
Safety Assessment of Systems Embedded with COTS
Components by PIP technique

Luping Chen, John May

Safety Systems Research Centre, Faculty of Engineering
 University of Bristol, Bristol, BS8 1UB, UK

L.Chen@bristol.ac.uk, J.May@bristol.ac.uk

Abstract: The difficulties to assess reliability of systems that use COTS
components are sometimes compounded by the inaccessibility of some COTS
codes. This paper develops an approach of Perturbation of Interface Parameters
(PIP) to simulate failures of COTS components. It is to validate the use of PIP as a
fault-injection technique to test COTS components and surrounding systems. Tests
of a nuclear protection system will be presented to demonstrate that PIP can be
used to assess and aid safety designs in COTS based software.

1 Introduction

The increasing need for fast, economic methods of software reuse and interoperability
between applications has driven the rapid growth of component-based software
engineering. Commercial Off-The-Shelf (COTS) components already play an important
role in the component development paradigm [BA98]. Component-based software
engineering (CBSE) offers the potential of economic and speedy system design and
production. At a course grain this can be based on the reuse and integration of high-level
COTS components together with bespoke components as elements of a required new
system. The use of COTS components offers possibilities for increased productivity and
efficiency in software development, but raises new safety issues since the reliability of
COTS software components cannot be performed in a one-off manner prior to
integration. Furthermore, even if such pre-assurance was a theoretical possibility, it
would seldom be available, since COTS components are commonly developed to
unknown standards or standards aimed at general use, which are insufficient for safety
applications.

A key requirement for such hybrid systems is to show that the use of COTS components
(which will be considered as 'black boxes') does not compromise the safety, reliability
and (perhaps) security of the overall system, since the reliability of COTS software
components cannot be fully assured prior to integration. Currently, developmental
processes used by the various COTS suppliers are most likely unacceptable to the
mission/safety critical safety and certification communities. Alternate and supplement
methods are needed for the certification of these systems [PJ96]. These difficulties are
sometimes compounded by the inaccessibility of some COTS code. Where examination
of code is not permitted, traditional assurance techniques (with the exception of black
box testing) cannot be applied to COTS components post-purchase, to supplement the

93

supplier’s verification and validation (V&V) activities. In general it is necessary to use
'middleware', possibly based on standard infrastructure technologies, to integrate
disparate components. This middleware offers an important opportunity to include
component adaptation and monitoring strategies, to help ensure fault tolerance, quality
of service and security. The overall integration process can be complex, perhaps
involving both syntactic and functional adaptation, but this study will have the simple
focus of how to assess the value of safety strategies (in the surrounding system) to
prevent the propagation of faults or unexpected behaviour from the COTS component to
the rest of the system.

Some earlier works have developed the use of fault injection to test the diagnostic fault
coverage provided by such COTS wrappers. One approach in [NJ01] investigated the
diagnostic value of executable assertions using Software Fault Injection (SFI) inside the
COTS component to cover a range of fault sizes (footprint in the input space) and
locations. However, where COTS code is inaccessible, fault injection inside COTS
components will not be possible. To overcome the limitation of normal SFI when a
COTS component is treated as a black box, this paper is to validate that the Perturbation
of Interface Parameters (PIP) of a COTS component can simulate faults contained in the
COTS component. And we will demonstrate how to use PIP techniques to assess and aid
safety designs in COTS based software.

