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Abstract: The difficulties to assess reliability of systems that use COTS 
components are sometimes compounded by the inaccessibility of some COTS 
codes. This paper develops an approach of Perturbation of Interface Parameters 
(PIP) to simulate failures of COTS components. It is to validate the use of PIP as a 
fault-injection technique to test COTS components and surrounding systems. Tests 
of a nuclear protection system will be presented to demonstrate that PIP can be 
used to assess and aid safety designs in COTS based software.  

1 Introduction 

The increasing need for fast, economic methods of software reuse and interoperability 
between applications has driven the rapid growth of component-based software 
engineering. Commercial Off-The-Shelf (COTS) components already play an important 
role in the component development paradigm [BA98]. Component-based software 
engineering (CBSE) offers the potential of economic and speedy system design and 
production. At a course grain this can be based on the reuse and integration of high-level 
COTS components together with bespoke components as elements of a required new 
system. The use of COTS components offers possibilities for increased productivity and 
efficiency in software development, but raises new safety issues since the reliability of 
COTS software components cannot be performed in a one-off manner prior to 
integration. Furthermore, even if such pre-assurance was a theoretical possibility, it 
would seldom be available, since COTS components are commonly developed to 
unknown standards or standards aimed at general use, which are insufficient for safety 
applications.  

A key requirement for such hybrid systems is to show that the use of COTS components 
(which will be considered as 'black boxes') does not compromise the safety, reliability 
and (perhaps) security of the overall system, since the reliability of COTS software 
components cannot be fully assured prior to integration. Currently, developmental 
processes used by the various COTS suppliers are most likely unacceptable to the 
mission/safety critical safety and certification communities. Alternate and supplement 
methods are needed for the certification of these systems [PJ96]. These difficulties are 
sometimes compounded by the inaccessibility of some COTS code. Where examination 
of code is not permitted, traditional assurance techniques (with the exception of black 
box testing) cannot be applied to COTS components post-purchase, to supplement the 
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supplier’s verification and validation (V&V) activities. In general it is necessary to use 
'middleware', possibly based on standard infrastructure technologies, to integrate 
disparate components. This middleware offers an important opportunity to include 
component adaptation and monitoring strategies, to help ensure fault tolerance, quality 
of service and security. The overall integration process can be complex, perhaps 
involving both syntactic and functional adaptation, but this study will have the simple 
focus of how to assess the value of safety strategies (in the surrounding system) to 
prevent the propagation of faults or unexpected behaviour from the COTS component to 
the rest of the system.  

Some earlier works have developed the use of fault injection to test the diagnostic fault 
coverage provided by such COTS wrappers. One approach in [NJ01] investigated the 
diagnostic value of executable assertions using Software Fault Injection (SFI) inside the 
COTS component to cover a range of fault sizes (footprint in the input space) and 
locations. However, where COTS code is inaccessible, fault injection inside COTS 
components will not be possible. To overcome the limitation of normal SFI when a 
COTS component is treated as a black box, this paper is to validate that the Perturbation 
of Interface Parameters (PIP) of a COTS component can simulate faults contained in the 
COTS component. And we will demonstrate how to use PIP techniques to assess and aid 
safety designs in COTS based software. 

2 Component architecture and interface parameters 

We consider the particular case of integrating a COTS component of uncertain integrity 
into a bespoke system of accepted safety integrity level (justified by the design, 
development and V&V processes). The objective will be to protect the bespoke system 
from failure due to COTS faults/uncertainties. Inevitably because of the 'black box' 
COTS component assumption, the diagnostic options will be restricted to those which 
can operate on the inter-component communications. Interaction between software 
components can take place via different means. Procedure calls, shared data stores and 
message passing can be considered as the primary means of interaction between software 
modules. Pipes or event broadcasting are likely to be too complex for safety-related 
applications and in any case also rely on the lower forms of communication. Shared 
memory can be used if the software components are implemented on single or 
multiprocessor platforms without the use of 'middleware'. In this case, some protection is 
often implemented by hardware; for example by restricting the addressing space of the 
COTS component and/or by making certain memory locations read-only. Interaction via 
standard procedure calls assumes that the two sub-systems are implemented on a single 
processor. This architecture is likely to require 'middleware' to handle communications. 
The 'middleware' provides a collection of procedures to access data or services and must 
be at the bespoke integrity level. Such a scheme allows some control of data and control 
flow interactions although the risk of incorrect interaction (interference) via the common 
physical memory still exists if data is also shared that way. Message passing is the only 
communication mechanism for distributed implementations without shared memory. 
Such an architecture has the advantage of greater separation of the sub-systems, with no 
risk of interference via accidental memory access. The 'middleware' again has to be at 
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the bespoke safety integrity level. A COTS component is required to be designed to have 
a clear interface with its environment and the appropriate documents are needed to 
provide a complete description of interface parameters and their specifications. 
Assuming the basic cross-component linkage between procedure calls and procedure 
bodies is performed correctly, the interface can be simply defined as the parameters that 
are used to exchange information between COTS components and the bespoke system, 

