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Abstract: Genome annotation relies to a large extent on the recognition of homologs
to already known genes. The starting point for such protocols is a collection of known
sequences from one or more species, from which a model is constructed – either auto-
matically or manually – that encodes the defining features of a single gene or a gene
family. The quality of these models eventually determines the success rate of the ho-
mology search. We propose here a novel approach to model construction that not only
captures the characteristic motifs of a gene, but are also adjusts the search pattern
by including phylogenetic information. Computational tests demonstrate that this can
lead to a substantial improvement of homology search models.

Introduction

Homology search is one of the generic important tasks in bioinformatics. It is indispens-
able, e.g., for the assessment of the phylogenetic distribution of genes and gene families
and it forms the basis for detailed phylogenetic analyses in general. Homology search also
comprises the first step in gene annotation pipelines. The ever increasing influx of ge-
nomic sequence data makes reliable and automated homology search a crucial bottleneck
in many projects.

Typically, the starting point for homology search is a collection of known sequences, usu-
ally in the form of a multiple sequence alignment. Then, one or all of these “seed se-
quences” are fed into a pairwise alignment algorithm – such as blast [MM04] – and
compared to the sequence database of the target species. In many cases, e.g. for distant
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homologs or short query sequences, the sensitivity of this approach is too low. In such
cases one can determine from the alignment the sites that share the same residues in all or
most of the seed sequences. These highly conserved sequence blocks typically comprise
the specific biological function of the gene – like binding site motifs, catalytically active
sites, or structural elements. Once identified, these blocks can be used to build a more so-
phisticated search pattern that contains the intrinsic properties of this particular gene. The
fragrep approach, for instance, represents the query as a collection of short consensus
patterns and distance constraints between them [MSS06]. Again, restricting oneself to
the consensus sequence information of the blocks may lead to a rather low sensitivity or
specificity of the search pattern. This is the case e.g. for DNA binding sites [Sto00], which
not necessarily share a common consensus sequence.

More expressive sequence models can be build with position specific scoring matrices
(PSSM), which record the relative frequencies of residues at each site. The application of
PSSMs for homology search requires more elaborate profile alignment algorithms. An ex-
ample for proteins is psi-blast [AMS+97]. For short, ungapped, PSSMs arising e.g. as
models of transcription factor binding sites, a relative scoring scheme is used [KGR+03],
which can be extended to the gapped case by means of fractional programming [MCS07].
Hidden Markov Models are a viable alternative. In many cases, the highly variable gap
sizes and the small set of seed sequences are problematic for the training procedures.
PSSM-based approaches therefore were instrumental in several recent studies on highly
variable ncRNA families such as Y RNAs [MGSS07], vault RNAs [SCH+09], and telom-
erase RNAs [XMQ+08].

While theoretically straightforward, the construction of reliable PSSMs from sequence
alignments turns out to be a quite non-trivial task. In principle, one just has to count
the frequency of the residues in the alignment columns, decide on a scheme to treat gap
characters, and possibly add pseudo-counts. In practice, however, one has to deal with
biases in the phylogenetic distribution of the seed sequences, which are often dominated by
a set of closely related model organisms. The small size of the seed set, on the other hand,
makes it undesirable to exclude a large fraction of the available data. A commonly used
remedy is to use one of several weighting schemes [VS93]. For amino acid sequences more
sophisticated methods for creating unbiased PSSMs are available, e.g. via the EasyPred
web server [Nie]. Such unbiased “centroid” PSSMs, however, still do not include all
the available phylogenetic information, in particular, they do not take into account any
knowledge on the relative phylogenetic position of the target genome among the aligned
seed sequences.