2 Component architecture and interface parameters

We consider the particular case of integrating a COTS component of uncertain integrity
into a bespoke system of accepted safety integrity level (justified by the design,
development and V&V processes). The objective will be to protect the bespoke system
from failure due to COTS faults/uncertainties. Inevitably because of the 'black box'
COTS component assumption, the diagnostic options will be restricted to those which
can operate on the inter-component communications. Interaction between software
components can take place via different means. Procedure calls, shared data stores and
message passing can be considered as the primary means of interaction between software
modules. Pipes or event broadcasting are likely to be too complex for safety-related
applications and in any case also rely on the lower forms of communication. Shared
memory can be used if the software components are implemented on single or
multiprocessor platforms without the use of 'middleware'. In this case, some protection is
often implemented by hardware; for example by restricting the addressing space of the
COTS component and/or by making certain memory locations read-only. Interaction via
standard procedure calls assumes that the two sub-systems are implemented on a single
processor. This architecture is likely to require 'middleware' to handle communications.
The 'middleware' provides a collection of procedures to access data or services and must
be at the bespoke integrity level. Such a scheme allows some control of data and control
flow interactions although the risk of incorrect interaction (interference) via the common
physical memory still exists if data is also shared that way. Message passing is the only
communication mechanism for distributed implementations without shared memory.
Such an architecture has the advantage of greater separation of the sub-systems, with no
risk of interference via accidental memory access. The 'middleware' again has to be at

94

the bespoke safety integrity level. A COTS component is required to be designed to have
a clear interface with its environment and the appropriate documents are needed to
provide a complete description of interface parameters and their specifications.
Assuming the basic cross-component linkage between procedure calls and procedure
bodies is performed correctly, the interface can be simply defined as the parameters that
are used to exchange information between COTS components and the bespoke system,

The conceptual arrangement and the sketch of interface parameters are shown in Fig. 2.1
below:-

Fig 2.1 Sketch view of the connecting interface
And conceptual view of system components

Bespoke System

Middleware including
diagnostics/Wrappers

Input Output

COTS Component

interface

We distinguish three types of interface parameters:

the first one is to input information from the bespoke system to the COTS
component, which is the single arrow pointing to the COTS component. Such
interface parameters is defined as input parameters of COTS component.
the second one is to output information from the COTS component to the
bespoke system, which is the single arrow pointing to the bespoke system. Such
interface parameters is defined as output parameters of COTS component
the third one is a combined situation.

These interface parameters are the unique routes for information exchange between the
bespoke system and the COTS component. All COTS failure behaviours can only be
transferred into the bespoke system by output parts of the interface parameters, and
present as some anomalies of the interface parameters. The PIP is to simulate the faults
in COTS component by injecting anomalies at the interface through perturbing those
output parameters.

95

3 Initial validation of PIP technique

Software fault injection (SFI) is used to make the system under test manifest defects in a
stressed environment. SFI has been used successfully in safety-critical applications to
find failure modes that would have otherwise been extremely difficult to find using
standard testing techniques [BJ96]. This makes SFI an attractive technique for testing
software diagnostics and in particular, to verify diagnostics function in COTS-based
software. However, the physical testing of COTS components is necessarily constrained
by the fact that the source code is not available and even if it was, modification could
potentially negate its previous history of reliable operation. PIP could remove this
problem if it can be shown to provide acceptable fault simulation/coverage.

The fault injection approach is still a new technique and necessary to overcome some
practical difficulties. The promise of fault injection and initial idea of PIP as general
techniques to assess systems composed of COTS components has already been
recognised [VJ98], but how to use these techniques to perform practical, realistic testing
is still a matter of research [PD02].

A key requirement in the development of our approach is to examine how to use
perturbation of interface parameters (PIP) of a COTS component to simulate faults
contained in the COTS component. The foundation of the approach is that the interface
parameters are the only route for information to be exchanged between COTS
components and the system, so the influence on the system of faults in a COTS
component will occur via anomalous values of the interface parameters.

Our application of PIP to assess COTS software based systems begins by investigating
how PIP can be used to simulate faults in a COTS component. The aim of this task is to
provide evidence to support the validity of PIP but also to see if it is possible to identify
a method of simulation that is easy to apply in practise.

 3.1 The system for test

In this paper, a nuclear plant protection system is used to provide an example of such
properties within a software system [QW91]. The process of PIP can be explained by use
of a very simple COTS component ‘High_Trip’ module. The trip module is designed to
monitor if a plant is safe by ensuing that defined high limits on certain physical values
are not exceeded. Its connection with the protection system is through four parameters: 3
float variables: Value, Max and Warn, and 1 character variable: high_trip. The former
four are input parameters, which will accept data from sensors on the plant about its
current physical state and the boundary values for warning and tripping. The last one is
the only output parameter for this module, which tells the system the current status of the
monitored object i.e. it is one of a normal, warning or trip status. Therefore, any potential
faults contained in this module can only influence the system through returning a false
value through the interface parameter ‘high_trip’.