The conceptual arrangement and the sketch of interface parameters are shown in Fig. 2.1 
below:- 

Fig 2.1 Sketch view of the connecting interface 
And conceptual view of system components 

Bespoke System 

Middleware including 
diagnostics/Wrappers 

Input Output 

COTS Component

interface 

We distinguish three types of interface parameters:  

the first one is to input information from the bespoke system to the COTS 
component, which is the single arrow pointing to the COTS component. Such 
interface parameters is defined as input parameters of COTS component.  
the second one is to output information from the COTS component to the 
bespoke system, which is the single arrow pointing to the bespoke system. Such 
interface parameters is defined as output parameters of COTS component
the third one is a combined situation. 

These interface parameters are the unique routes for information exchange between the 
bespoke system and the COTS component. All COTS failure behaviours can only be 
transferred into the bespoke system by output parts of the interface parameters, and 
present as some anomalies of the interface parameters. The PIP is to simulate the faults 
in COTS component by injecting anomalies at the interface through perturbing those 
output parameters. 
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3 Initial validation of PIP technique 

Software fault injection (SFI) is used to make the system under test manifest defects in a 
stressed environment. SFI has been used successfully in safety-critical applications to 
find failure modes that would have otherwise been extremely difficult to find using 
standard testing techniques [BJ96]. This makes SFI an attractive technique for testing 
software diagnostics and in particular, to verify diagnostics function in COTS-based 
software. However, the physical testing of COTS components is necessarily constrained 
by the fact that the source code is not available and even if it was, modification could 
potentially negate its previous history of reliable operation. PIP could remove this 
problem if it can be shown to provide acceptable fault simulation/coverage.

The fault injection approach is still a new technique and necessary to overcome some 
practical difficulties. The promise of fault injection and initial idea of PIP as general 
techniques to assess systems composed of COTS components has already been 
recognised [VJ98], but how to use these techniques to perform practical, realistic testing 
is still a matter of research [PD02].  

A key requirement in the development of our approach is to examine how to use 
perturbation of interface parameters (PIP) of a COTS component to simulate faults 
contained in the COTS component. The foundation of the approach is that the interface 
parameters are the only route for information to be exchanged between COTS 
components and the system, so the influence on the system of faults in a COTS 
component will occur via anomalous values of the interface parameters. 

Our application of PIP to assess COTS software based systems begins by investigating 
how PIP can be used to simulate faults in a COTS component. The aim of this task is to 
provide evidence to support the validity of PIP but also to see if it is possible to identify 
a method of simulation that is easy to apply in practise.  

 3.1 The system for test 

In this paper, a nuclear plant protection system is used to provide an example of such 
properties within a software system [QW91]. The process of PIP can be explained by use 
of a very simple COTS component ‘High_Trip’ module. The trip module is designed to 
monitor if a plant is safe by ensuing that defined high limits on certain physical values 
are not exceeded. Its connection with the protection system is through four parameters: 3 
float variables: Value, Max and Warn, and 1 character variable: high_trip. The former 
four are input parameters, which will accept data from sensors on the plant about its 
current physical state and the boundary values for warning and tripping. The last one is 
the only output parameter for this module, which tells the system the current status of the 
monitored object i.e. it is one of a normal, warning or trip status. Therefore, any potential 
faults contained in this module can only influence the system through returning a false 
value through the interface parameter ‘high_trip’.
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In this case, the number of failure modes is limited. The output parameter has 3 possible 
values N, W and T. Each time only one of the three values can be a correct output, then 
the potential failures for each output have two formats. The potential failure formats of 
this special module only have following cases summarised in the table 3.1: 

