould usedtheontology asa knowledge
framework.

References

[BBKS94] Lionel C. Briand,Victor R. Basili, Yong-Mi Kim, andDonaldR. Squier. A Change
Analysis Processto CharacterizeSoftware Maintenance Projects. In International
Conference on Software Maintenance/ICSM’94, pages1–12, 1994.

[BRJ97] G. Booch, J. Rumbaugh, and I Jacobson. The Unified Modeling Language - User
Guide. Addison-Wesley, 1997.

[CR96] C. Chandra andC. V. Ramamoorthy. An Evaluationof KnowledgeEngineeringAp-
proaches to the Maintenanceof Evolutionary Software. In Proceedingsof the 8th
Software Engineeringan Knowledge EngineeringConference, pages181–188, jun.
1996.

[FBG96] M. S. Fox, M. Barbuceanu,andM. Gruninger. An OrganizationOntologyfor Enter-
priseModeling: PreliminaryConceptsfor Linking StructureandBehaviour. Comput-
ers in Industry, 29:123–134,1996.

[GF95] M. GruningerandM.S.N. Fox. Methodology for the DesignandEvaluationof On-
tologies.In Workshop on BasicOntological Issuesin Knowledge Sharing/ IJCAI’95,
Aug. 1995.

[KTvM � 99] BarbaraA. Kitchenham,GuilhermeH. Travassos,Anneliesevon Mayrhauser, Frank
Niessink,NormanF. Schneidewind, JaniceSinger, ShingoTakada,RistoVehvilainen,
andHongji Yang.TowardsanOntologyof SoftwareMaintenance. Journal of Software
Maintenance:Research andPractice, 11:365–389,1999.

[LW00] D. LeffingwellandD. Widrig. ManagingSoftwareRequirements: AUnifiedApproach.
Addison-Wesley, 2000.

[MFR02] NicolasAnquetil MarceloFenoll Ramal,Ricardode Moura Meneses.A Disturbing
ResultontheKnowledgeUsedDuringSoftwareMaintenance. In WorkingConference
onReverseEngineering, WCRE’2002, pages277–287.IEEE,IEEEComp.Soc.Press,
29 Oct.-1Nov. 2002.

[OTMR99] K.M Oliveira,G. Travassos,C. Menezes, andA.R Rocha.UsingDomain-Knowledge
in Software Development Environments. In Software Engineering and Knowledge
Engineering, pages180–7, jun. 1999.

[Pfl01] ShariLawrencePfleeger. Software Engineering: TheoryandPractice. PrenticeHall,
2ndedition,2001.

[Pig96] ThomasM. Pigoski.PracticalSoftwareMaintenance. JohnWiley & Sons,Inc.,1996.

[Pre01] RogerS.Pressman.SoftwareEngineering:A Practitioner’sApproach. McGraw-Hill,
5th edition,2001.

72