96

In this case, the number of failure modes is limited. The output parameter has 3 possible
values N, W and T. Each time only one of the three values can be a correct output, then
the potential failures for each output have two formats. The potential failure formats of
this special module only have following cases summarised in the table 3.1:

Table 3.1 failure format of the module
No. of correct output 1 2 3
Values of the correct output N W T
Failure 1 T T N
Failure 2 W N W

3.2 Comparison at interface level

The general goal in this part is to test if the perturbation of interface parameters can
simulate faults inserted into COTS components and their mapping relations by
monitoring the interface parameters of the COTS component. There is very little work in
the literature describing the relation between the faults in interface parameters and in the
COTS components

The test procedures and harness are explained in figure 3.1

Test Harness

System

NCC

FCC

Output through the Interface parameters

Common values inputting to NCC and FCC

TH-Module N_F_COMP

For this test, the system will embed two modules corresponding to two COTS
components. One module is exactly the normal COTS component itself (NCC), the other
is the copy of the COTS component but with injected faults (FCC). The values output
from NCC and FCC through their interface parameters are both collected by a module
N_F_COMP in the test harness to compare and to record their differences. Eight COTS
components were simulated and selected from the protection system for the comparison

Figure 3.1. Test platform for comparison of PIP and SFI in a COTS Component

97

experiments. We used two here to explain the experimental results, which are named as
NCC_1 and NCC_2. NCC_1 has 2 output parameters. NCC_2 has 3 output parameters.

Analysis of the results produced the following observations:

1) Any faults injected in the COTS components can be simulated by PIP, but some
realistic faults may produce anomalies in several interface parameters. Thus to
exactly simulate a real fault in a COTS component it may be necessary to perturb
multiple interface parameters at the same time. (However, realism is not the ultimate
aim. Powerful, meaningful testing may be achieved by other means. For example,
although software mutations do not cover all types of possible real faults, it has been
argued that there is equivalence of software mutations and realistic faults at the level
of overall system evaluation [GR92]. The experiments in next section illustrate
whether single-parameter perturbations constitute sufficient testing.)

2) All interface parameters offer ways to propagate faults inside the components out
into the surrounding system.

3) The faults in COTS components can cause an interface parameter to be perturbed to
any value. This is obvious unless we can rule out certain types of fault. Bounds on
the value can only exist as a result of the imposition of defined limits of these
parameters at the interface.

4) Many different internal faults will produce the same, or very similar, failure
phenomena at the IPs. Thus PIP may be more efficient than normal SFI when
considering the coverage of all possible faults.

5) The rates at which different interface parameters propagate the COTS faults can
vary widely. (Given faults that are distributed `evenly` in the component, some
parameters are affected by most faults, whilst other parameters are only affected by
small subsets of faults). This can be seen by comparing figure 2.6a and 2.6b.

Figure 2.6a The distribution of faults in NCC1 and NCC2

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7

The points on NCC for FI

N
um

be
r

of
 in

je
ct

ed
 fa

ut
s

Figure 2.6b distribution of anomalies over the IPs of NCC1

0

5

10

15

1 2

No. of interface parameter(IP) in NCC1

N
um

be
rs

 o
f a

no
m

al
ie

s

6) Different components may show different operational profiles for propagating faults
when similar distributions of faults in the components is assumed, which can be
seen by comparing figure 2.6b and 2.6c. Figure 2.6a shows the same distribution of
injected faults for both COTS component NCC_1 which has 2 interface parameters,
and NCC_2 which has 3 interface parameters. We selected 7 locations on the
software structures of both the NCC_1 and NCC_2, and ten faults were injected at
each location. We recorded which parameters showed anomalies for each fault with

98

the test harness as in figure 2.5. Figure 2.6b shows the percentage of the anomalies
on interface parameter 1 and parameter 2 in NCC_1. The even distribution in this
case appears to mirror the even distribution of faults throughout the code (as
pictured in figure 2.6a). However, this will not always be the case. Figure 2.6c
shows the percentage of the anomalies over the three interface parameters of
NCC_2, showing a distribution that is far from flat.