Table 3.1 failure format of the module 
No. of correct output 1 2 3 
Values of the correct output N W T 
Failure 1 T T N 
Failure 2 W N W 

3.2 Comparison at interface level  

The general goal in this part is to test if the perturbation of interface parameters can 
simulate faults inserted into COTS components and their mapping relations by 
monitoring the interface parameters of the COTS component. There is very little work in 
the literature describing the relation between the faults in interface parameters and in the 
COTS components 

The test procedures and harness are explained in figure 3.1  

Test Harness 

System

NCC 

FCC 

Output through the Interface parameters 

Common values inputting to NCC and FCC 

TH-Module N_F_COMP

For this test, the system will embed two modules corresponding to two COTS 
components. One module is exactly the normal COTS component itself (NCC), the other 
is the copy of the COTS component but with injected faults (FCC). The values output 
from NCC and FCC through their interface parameters are both collected by a module 
N_F_COMP in the test harness to compare and to record their differences. Eight COTS 
components were simulated and selected from the protection system for the comparison 

Figure 3.1. Test platform for comparison of PIP and SFI in a COTS Component 
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experiments. We used two here to explain the experimental results, which are named as 
NCC_1 and NCC_2. NCC_1 has 2 output parameters. NCC_2 has 3 output parameters.  

Analysis of the results produced the following observations:

1) Any faults injected in the COTS components can be simulated by PIP, but some 
realistic faults may produce anomalies in several interface parameters. Thus to 
exactly simulate a real fault in a COTS component it may be necessary to perturb 
multiple interface parameters at the same time. (However, realism is not the ultimate 
aim. Powerful, meaningful testing may be achieved by other means. For example, 
although software mutations do not cover all types of possible real faults, it has been 
argued that there is equivalence of software mutations and realistic faults at the level 
of overall system evaluation [GR92]. The experiments in next section illustrate 
whether single-parameter perturbations constitute sufficient testing.)  

2) All interface parameters offer ways to propagate faults inside the components out 
into the surrounding system. 

3) The faults in COTS components can cause an interface parameter to be perturbed to 
any value. This is obvious unless we can rule out certain types of fault. Bounds on 
the value can only exist as a result of the imposition of defined limits of these 
parameters at the interface.  

4) Many different internal faults will produce the same, or very similar, failure 
phenomena at the IPs. Thus PIP may be more efficient than normal SFI when 
considering the coverage of all possible faults. 

5) The rates at which different interface parameters propagate the COTS faults can 
vary widely. (Given faults that are distributed `evenly` in the component, some 
parameters are affected by most faults, whilst other parameters are only affected by 
small subsets of faults). This can be seen by comparing figure 2.6a and 2.6b. 

Figure 2.6a The distribution of faults in NCC1 and NCC2
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Figure 2.6b distribution of anomalies over the IPs of NCC1
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6) Different components may show different operational profiles for propagating faults 
when similar distributions of faults in the components is assumed, which can be 
seen by comparing figure 2.6b and 2.6c. Figure 2.6a shows the same distribution of 
injected faults for both COTS component NCC_1 which has 2 interface parameters, 
and NCC_2 which has 3 interface parameters. We selected 7 locations on the 
software structures of both the NCC_1 and NCC_2, and ten faults were injected at 
each location. We recorded which parameters showed anomalies for each fault with 
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the test harness as in figure 2.5. Figure 2.6b shows the percentage of the anomalies 
on interface parameter 1 and parameter 2 in NCC_1. The even distribution in this 
case appears to mirror the even distribution of faults throughout the code (as 
pictured in figure 2.6a).   However, this will not always be the case. Figure 2.6c 
shows the percentage of the anomalies over the three interface parameters of 
NCC_2, showing a distribution that is far from flat. 