In this contribution we therefore explore the possibility to employ a maximum likelihood
(ML) approach to optimize search patterns for usage on a particular target. Our approach
is similar in spirit to the reconstruction of ancestral sequences from their extant offsprings.
Given a phylogenetic tree T , ancestral genes are “resurrected” by inferring the states for
internal nodes of T given the known sequences at the leafs. The earliest approaches were
based on the parsimony principle [Fit71]. Alternatively, maximum likelihood methods,
introduced by Felsenstein [Fel81], are in use. The latter require an explicit model of se-
quence evolution. On the other hand, they naturally provide probability distributions over
the amino acid or nucleotide alphabet for every sequence position and every internal node
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of the tree. In other words, ML provides us with PSSMs for ancestral states. Compared to
parsimony approaches, maximum likelihood methods are more accurate because branch
lengths, more detailed residue substitution models, and back-mutations are taken into ac-
count [ZJ97]. Ancestral sequence reconstruction has been proven to be a powerful tool for
testing hypotheses regarding the function of genes from extinct species, see, e.g., [Tho04].

Here, we modify this approach. Instead of focusing on the internal nodes of the tree T , we
use the same mathematical machinery to infer the most likely nucleotide sequence at an
additional leaf node in the tree — the target species for homology search.

Construction of Search Patterns

We start from a given multiple sequence alignment M with m sequences and a phyloge-
netic tree T with m + 1 leaves, representing the phylogenetic relationships and branch
lengths among the m species included in the alignment, and a single additional target
species 0. Our approach combines two ML computations. First we use M and T \ 0, the
phylogenetic tree restricted to the aligned species, to estimate for each alignment column i
a relative substitution rate µ̂i The calculation of the likelihood follows Felsenstein’s prun-
ing algorithm [Fel81]. The likelihood of a residue sk at an interior node k is obtained from
the corresponding likelihoods at the two child nodes i and j, which are separated from k
by branches of length ti and tj , respectively:

j
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ti tj
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For each alignment column i, we numerically optimize µ̂i = argmaxµLT (µ) using
Golden Section Search [Kie53]. The likelihood of the tree T is given by the sum over
all possible states sr at the root node r: LT (µ) =

=
sr

πsLsr
(µ) where the πs are the

prior probabilities of observing letter s. The transition matrix P contains probabilities
Pxy(t, µ) = [etµQ]xy for changing from state y to state x over time t and a rate µ. The
instantaneous rate matrix Q represents a standard substitution model, such as the HKY85
[HKY85] or General Time Reversible (GTR) [Tav86] model for DNA sequences. Param-
eters for these models can be estimated from the alignment by using standard maximum
likelihood analysis software like PAML [Yan07]. We advocate that this should be done
ideally on larger data sets than the usually short query alignments themselves.

In the second step, we use the estimated values µ̂i to compute the probabilities for each
residue at the i-th position of the target sequence. To this end, we re-root the original tree
T to the target species 0 and then calculate the likelihoods Ls0(µ̂i) for T 0. From these
likelihoods at the root node of T 0, we directly obtain the residue probabilities in each
alignment column i. Finally, these are transformed into a PSSM.

Figure 1 exemplifies the difference of a PSSM inferred by the ML approach and a PSSM
obtained by counting the nucleotide frequencies in the seed alignment. In this particular
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Figure 1: Example for estimating a
PSSM. top: Target sequence in the 5’
region of the 7SK RNA of Drosophila
persimilis. middle: Maximum likeli-
hood estimated nucleotide probabilities
for D. persimilis. bottom: PSSM de-
rived from nucleotide frequencies of the
11 other Drosophila sequences.

case, the ML estimate is significantly more informative and much closer to the motif in
the target sequence.

The ML-PSSM pattern depends explicitly on the relative position of the target species in
T . If the target is in close proximity to one or more other species, then high probabili-
ties will be assigned to the residues that are present in those neighboring species. With
increasing distance to the target species, on the other hand, the probabilities will converge
to an uninformative equilibrium distribution. A column equilibrates faster, the larger the
substitution rate µ̂i. The algorithm thus tells us, which alignment columns or regions can
be expected to be informative for a particular target sequence. To this end, we compute
the Shannon information of each alignment position as

H(i) = −
?

s

fi(s) · log2 fi(s) (2)

where fi(s) is the estimated frequency of residue s at position i. The corresponding in-
formation content is I(i) = H̄ − H(i), where H̄ = −=

s f̄(s) log2 f̄(s) and f̄(s) is
the background distribution of the residues. In the simplest case, H̄ = 2 for an uniform
distribution of the four nucleotides.