7) If it is assumed that the faults injected inside the COTS component is a set of
‘realistic’ faults, the evenly distributed PIP fault set in figure 2.6b simulates the

realistic faults. However, in
general this will not be the
case; 2.6c shows that PIP
faults created by perturbing
each interface parameters of
NCC_2 an equal number of
times will not simulate the
faults evenly distributed over
the structure of COTS

component. An intuitive observation from this result is that we can’t use this naïve
approach to analyse reliability figures because real failure behaviour will be fault
distribution-dependent.

In conclusion, the naïve use of PIP may still be the most direct way to make a safety case
for software containing COTS components. In our example, relatively simple interface
parameter perturbations simulated the effects of all faults injected into the COTS
component. A piece of software containing a COTS component should certainly be
assessed against a specification of its required fault tolerant functions. PIP can do this
conveniently, using direct testing of the implemented system’s ability to recognise a
wide range of COTS component failures.

3.3 Comparison at system level

If PIP simulation of COTS faults is to be used in a bottom-up (FMEA-style) analysis, it
would be encouraging if it produced failure behaviours at the overall system outputs that
are similar to those produced by SFI. (PIP simulations of internal COTS faults will not
be exact. If they were, this experiment would not be needed because the failures at the
system boundary would also be exactly the same). It is possible that in some cases PIP
failure simulation, despite appearing superficially close to SFI failures at the COTS
interface, produces failures that are not possible in practice. Closeness between the
system level failures caused by PIP and SFI would be one way to gain evidence that this
was not the case.

Three aspects are used to characterise a failure namely:

1) Failure rate: in an input space, the ratio of inputs that triggers the failure

Figure 2.6c distribution of anomalies over the IPs of NCC2

0

5

10

15

1 2 3

No. of interface parameters for NCC2

N
um

be
rs

 o
f a

no
m

al
ie

s

99

2) Failure position: the positions in the input space of the inputs that can trigger the
failures

3) Failure severity: the seriousness of the failure consequence to a system.

The test of NCC_2 is introduced as following for assessment of the equivalence of PIP
and normal SFI for this component by identifying the above features. To compare failure
rate and positions, we recorded footprints (that sub-region of the input space where
failure occurs due to a specific fault) in the input space of the tested system by injecting
two sets of faults from both PIP and normal SFI. At first, we inserted a set of faults in
the COTS component with uniform distribution. The uniform distribution here means to
evenly distribute the locations of injected faults over the programme structure of
NCC_2. All the resulting failure points and their frequency are displayed in figure 2.7.

0

8188000

-4
99

.5

25
71

0

2

4

6

8

10

12

14

Number of failures on
the point

SDP

SDL

Figure 2.7 footprints of SFI fault set for NCC_2

This figure shows that failures occurred on a subspace of the input space. A uniform grid
is used to divide the subspace and define the 100 points on the input space which is on
the horizontal x-y plane in figure 2.7. The SDL (X-axis) and SDP (Y-axis) on the plane
denote the physical values of Steam Drum Level and Steam Drum Pressure as two
dimensions of the input space to the tested software. The limits and scale of the SDL and
SDP values on the plane are decided according to the requirement specification of
DARTS software. Each point in this subspace (which is a point on x-y plain) has a
corresponding number (z-axis) which indicates how many faults cause system to fail at
this point.

Then the set of PIP faults was injected into the system and the set of footprints obtained
for the PIP fault set for NCC_2, which can be seen in figure 2.8.