7) If it is assumed that the faults injected inside the COTS component is a set of 
‘realistic’ faults, the evenly distributed PIP fault set in figure 2.6b simulates the 

realistic faults. However, in 
general this will not be the 
case; 2.6c shows that PIP 
faults created by perturbing 
each interface parameters of 
NCC_2 an equal number of 
times will not simulate the 
faults evenly distributed over 
the structure of COTS 

component. An intuitive observation from this result is that we can’t use this naïve 
approach to analyse reliability figures because real failure behaviour will be fault 
distribution-dependent.   

In conclusion, the naïve use of PIP may still be the most direct way to make a safety case 
for software containing COTS components. In our example, relatively simple interface 
parameter perturbations simulated the effects of all faults injected into the COTS 
component. A piece of software containing a COTS component should certainly be 
assessed against a specification of its required fault tolerant functions. PIP can do this 
conveniently, using direct testing of the implemented system’s ability to recognise a 
wide range of COTS component failures.  

3.3 Comparison at system level 

If PIP simulation of COTS faults is to be used in a bottom-up (FMEA-style) analysis, it 
would be encouraging if it produced failure behaviours at the overall system outputs that 
are similar to those produced by SFI. (PIP simulations of internal COTS faults will not 
be exact. If they were, this experiment would not be needed because the failures at the 
system boundary would also be exactly the same). It is possible that in some cases PIP 
failure simulation, despite appearing superficially close to SFI failures at the COTS 
interface, produces failures that are not possible in practice. Closeness between the 
system level failures caused by PIP and SFI would be one way to gain evidence that this 
was not the case.  

Three aspects are used to characterise a failure namely:  

1) Failure rate: in an input space, the ratio of inputs that triggers the failure  

Figure 2.6c distribution of anomalies over the IPs of NCC2
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2) Failure position: the positions in the input space of the inputs that can trigger the 
failures  

3) Failure severity: the seriousness of the failure consequence to a system.  

The test of NCC_2 is introduced as following for assessment of the equivalence of PIP 
and normal SFI for this component by identifying the above features. To compare failure 
rate and positions, we recorded footprints (that sub-region of the input space where 
failure occurs due to a specific fault) in the input space of the tested system by injecting 
two sets of faults from both PIP and normal SFI. At first, we inserted a set of faults in 
the COTS component with uniform distribution. The uniform distribution here means to 
evenly distribute the locations of injected faults over the programme structure of 
NCC_2. All the resulting failure points and their frequency are displayed in figure 2.7.  
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Figure 2.7 footprints of SFI fault set  for NCC_2

This figure shows that failures occurred on a subspace of the input space. A uniform grid 
is used to divide the subspace and define the 100 points on the input space which is on 
the horizontal x-y plane in figure 2.7. The SDL (X-axis) and SDP (Y-axis) on the plane 
denote the physical values of Steam Drum Level and Steam Drum Pressure as two 
dimensions of the input space to the tested software. The limits and scale of the SDL and 
SDP values on the plane are decided according to the requirement specification of 
DARTS software. Each point in this subspace (which is a point on x-y plain) has a 
corresponding number (z-axis) which indicates how many faults cause system to fail at 
this point.  

Then the set of PIP faults was injected into the system and the set of footprints obtained 
for the PIP fault set for NCC_2, which can be seen in figure 2.8. 

There are two differences between figure 2.7 and 2.8. One concerns the number of faults 
causing failure on each input point. The main reason for the differences is that the two 
sets of SFI and PIP faults were not the same size. The second difference concerns the 
distribution of the failure points. When we built the fault sets, both the ones for SFI and 
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PIP have the uniform distribution, which is over the structures of the COTS component 
for SFI and over the interface parameters for PIP. If we simulate same number of faults 
in PIP set as in SFI one by uniformly perturbing interface parameters more times, the 
distribution as in the figure 2.8 will keep the same shape but become higher. But if we 
increase the number of faults by perturbing the interface parameters by the scale as 
shown in figure 2.6c, we can get footprints of the failure points for PIP with a new 
distribution as in figure 2.9.  
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Figure 2.8 footprints of PIP fault set  for NCC_2
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Figure 2.9 footprints of SFI fault set  for NCC_2

