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ABSTRACT
Interactive tabletops do not only offer a large surface for collab-
orative interaction. They also offer quick access to digital tools
directly at the table - where a large number of everyday activities
take place. Tabletops with an embedded display are generally less
flexible and more fragile than ordinary massive tabletops. Physi-
cal objects on the tabletop occlude the digital content. In contrast,
top-down-projected interfaces using an overhead camera-projector
system allow for augmenting arbitrary tables and the object lying
on them. However, detecting pointing input only via a camera im-
age captured from above requires robustly recognizing whether
a finger or pen touches the tabletop or whether it hovers slightly
above it. In this paper, we present a solution for reliably tracking
a pen on arbitrary tabletop surfaces. The pen emits infrared light
via a tip made of optical fiber. A camera captures position and
shape of the light point on the surface. Our open-source tracking
algorithm combines heuristics and a machine learning model to
distinguish between drawing and hovering. A pilot study with 7
participants shows that that this system can be reliably used for
drawing and writing on tabletops. However, occlusion by users’
hands can deteriorate tracking of the pen.
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1 INTRODUCTION
Interactive tabletops facilitate collaborative use with intuitive in-
teraction techniques. Therefore, they are used in a wide range of
applications [16], such as interactive dining tables [4], augmenting
an office desk [6], assistive systems for workplaces [5], collabora-
tive work [3], playful interaction [17], smart kitchens [9], or music
making [7, 8]. Because of their high price, fragile surface, and of-
tentimes bulky form factor, interactive tables with built-in displays
or back-projection are not suitable for everyday use [15]. Projected
augmented reality (PAR) tackles this problem as it can be used in
combination with uninstrumented surfaces to create interactive
tabletops. For example, it is possible to project onto objects on top
of a table and the surface can still be used for its designated purpose.
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Figure 1: Left: Our projected augmented reality system. An
infrared camera captures light emitted by the IR pen. A top-
mounted projector displays drawn lines. Right: The IR pen
can be used to draw arbitrary shapes and text on the table.

This is especially important for applications that are used during
tasks such as crafting, where a robust surface is required.

However, if the interaction surface is uninstrumented, reliably
tracking user’s input becomes a challenge. For traditional pointing
input, it is necessary to facilitate input by precisely determining
position and form of interaction, such as clicking or dragging. Using
only sensors mounted above the tabletop, it is hard to implement
touch input as the system would have to reliably distinguish be-
tween hovering closely over the surface and touching it.

In this paper, we present an input form for projected augmented
reality (PAR) tabletops based on an infrared (IR) emitting pen and
an IR camera mounted above the table. Our work consists of

• a low-cost and easily replicable prototype for an IR pen
• an algorithm to precisely determine the pen’s position from
an IR camera’s image

• a machine learning model that robustly detects whether the
pen is touching a surface or not

• an evaluation of our system through a small user study (n=7)

2 RELATEDWORK
Using infrared pens as an input device for interactive tabletops has
been investigated in numerous research projects.

Anoto Livescribe Smartpens1 are commercial ballpoint-pens with
an embedded high-speed IR camera to capture a dot pattern that
is printed directly on the paper. It allows instant digitization of
user’s handwriting, but requires special paper with a propriety
pattern printed on it. Whereas in this case the duality of having an
analog transcript and its digital representation is desirable, other
use cases require the ability to write on surfaces and objects without
permanently altering them.
1https://www.anoto.com/solutions/livescribe/
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A common approach to track the position of pens on interactive
surfaces is to integrate tracking hardware directly into the tabletop.
Vandoren et al. [14] present a digital painting system using a paint
brush with a built-in infrared LED and light conducting bristle
fibers. Users can paint on a special surface that uses rear projection.
A camera with an IR band pass filter tracks the IR brush from below
the semi-transparent tabletop. The system can detect the brush
hovering above the surface and can estimate the brushes contact
surface depending on the applied pressure.

If uninstrumented tabletops are required, tracking infrastructure
has to be placed away from the table. To our knowledge, only a small
amount of research on pen-like input methods for such systems
has been published.

Lee at al. [11] placed an infrared camera next to a projector
and used a custom infrared pen to turn the projection area on
the wall into a digital whiteboard. While their approach has no
hardware on or under the projection surface and could be adopted
to a horizontal tabletop setting, it is limited by the fact that the
user needs to press a button on the pen to activate the IR LED.
This makes interaction less natural than writing with an ordinary
pen. Additionally, this approach can not distinguish a pen’s state
between hovering or touching the surface, providing no feedback
about the tracked position to users.

Multiple research projects use Nintendo Wii Remotes [2, 10] to
track custom infrared pens. Lee [10] also required users to press
a button on the pen to activate the IR LED. By using a pen with
a pressure sensitive tip, Chen et al.’s approach [2] removes the
need to actively push a button while drawing, but requires users to
constantly push the pen onto the surface, which seems to impair
writing in a natural way. Furthermore, hover events could not be
detected directly and their processing pipeline had a significant
latency of about 150 ms.