There are two differences between figure 2.7 and 2.8. One concerns the number of faults
causing failure on each input point. The main reason for the differences is that the two
sets of SFI and PIP faults were not the same size. The second difference concerns the
distribution of the failure points. When we built the fault sets, both the ones for SFI and

100

PIP have the uniform distribution, which is over the structures of the COTS component
for SFI and over the interface parameters for PIP. If we simulate same number of faults
in PIP set as in SFI one by uniformly perturbing interface parameters more times, the
distribution as in the figure 2.8 will keep the same shape but become higher. But if we
increase the number of faults by perturbing the interface parameters by the scale as
shown in figure 2.6c, we can get footprints of the failure points for PIP with a new
distribution as in figure 2.9.

0

8188000

-4
99

.5

25
71

0

2

4

6

8

10

12

14

Number of failures on
the point

SDP

SDL

Figure 2.8 footprints of PIP fault set for NCC_2

0

8188000

-4
99

.5

25
71

0

2

4

6

8

10

12

14

Number of failures on
the point

SDP

SDL

Figure 2.9 footprints of SFI fault set for NCC_2

The distributions of figures 2.9 and 2.7 are quite similar. They would be the same if we
had used the same interface perturbations recorded when conducting SFI. (But of course
this assumes that SFI testing has been performed.)

101

This result proves that PIP methods can be used to simulate a set of ‘internal’ COTS
software faults if we consider their overall influence at the system level. Figure 2.7~2.9
shows that the difference between PIP and ‘internal’ faults can be reduced by putting an
appropriate weight on the interface parameters when implementing PIP. This so-called
weight is actually information about the possible distribution of faults in the COTS
component. The obvious problems here, common to any application of SFI, are:

1) if COTS is black box we will never know figure 2.6c
2) moreover, even if we did know fig.2.6c, there is nothing to say that fig.2.6a (the

‘cause’ of fig.2.6c) is representative of ‘realistic’ faults.

Therefore, all that has been demonstrated here is that PIP can reproduce the failure
behaviour of a given set of faults. In fact, in principle PIP can simulate all conceivable
sets of faults. The difficulty lies in making the choice of faults/failures for PIP to
simulate, in order to obtain useful assurance that the fault tolerant functions of the
software provide good protection against COTS failures. At first consideration, there
appear to be two possibilities:

The first is to choose a distribution of PIP-simulated failures that represents violations of
the COTS component specification by a defined amount (tolerance). This implies a
bottom-up approach to observing the system-level effects of COTS failures. It is
consistent with the approach used in paper [NJ00a]. In this, two strategies were used:

Strategy A. Contained assertions that check the relationship between the input and
output of a behavioural block.

Strategy B. Contained assertions that check specific properties of a behavioural
block’s input or output but not a relationship between the two.

A practical approach to the design of each assertion strategy was adopted. It was not
intended that the assertion strategies in the experiments should provide an optimal
diagnostic solution. No method was employed to choose a particular assertion that was
believed to produce better failure coverage and produce better failure coverage. The
objective of the experiments in [NJ00a, Nj00b] was to use hypothetical fault sets to
make a comparative assessment of two different assertions strategies. The aim was to
observe the sensitivity of the results to changes in various fault set factors.

The results from the study showed that the assertions which check properties of a
behavioural block input or output but not a relationship between the two (strategy B),
were particularly sensitive to variations in the fault footprint size. The relative coverage
provided by strategy B was shown to decrease considerably as the footprint size
decreased. The effectiveness of assertions which check a relationship between the
behavioural block input and output (strategy A) was also observed to vary but to a much
lesser degree.

A general problem - which became apparent from the experimental study - is that the
coverage computation for any given hypothetical fault set will generally be dominated
by failures caused by faults with a large footprint. This is not because a fault set will

102

necessarily contain more faults with a large footprint, but because these faults produce
more failures.

One argument is that since real software faults are known to have a small footprint then
a legitimate fault injection approach would be to simply discard or filter out the faults
with large footprints. However it is not obvious at this stage that this would be the right
thing to do. These results simply revealed that the footprint size is a dominant factor in
the choice of ‘challenging’ hypothetical fault sets.In the COTS case, assertion design
would be based on the component specification alone to identify suitable input and
output perturbations to represent specification violations.