The distributions of figures 2.9 and 2.7 are quite similar. They would be the same if we 
had used the same interface perturbations recorded when conducting SFI. (But of course 
this assumes that SFI testing has been performed.) 
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This result proves that PIP methods can be used to simulate a set of ‘internal’ COTS 
software faults if we consider their overall influence at the system level. Figure 2.7~2.9 
shows that the difference between PIP and ‘internal’ faults can be reduced by putting an 
appropriate weight on the interface parameters when implementing PIP.  This so-called 
weight is actually information about the possible distribution of faults in the COTS 
component. The obvious problems here, common to any application of SFI, are:  

1) if COTS is black box we will never know figure 2.6c
2) moreover, even if we did know fig.2.6c, there is nothing to say that fig.2.6a (the 

‘cause’ of fig.2.6c) is representative of ‘realistic’ faults.  

Therefore, all that has been demonstrated here is that PIP can reproduce the failure 
behaviour of a given set of faults. In fact, in principle PIP can simulate all conceivable 
sets of faults. The difficulty lies in making the choice of faults/failures for PIP to 
simulate, in order to obtain useful assurance that the fault tolerant functions of the 
software provide good protection against COTS failures. At first consideration, there 
appear to be two possibilities:  

The first is to choose a distribution of PIP-simulated failures that represents violations of 
the COTS component specification by a defined amount (tolerance). This implies a 
bottom-up approach to observing the system-level effects of COTS failures. It is 
consistent with the approach used in paper [NJ00a]. In this, two strategies were used: 

Strategy A. Contained assertions that check the relationship between the input and
output of a behavioural block.

Strategy B. Contained assertions that check specific properties of a behavioural 
block’s input or output but not a relationship between the two.

A practical approach to the design of each assertion strategy was adopted. It was not 
intended that the assertion strategies in the experiments should provide an optimal 
diagnostic solution.  No method was employed to choose a particular assertion that was 
believed to produce better failure coverage and produce better failure coverage.  The 
objective of the experiments in [NJ00a, Nj00b] was to use hypothetical fault sets to 
make a comparative assessment of two different assertions strategies.  The aim was to 
observe the sensitivity of the results to changes in various fault set factors.   

The results from the study showed that the assertions which check properties of a 
behavioural block input or output but not a relationship between the two (strategy B), 
were particularly sensitive to variations in the fault footprint size.  The relative coverage 
provided by strategy B was shown to decrease considerably as the footprint size 
decreased.  The effectiveness of assertions which check a relationship between the 
behavioural block input and output (strategy A) was also observed to vary but to a much 
lesser degree.  

A general problem - which became apparent from the experimental study - is that the 
coverage computation for any given hypothetical fault set will generally be dominated 
by failures caused by faults with a large footprint.  This is not because a fault set will 
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necessarily contain more faults with a large footprint, but because these faults produce 
more failures.   

One argument is that since real software faults are known to have a small footprint then 
a legitimate fault injection approach would be to simply discard or filter out the faults 
with large footprints. However it is not obvious at this stage that this would be the right 
thing to do.  These results simply revealed that the footprint size is a dominant factor in 
the choice of  ‘challenging’ hypothetical fault sets.In the COTS case, assertion design 
would be based on the component specification alone to identify suitable input and 
output perturbations to represent specification violations.

The second possibility is to choose PIP-simulated failures by working back from 
possible system level failures (using software fault-tree analysis). This is a top-down 
approach, using system level failures to define the set of COTS failures of interest. A 
distribution of PIP-simulated failures could then be chosen in proportion to the severity 
of the failure consequences at the overall system level. This would mean categorising 
faults into classes according to the types of failure they cause at system level. In the 
absence of any other evidence to the contrary, a plausible approach would be to treat the 
classes as equally likely to occur so that the only reason that we would choose to test 
using unequal numbers of PIP faults for the different classes is the variation in system 
level consequences. Higher consequences imply a greater responsibility to guard against 
them, which in turn implies the need to use more faults.  

There is a way to take this approach further, by combining it with statistical testing, to 
allow a more sophisticated analysis of fault distribution. Suppose it is possible to 
subdivide the input space according to the fault classes i.e. according to the 
consequences of the failures that can occur on the different inputs. Suppose also there is 
previous statistical testing on the COTS component on this input space. Then each input 
space class (bin) will have a certain numbers of tests in it and we can estimate a bin pfd 
interval ],0[  with some confidence %  , i.e. we have a reliability associated with 

each bin [11]. Then in combination with the consequence level for a bin, this reliability 
could be used to determine the intensity of PIP testing to be used on the bin. Then it 
might be decided no further risk assurance is required the number of tests in the bin is 
enough in itself. If not, we can either do more statistical tests, do some PIP tests, or both.  