Significant patterns can now be extracted by finding windows of a user-defined minimum
length that have an average information content above a certain threshold. Alignment
columns with high estimates of µ̂, on the other hand, can be excluded from the search
pattern to compensate for highly variable sites. Thus, the maximum likelihood algorithm
not only provides residue probabilities for each alignment position, but also gives infor-
mation about the conserved sites and the variation of mutation rates within one sequence.
We remark that our approach of optimizing the µ̂i is similar to the method used in the
Rate4Site program [PBM+02], which aims at identifying functional important regions
in protein surfaces.

Performance Evaluation

As test data we used a collection of genomic multiz alignments of Drosophila species
[Con07] downloaded from the UCSC Genome Browser1. Only segments covering all 12

1http://hgdownload.cse.ucsc.edu/goldenPath/dm3/multiz15way/

214 Menzel et al.



D.simulans

D.sechellia

D.melanogaster

D.yakuba

D.ereecta
D.ananassae

D.pseudoobscura

D.persimilis

D.willistoni
D.mojavenis

D.virilis

D.grimshawi

0.1

Species Data set 1 Data set 2
ML Freq Δ ML Freq Δ

D. sim. 1.000 0.981 0.019 1.000 0.980 0.020
D. sec. 1.000 0.981 0.019 1.000 0.975 0.025
D. mel. 0.986 0.979 0.007 0.970 0.972 -0.002
D. yak. 0.970 0.971 -0.001 0.963 0.959 0.003
D. ere. 0.971 0.972 -0.001 0.959 0.959 0.000
D. ana. 0.896 0.885 0.011 0.841 0.842 -0.001
D. pse. 1.000 0.933 0.067 1.000 0.867 0.133
D. per. 1.000 0.928 0.072 1.000 0.865 0.135
D. wil. 0.912 0.890 0.022 0.774 0.765 0.009
D. moj. 0.912 0.882 0.030 0.838 0.772 0.066
D. vir. 0.913 0.891 0.022 0.858 0.787 0.071
D. gri. 0.877 0.864 0.013 0.824 0.759 0.065

Figure 2: left: Phylogenetic tree of the 12 Drosophila species [Con07]. right: Median match scores
of the maximum likelihood PSSMs (ML) and the frequency PSSMs (Freq) for 10 randomly selected
30nt windows from each alignment in both data sets.

drosophilid species were retained and gapped columns excluded. Set1 consists of the 56
alignment segments of D. melanogaster chromosome 4 with minimum length 500 and a
multiz score of at least 10000. The average pairwise sequence identity is 76.1%. Set2
contains 45 alignments with multiz scores between 100 and 10000 and minimum length
of 200. This set has 67.1% average sequence identity.

We removed one sequence at a time from the alignment and computed the residue prob-
abilities for this sequence with our ML approach from the 11 remaining sequences using
the phylogenetic tree in figure 2 and the HKY85 substitution model. The transition bias
parameter κ was estimated using PAML. For comparison, we computed the position fre-
quency matrix from the same 11 species. Both results were converted to a PSSM. From
each alignment we randomly selected 10 windows of different lengths. The MATCH scores
[KGR+03] of the corresponding interval of the two PSSMs against the 12th aligned se-
quence that was excluded from training were computed using pwmatch2 [TBF+07]. Then
we compared the match scores of each pair of PSSMs and used the Wilcoxon rank-sum
test to see if the maximum likelihood (ML) scores are significantly larger than the scores
from the frequency method (Freq).