The second possibility is to choose PIP-simulated failures by working back from
possible system level failures (using software fault-tree analysis). This is a top-down
approach, using system level failures to define the set of COTS failures of interest. A
distribution of PIP-simulated failures could then be chosen in proportion to the severity
of the failure consequences at the overall system level. This would mean categorising
faults into classes according to the types of failure they cause at system level. In the
absence of any other evidence to the contrary, a plausible approach would be to treat the
classes as equally likely to occur so that the only reason that we would choose to test
using unequal numbers of PIP faults for the different classes is the variation in system
level consequences. Higher consequences imply a greater responsibility to guard against
them, which in turn implies the need to use more faults.

There is a way to take this approach further, by combining it with statistical testing, to
allow a more sophisticated analysis of fault distribution. Suppose it is possible to
subdivide the input space according to the fault classes i.e. according to the
consequences of the failures that can occur on the different inputs. Suppose also there is
previous statistical testing on the COTS component on this input space. Then each input
space class (bin) will have a certain numbers of tests in it and we can estimate a bin pfd
interval],0[with some confidence % , i.e. we have a reliability associated with

each bin [11]. Then in combination with the consequence level for a bin, this reliability
could be used to determine the intensity of PIP testing to be used on the bin. Then it
might be decided no further risk assurance is required the number of tests in the bin is
enough in itself. If not, we can either do more statistical tests, do some PIP tests, or both.

4 Assessment of COTS systems with safety wrappers using PIP

The experimental results in section 3 have indicated that when COTS components have
to be treated as black boxes, PIP can be used instead of SFI as a fault simulation method.
The experiments also suggest that there is promise in further pursuing the use of PIP for
the safety assessment of COTS-based systems.

There are many types of wrappers designed to reduce the risk of system failure caused
by potential faults contained in a COTS component. All wrappers are designed to have
diagnostic functions to monitor the possible failures of the COTS component and

103

prevent the system failing dangerously (crashing). A PIP fault set must be
derived/simulated from the understanding provided by the various design specifications
(the ones for COTS components, wrappers and the system) as depicted in figure 4.1,
since this is all the information that is available.

The arrows in the figure denote the cause and effect relation. This report studies
wrappers that are expected to intervene when a COTS component fails (on particular
demands). The test specification for a wrapper is a plan of tests to confirm if all the
behaviours designed to be performed by the wrapper have been implemented correctly
by the corresponding coding. Figure 4.1 indicates that the derivation of a PIP fault set is
based on the test specification for the wrapper and the definition of interface parameters.

The concept of testing a wrapper with real COTS failures is problematical. Demands that
trigger these failures can be very rare within the normal system demand-space. If COTS
failure were common in the normal usage of the system, the COTS component would
not be used. In addition to being rare, system demands that fail the COTS component are
unlikely to be known and may not easily be covered by random system testing. Although
rare, such demands may still be critical due to the high consequence of failure, and so
require additional safeguards. Hence the perceived need for COTS wrappers.
Furthermore, with the possible exception of new test techniques still under development
[MJ02,RG01], it is unlikely that previous COTS testing in previous applications will be
sufficient to justify the COTS integrity (reliability) in a new system. Lastly, COTS are
by their nature aimed at the widest possible market, and are therefore seldom developed
to safety standards.

In the context of these difficulties with existing methods, PIP must be seen as a
promising contender for wrapper assurance. PIP simulates COTS failure and enables
direct observation of the response of the wrappers. Interface parameters should have
identical definitions in a COTS component’s specification and in a wrapper specification
for that component. Therefore, the perturbation of the interface parameters does not need
to be derived from an understanding of the internal structure of a COTS component. PIP

Wrapper specifications COTS component Specifications

Test specification
(Wrapper)

Requirement specifications of System

Definition of interface parameters

PIP Fault set

Figure 4.1 Derivation of the PIP fault set from specifications

104

testing can be performed without any contact with, or information on, the physical
internals of COTS components. All operations on the interface parameters can be
implemented on the wrapper side.