4 Assessment of COTS systems with safety wrappers using PIP  

The experimental results in section 3 have indicated that when COTS components have 
to be treated as black boxes, PIP can be used instead of SFI as a fault simulation method. 
The experiments also suggest that there is promise in further pursuing the use of PIP for 
the safety assessment of COTS-based systems.  

There are many types of wrappers designed to reduce the risk of system failure caused 
by potential faults contained in a COTS component. All wrappers are designed to have 
diagnostic functions to monitor the possible failures of the COTS component and 
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prevent the system failing dangerously (crashing). A PIP fault set must be 
derived/simulated from the understanding provided by the various design specifications 
(the ones for COTS components, wrappers and the system) as depicted in figure 4.1, 
since this is all the information that is available. 

The arrows in the figure denote the cause and effect relation. This report studies 
wrappers that are expected to intervene when a COTS component fails (on particular 
demands). The test specification for a wrapper is a plan of tests to confirm if all the 
behaviours designed to be performed by the wrapper have been implemented correctly 
by the corresponding coding. Figure 4.1 indicates that the derivation of a PIP fault set is 
based on the test specification for the wrapper and the definition of interface parameters. 

The concept of testing a wrapper with real COTS failures is problematical. Demands that 
trigger these failures can be very rare within the normal system demand-space. If COTS 
failure were common in the normal usage of the system, the COTS component would 
not be used. In addition to being rare, system demands that fail the COTS component are 
unlikely to be known and may not easily be covered by random system testing. Although 
rare, such demands may still be critical due to the high consequence of failure, and so 
require additional safeguards. Hence the perceived need for COTS wrappers. 
Furthermore, with the possible exception of new test techniques still under development 
[MJ02,RG01], it is unlikely that previous COTS testing in previous applications will be 
sufficient to justify the COTS integrity (reliability) in a new system. Lastly, COTS are 
by their nature aimed at the widest possible market, and are therefore seldom developed 
to safety standards.  

In the context of these difficulties with existing methods, PIP must be seen as a 
promising contender for wrapper assurance. PIP simulates COTS failure and enables 
direct observation of the response of the wrappers. Interface parameters should have 
identical definitions in a COTS component’s specification and in a wrapper specification 
for that component. Therefore, the perturbation of the interface parameters does not need 
to be derived from an understanding of the internal structure of a COTS component. PIP 

Wrapper specifications COTS component Specifications 

Test specification 
(Wrapper) 

Requirement specifications of System 

Definition of interface parameters 

PIP Fault set 

Figure 4.1 Derivation of the PIP fault set from specifications
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testing can be performed without any contact with, or information on, the physical 
internals of COTS components. All operations on the interface parameters can be 
implemented on the wrapper side. 

The proposed procedure to use PIP to assess and design the COTS wrappers is displayed 
in figure 4.2 which relates the wrapper assessment and wrapper construction. PIP can be 
used purely as an evaluation method to assess the quality of the wrapper or as a tool to 
use in the development of a wrapper.  

The issue remaining is that such an assessment ignores the influence of the operational 
profile on the actual interface parameters that will occur in reality. This information 
would be required if was necessary to assess the actual reliability enhancement achieved 
by use of a wrapper. If PIP is required to simulate a realistic frequency of a faults 
happening in the structure of a COTS component, the operational profile of perturbing 
parameters will be important. The uniform perturbation of all interface parameters does 
not represent the uniform injection of faults over the whole structure of the COTS 
component. In principle, the operational profile could be introduced by using appropriate 
weighting factors on each parameter to calculate the realistic response of the system. The 
operational profile could be determined precisely if a COTS component was a white-box 
however, in most situations, we could get an approximate estimation of the profile by 
analysing the specification of the COTS component and assuming it is implemented 
strictly according to the design. To do this, it would be necessary to obtain much 
relevant information, e.g. the operational profile of the input parameters and fault 

Wrapper specification COTS component Specification Test specification
(Wrapper) 

Define
 interface parameters 

Form PIP fault set

Figure 4.2 Overview of Methodology using PIP to assess wrappers  
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Code 
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distributions. At present it is not considered feasible to use the PIP methods in this way 
because of the limited availability of information about the COTS component.  