Figures 3 and 4 show the MATCH scores of each pair of PSSMs for windows of length
L = 30 for Set1 and Set2 for a representative subset of the 12 drosophilid species. Over-
all, we observe that the ML matrices have significantly higher MATCH scores than the
frequency matrices for most of the target species. The difference is especially apparent
for those drosophilids that have a closely related neighbor in the phylogenetic tree, such
as D. simulans and D. sechellia or D. pseudoobscura and D. persimilis. Here the median
MATCH score improvement is up to 0.076 for D. persimilis in Set1 and 0.135 in Set2. Only
for D. ananassae and D. willistoni there is no significant difference of the scores in Set2
where both the ML and Freq PSSMs perform equally and only a slight average improve-

2http://www.bioinf.uni-leipzig.de/Software/pwmatch/
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ment of the ML PSSMs is visible in Set1. Due to the relatively large distance from all
other species, and the relatively even distribution of the species in the tree, the frequency-
based matrix scores are very similar to the ML estimate in these two cases. Generally, the
improvement of the MATCH scores is higher in Set2, which has lower sequence identity
For instance, the average score difference of both methods in D. pseudoobscura is 0.067
in Set1 and 0.133 in Set2, where the median score of the frequency method is much lower
than in Set1.

For homology search, short blocks with high information content are of particular impor-
tance, since such queries can be searched most efficiently. Thus, we extracted from both
data sets those sub-patterns containing columns with high information content at most po-
sitions. Figure 5 summarizes the MATCH scores of the ML and the frequency PSSMs for
all (non-overlapping) windows of length 20nt which have an average information content
of at least 1.8 bits in the ML matrices. For these patterns, we observe again that the ML
approach performs significantly better for most target species. For some species, only few
windows fulfilling these constraints can be found, e.g. D. ananassae (n=23) or D. willistoni
(n=27). Due to the relatively large distance to the other drosophilids, the ML algorithm as-
signs high residue probabilities only to highly conserved alignment columns. Eventually,
these probabilities are very similar to the nucleotide frequencies in the seed alignment and
the performance of ML and frequency approach becomes indistinguishable.

Due to the close phylogenetic relationship of D. simulans and D. sechellia, and D. pseu-
doobscura and D. persimilis, resp., the ML approach estimates very high nucleotide proba-
bilities for these target species Thus many windows with high average information content
can be found. Compared to the frequency PSSMs, the ML PSSMs provide a big perfor-
mance improvement in these species.

Discussion

In this contribution we presented a novel approach for constructing PSSM-like sequence
models for homology search. Unlike standard methods, our maximum likelihood method
aims at building models that are specifically adapted to a particular target species. This is
achieved by utilizing the phylogenetic information of the seed sequences and the relative
position of the target species therein.

Evaluation on genomic sequence alignments of the 12 sequenced drosophilid species
shows that the maximum likelihood method indeed provides the expected improvements.
We are able to find highly conserved sites in the alignment and make use of the sequence
information from neighboring species in the phylogenetic tree. The more proximal a
known sequence is related to the target species, the more specific the search pattern from
the maximum likelihood computation becomes, even for randomly drawn samples. If
the target species is evolutionary distant in the tree from the known taxa, the alignment
sites with high information content can be used for building the search pattern and the
specificity is better or the same compared to normal search patterns based on residue fre-
quencies.
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Figure 3: Set 1 : MATCH scores of maximum likelihood (ML) and frequency (Freq) PSSMs for
random windows of length 30nt (n = 450). P-values of “0” are smaller than machine precision.
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Figure 4: Set2 : MATCH scores for maximum likelihood (ML) and frequency (Freq) PSSMs for
random windows of length 30nt (n = 450). P-values of “0” are smaller than machine precision.
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Figure 5: Set2 : MATCH scores for the ML and frequency-based PSSMs for all non-overlapping
windows of length 20 with average information content H ≥ 1.8. In a few cases (indicated by p ∼
instead p =) the p-value estimates are approximations due to the small sample size.
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The approach proposed here is potentially useful not only for the purely sequence-based
homology search. In particular for structured RNAs it seems natural to incorporate phy-
logenetic information also into covariance models such as those utilized by SCFG-based
tools. To this end, base pair substitution models for paired alignment columns need to be
incorporated. We expect that this will be helpful in the detection of conserved structural
elements in ncRNA families as well as aiding in automatic estimation of highly probable
structure motifs in a target species. A second issue that needs to be addressed in future
work is the handling of gaps, which we excluded here for the sake of clarity. In the simplest
case, the approach of fragrep [MCS07] provides a remedy.
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