The proposed procedure to use PIP to assess and design the COTS wrappers is displayed
in figure 4.2 which relates the wrapper assessment and wrapper construction. PIP can be
used purely as an evaluation method to assess the quality of the wrapper or as a tool to
use in the development of a wrapper.

The issue remaining is that such an assessment ignores the influence of the operational
profile on the actual interface parameters that will occur in reality. This information
would be required if was necessary to assess the actual reliability enhancement achieved
by use of a wrapper. If PIP is required to simulate a realistic frequency of a faults
happening in the structure of a COTS component, the operational profile of perturbing
parameters will be important. The uniform perturbation of all interface parameters does
not represent the uniform injection of faults over the whole structure of the COTS
component. In principle, the operational profile could be introduced by using appropriate
weighting factors on each parameter to calculate the realistic response of the system. The
operational profile could be determined precisely if a COTS component was a white-box
however, in most situations, we could get an approximate estimation of the profile by
analysing the specification of the COTS component and assuming it is implemented
strictly according to the design. To do this, it would be necessary to obtain much
relevant information, e.g. the operational profile of the input parameters and fault

Wrapper specification COTS component Specification Test specification
(Wrapper)

Define
 interface parameters

Form PIP fault set

Figure 4.2 Overview of Methodology using PIP to assess wrappers

Wrapper
Code

COTS component

Start

Test wrapper

Analyse test results

End

yes

No

Satisfied?

105

distributions. At present it is not considered feasible to use the PIP methods in this way
because of the limited availability of information about the COTS component.

However, evaluating a system’s fault tolerance to a COTS component can be a
quantitative approach based on actual testing. For a specific safety design (e.g. a
wrapper) and according to the requirement specification of a bespoke system, we can set
up a complete set of failure modes of COTS components, then PIP can be used to
simulate these failures of COTS component and measure the rates with which the
wrappers successfully detect them. Such measurement may be used as a quantitative

5 Conclusions and further works

The PIP methods were validated on two levels. Firstly, by observing the effects on
COTS interface parameters (IP) caused by a wide range of internal faults in COTS
components, it was shown that these anomalies could be simulated by PIP in principle.
Secondly, it was possible to confirm that system level outputs, resulting from faults
inside COTS components, could be simulated by PIP in practice. (The second point does
not follow trivially from the first point because, although PIP can be used to exactly
reproduce any failure behaviour in the IPs, in practice the COTS failure behaviour is not
known and the PIP has to use plausible assumptions about how the IPs should be
manipulated. This means choosing plausible perturbations from an infinite set of
possible ones. We observed that internal COTS faults produced failures that were
covered by the plausible simulated perturbations i.e. at the IPs, the effects of the internal
faults did not display any strange properties that were not simulated by the PIP.)

An obvious advantage of the PIP approach is that it has some independence from
particular COTS components; the safety wrapper and bespoke system can be tested in
the absence of a COTS component using simulated failure modes simulated in the IPs to
the bespoke system. Clearly then, PIP can be used to evaluate different design strategies
for safety wrappers.

This paper has shown how it is possible to take an empirical approach by fault injection
techniques to analyse the structural factors influencing fault tolerant capabilities in a
system with COTS components. The experiments introduced have verified the PIP can
be used as an effective SFI method to simulate various faulty scenarios in a kind of stress
testing. This provides a way to assess various system safety-enhancing design
mechanisms. In our empirical example it appears that a complete set of interface
parameter perturbations can simulate the effects of all possible faults within the
component. However, based on current knowledge, it may not be appropriate to attempt
to select PIP faults to try to simulate ‘realistic’ faults. One example of a way forward is
that the PIP can be used to simulate the failures that are implied by the requirement
specification of fault tolerant function for COTS-based software. Such use of PIP would
directly demonstrate the implemented system’s ability to achieve safety when a COTS
component fails in certain ways.