Margetis et al. [13] propose an approach that tracks an IR pen in
a 3D space above a tabletop using stereoscopic images from two
calibrated cameras. Even though their system can reliably distin-
guish between hovering and drawing, it can achieve a maximum of
29 Hz which is insufficient for natural handwriting detection.

3 TRACKING INFRASTRUCTURE
We extend the existing body of research with a tracking method for
IR pens that works on arbitrary surfaces, allows for natural input
with high temporal and spatial resolution and reliably distinguishes
between hovering and drawing.

3.1 Hardware
The system hardware consists of an infrared camera, a 4k video
projector, our custom infrared pen and a computer.

3.1.1 Projector/Camera Setup. Images are capturedwith a RealSense
D4352 stereoscopic depth camera. We only use one of its two in-
frared sensors, which can provide monochrome frames with a res-
olution of 848x480 pixels at a high frame rate of 90 fps. As the
RealSense camera is slightly sensitive in the visible spectrum, we
attached an infrared band pass filter (850 nm) to the lens to block
remaining ambient light, including the projector’s output.

2https://www.intelrealsense.com/depth-camera-d435/

Figure 2: Schematic of the infrared pen. A battery-powered
infrared LED shines light through a light guide which is used
as the pen tip. All components are included in an off-the-
shelf felt tip pen. The battery is connected to the LED with
thin copper wires and magnetic contacts.

A generic ViewSonic LS700-4K projector is used in the setup.
While lower resolution projectors could be used as well, the high
resolution of 3840 × 2160 px enables more precise drawing and
writing due to sharper lines.

3.1.2 System setup and calibration. We used a mobile truss system
(Fig. 1, left) to mount camera and projector above the tabletop. To
allow for precise projection of drawn content without any offset,
projector and camera need to be calibrated to each other.We created
a calibration tool which allows users to select the four corners
of the projection in the camera frame. While more sophisticated
approaches for projector-camera calibration exist, ours proved to
be more than sufficient for our prototype. As long as the hardware
is not moved, no further calibration is needed.

3.1.3 Infrared Pen. We built a pen emitting infrared light by plac-
ing an infrared LED3 inside a black edding 400 permanent marker
(Fig. 2). A fiber-optic light guide with a sanded end is hot-glued
inside the pen’s tip to lead the IR light towards the drawing surface
and makes the device’s haptic similar to a normal pen. We com-
pared side-emitting and conventional light guides and found that
both work with our system. A 1.5 V AAAA battery inside the pen
powers the IR LED. Because there is no room for a proper battery
holder inside the pen, we used magnetic contacts and thin copper
wires to connect the LED to the battery.

3.2 Image processing
The RealSense camera produces infrared frames at 90 fps. To get
frames that are perfectly aligned with the projection, we extract the
relevant area from each image with a perspective transformation
based on four corner points collected in the calibration step. We
process those extracted images with Python 3.8 and OpenCV 4 [1].
First, we remove potential dim areas caused by sunlight with a
binary threshold. For each remaining region above the threshold,
we extract a region of interest (ROI) of 48× 48 px (Fig. 3) and pass it
to the classifier (section 3.3), which returns a prediction of the pen’s
state (hover or draw). The camera’s low resolution of 848 × 480
would prevent us from using the full potential of the projector’s
high resolution. Therefore, the region around a detected pen spot
is scaled up with linear interpolation to match the projector’s 4k
output. By calculating the the centroid of the resulting blob, we
can detect the pen’s position with sub-pixel precision. A PyQt54

application receives all events and draws points and lines on a black

3SFH 4550, 850 nm, 2800 mW/sr, 𝜑 3°
4https://www.riverbankcomputing.com/static/Docs/PyQt5/
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Figure 3: Cropped and re-scaled sensor images. If the pen is
hovering over the surface (> 2 mm), a light cone is clearly
visible. When touching the surface, the light cone disappears.
Close hovering (< 2 mm) looks very similar to touching. Hov-
ering far from the surface (> 15 cm) also looks similar, but
the spot is smaller and less bright.

canvas, which is then projected onto the table. Processing a single
frame takes around 9 milliseconds on our system5.

3.3 Pen State Classification
We use a convolutional neural network (CNN) to distinguish be-
tween the pen states draw and hover. The networkwas implemented
in TensorFlow 2.06 using the Keras API7. It consists of three 2D con-
volutional layers (64 3× 3 kernels, 32 5× 5 kernels, 16 7× 7 kernels)
with linear activation, each followed by a max pooling layer. After
flattening, there are four dense layers with 128 neurons each and
ReLU activation. A softmax layer classifies the result into one of the
two states draw or hover. Hyperparameters of the network were
optimized via grid search.