However, evaluating a system’s fault tolerance to a COTS component can be a 
quantitative approach based on actual testing. For a specific safety design (e.g. a 
wrapper) and according to the requirement specification of a bespoke system, we can set 
up a complete set of failure modes of COTS components, then PIP can be used to 
simulate these failures of COTS component and measure the rates with which the 
wrappers successfully detect them. Such measurement may be used as a quantitative  

5 Conclusions and further works 

The PIP methods were validated on two levels. Firstly, by observing the effects on 
COTS interface parameters (IP) caused by a wide range of internal faults in COTS 
components, it was shown that these anomalies could be simulated by PIP in principle. 
Secondly, it was possible to confirm that system level outputs, resulting from faults 
inside COTS components, could be simulated by PIP in practice. (The second point does 
not follow trivially from the first point because, although PIP can be used to exactly 
reproduce any failure behaviour in the IPs, in practice the COTS failure behaviour is not 
known and the PIP has to use plausible assumptions about how the IPs should be 
manipulated. This means choosing plausible perturbations from an infinite set of 
possible ones. We observed that internal COTS faults produced failures that were 
covered by the plausible simulated perturbations i.e. at the IPs, the effects of the internal 
faults did not display any strange properties that were not simulated by the PIP.)  

An obvious advantage of the PIP approach is that it has some independence from 
particular COTS components; the safety wrapper and bespoke system can be tested in 
the absence of a COTS component using simulated failure modes simulated in the IPs to 
the bespoke system. Clearly then, PIP can be used to evaluate different design strategies 
for safety wrappers.  

This paper has shown how it is possible to take an empirical approach by fault injection 
techniques to analyse the structural factors influencing fault tolerant capabilities in a 
system with COTS components. The experiments introduced have verified the PIP can 
be used as an effective SFI method to simulate various faulty scenarios in a kind of stress 
testing. This provides a way to assess various system safety-enhancing design 
mechanisms. In our empirical example it appears that a complete set of interface 
parameter perturbations can simulate the effects of all possible faults within the 
component. However, based on current knowledge, it may not be appropriate to attempt 
to select PIP faults to try to simulate ‘realistic’ faults. One example of a way forward is 
that the PIP can be used to simulate the failures that are implied by the requirement 
specification of fault tolerant function for COTS-based software. Such use of PIP would 
directly demonstrate the implemented system’s ability to achieve safety when a COTS 
component fails in certain ways.  
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COTS wrappers, in common with all forms of fault tolerance, have an intuitive worth 
based on normal engineering judgement. By trapping COTS failure, they offer real 
possibilities for reliability enhancement. The simple empirical example of PIP used in 
the report has demonstrated that evaluating a system’s fault tolerance to a COTS 
component can be a quantitative approach based on actual testing. For a specific safety 
design (e.g. a wrapper) and according to the requirement specification of a bespoke 
system, we can consider a set of failure modes of a COTS component, and then PIP can 
be used to simulate these failures and measure the rates with which the wrappers 
successfully detect them. Such measurement may be used as a quantitative basis to 
assess the safety strategies or improve the wrapper design.  

In summary, the level of reliability gain achieved with a COTS wrapper cannot be 
accurately quantified with current methods because of the need to simulate the fault 
profile of the system and components. However, there are many potential design 
techniques that can be used to increase safety, and PIP testing offers a plausible method 
of increasing confidence in the effectiveness of these techniques. Given the difficulties 
in applying other safety assurance techniques to COTS, PIP testing has the potential to 
be developed to be an important leg in safety standards for COTS-based software. Future 
development must include deployment on a significant example(s), and further peer 
review. If this proves positive, developers of COTS-based software safety systems 
should be encouraged to apply the technique, and licensing bodies encouraged to accept 
the assurance it provides. This assurance is not based on measured reliability, but is no 
less convincing than current safety assurance practices suggested by international 
software safety standards.  
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