106

COTS wrappers, in common with all forms of fault tolerance, have an intuitive worth
based on normal engineering judgement. By trapping COTS failure, they offer real
possibilities for reliability enhancement. The simple empirical example of PIP used in
the report has demonstrated that evaluating a system’s fault tolerance to a COTS
component can be a quantitative approach based on actual testing. For a specific safety
design (e.g. a wrapper) and according to the requirement specification of a bespoke
system, we can consider a set of failure modes of a COTS component, and then PIP can
be used to simulate these failures and measure the rates with which the wrappers
successfully detect them. Such measurement may be used as a quantitative basis to
assess the safety strategies or improve the wrapper design.

In summary, the level of reliability gain achieved with a COTS wrapper cannot be
accurately quantified with current methods because of the need to simulate the fault
profile of the system and components. However, there are many potential design
techniques that can be used to increase safety, and PIP testing offers a plausible method
of increasing confidence in the effectiveness of these techniques. Given the difficulties
in applying other safety assurance techniques to COTS, PIP testing has the potential to
be developed to be an important leg in safety standards for COTS-based software. Future
development must include deployment on a significant example(s), and further peer
review. If this proves positive, developers of COTS-based software safety systems
should be encouraged to apply the technique, and licensing bodies encouraged to accept
the assurance it provides. This assurance is not based on measured reliability, but is no
less convincing than current safety assurance practices suggested by international
software safety standards.

Acknowledgements

The work presented in this paper comprises aspects of a study (NewDISPO2) performed
as part of the UK Nuclear Safety Research programme, funded and controlled by the
CINIF together with elements from the SSRC Generic Research Programme funded by
British Energy, Lloyd's Register, and the Health and Safety Executive

Bibliography

[BA98] Brown, Alan W, and Kurt C. Wallnau, .The Current State of CBSE,. IEEE Software,
15(5),37-46 (Sept/Oct 1998)

[BJ96] Bieman, J.M., Dreilinger D., Lin_L., "Using fault injection to increase software test
coverage", Proceedings of the International Symposium on Software Reliability
Engineering, ISSRE, 1996, pp.166-174

[GR92] Geist, R. & Offutt, J., "Estimation and enhancement of real-time software reliability
through mutation analysis", IEEE Trans. Comput., Vol.41, No.5, 1992

[MJ02] J. H. R. May. Testing the reliability of component-based safety critical software. In S.
Thomason, editor, 20th International System Safety Conference, pages 214--224, PO

107

Box 70, Unionville, Virginia 22567-0070, August 2002. System Safety Society
[NJ00a] John Napier, John H. R. May, Gordon Hughes: Empirical Assessment of
Software On-Line Diagnostics Using Fault Injection. SAFECOMP 2000: 14-26

[NJ00b] J. Napier, L. Chen, J. May, and G. Hughes. Fault Simulating to validate fault-tolerance
in Ada. International Journla of Computer Systems, 15(1):61--67, January 2000.

[NJ01] J. Napier. Assessing Diagnostics for Fault Tolerant Software. PhD thesis,
Department of Computer Science, University of Bristol, August 2001

[PD02] Panel discussion, How useful is software fault injection for evaluating the security of
COTS products. Proceedings of the 17th Annual Computer Security Applications
Conference(ACSAC), IEEE Computer Society.2002

[PJ96] Profeta, J.,Andrianos, N., Yu, B., Safety-Critical Systems Built with COTS, IEEE
Computer, Volume: 29 Issue: 11 , Nov. 1996

[QW91] Quirk, W.J. and Wall, D. N., “Customer Functional Requirements for the
Protection System to be used as the DARTS Example”, DARTS consortium deliverable
report DARTS-032-HAR-160190-G supplied under the HSE programme on Software
Reliability, June 1991

[RG01] Richard G. Hamlet, David V. Mason, Denise M. Woit: Theory of Software Reliability
Based on Components. ICSE 2001: 361-370

[VJ98] Voas J Certifying Off-The Shelf Software Components. IEE Computer, 31, pp.53-59
June, 1998

108