Training data was acquired by manually moving the infrared
pen across the table, continuously capturing images with the Re-
alSense camera, and saving those images in a directory with the
corresponding label draw or hover. Capturing 500 training images
this way takes about 30 seconds. To increase robustness of the net-
work, this process was repeated under different lighting conditions
(e.g. different times of day, open/closed window blinds) and with
different exposure settings for the camera (exposure: 10 ms; gain: 16,
32, 64). This way, we could acquire a data set of 3000 8 bit grayscale
images with 848 × 480 pixels. As the pen’s light cone only covers a
small part of those images, they were pre-processed by cropping
to the brightest 48 × 48 pixel region. Before training, each of those
cropped images was augmented by rotation in 90° steps, mirroring,
and varying it’s brightness in 6 steps (70% – 120% brightness). 80%
of this final data set were used to train the CNN, the remaining 20%
were used for validation.

We trained our network with a batch size of 32 using an Adam
optimizer with categorial crossentropy as the loss function. After
three epochs, the model reached an accuracy of 97.85% on the
validation data set.

Using TensorFlow lite8, the model achieves a mean prediction
time of 2.6 ms (std: 1.94 ms, max: 6.8 ms).

4 EVALUATION
To evaluate the performance of our system, we recruited seven
people (aged 21–36 (mean 25.7), three male/four female, four right
handed/three left handed) to participate in a short user study. All
5Ubuntu GNU/Linux 20.04, Intel i9 9900k @3.6 GHz, NVIDIA GeForce RTX 2060
6https://www.tensorflow.org/
7https://keras.io/
8https://www.tensorflow.org/lite

of our participants were unfamiliar with the system and we asked
them to pay attention to the system’s performance and give us
feedback afterwards. The study consisted of four tasks. With the
first task, we determined the accuracy of our tracking system by
counting the number of wrongly detected segments. To this end,
we projected a pattern with big and small crosses, as well as dots,
on the table. Participants were asked to trace those symbols with
the IR pen. They could not see the drawn lines in this task to avoid
adaption to the system. With the second task, we evaluated how
well people can write with the IR pen. We displayed a random
phrase from MacKenzie and Soukoreff’s phrase set [12] and asked
participants to copy it inside a projected box in the center of the
table. This process was repeated five times each for two differently
sized boxes (3 cm and 4.5 cm height) to stimulate size variation
in user’s handwriting. For the third task, participants had three
minutes to freely draw on the table. This way, we gave them the
opportunity to explore the system’s capabilities and adapt to its
behavior. Afterwards, we repeated the first task to see whether
participants had adapted to the system and the number of correctly
recognized lines would increase. After all tasks were finished, we
asked participants to provide feedback for our system in a short
interview.

5 RESULTS AND DISCUSSION
Over all, participants liked interacting with our system and de-
scribed interaction as natural, similar to a normal pen. There were
tracking problems for all participants, mainly caused by user’s
hands occluding the line of sight between the camera and the pen’s
infrared spot, especially when holding the pen very steeply with
a closed grip. Therefore, tracking worked better on the left hand
side of the table for left handed users and vice versa. Participants
reported that they quickly adapted to the system by holding the
pen less vertically with a more open grip once they realized this
behavior. All but one participant had better results in the second
cross-hatching task (mean accuracy: 75% → 82.1%, Fig. 4), confirm-
ing that they adapted to the system within the short time of the
study.

All phrases written during the second task were easily legible
(Fig. 5). To test for machine-readability, we used handwriting recog-
nition software9 on all written phrases and counted the number of
wrongly detected characters. Out of the 70 total phrases written,
only 1.2% of characters were wrongly detected.

During development and evaluation of our system, we observed
that hovering the pen very closely to the table’s surface is oftentimes
misinterpreted as drawing. Even though this could lead to two lines
unintentionally being connected, we found that this was rarely a
problem even when writing small text. Additionally, we found that
our system works robustly for slight changes in lighting conditions.
However, for a more severe change in lighting, for example when
moving the setup from a dark corner to a window, re-calibrating
the camera’s exposure settings and/or re-training the model might
be necessary.

9https://lens.google/
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Figure 4: Results of the cross-hatching task described in sec-
tion 4. Left: results for left handed participants. Right: re-
sults for right handed participants. The background color
indicates how well our system could recognize user’s input.
White regions were detected for all participants, deep red
regions were rarely detected. It can be seen that occlusion by
the writing hand impairs tracking.

Figure 5: Sentences written by users during the handwriting
task.

6 CONCLUSION AND FUTUREWORK
We could show that infrared pens can be used as input devices
for projected augmented reality tabletops. In contrast to other pen
tracking methods for PAR applications (such as Margetis et al. [13]),
our system is able to precisely determine the pen’s position and
state at 90 fps, making natural handwriting on the table possible.
Results of our study indicate that user’s intuitively know how to
interact with the device.

The main problem of our tracking method is occlusion by user’s
hands. We plan to integrate a second camera into our system to
counteract this issue. As a side effect, this might also help our pen
state classifier to distinguish between close hovering and drawing
more reliably. In future work, we will implement more applications
using our new input method and evaluate the whole system in an
extensive user study.

The complete source code can be found in our GitHub repository
https://github.com/vigitia/IRPenTracking.
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