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Abstract: In this work, we identify the power-optimal wire spacing as a geometric
program. Its solution is a vector of individual distances between the wires. To quan-
tify the optimization potential by this method we model the output of a grid based
router with a set of parallel wires. A comparison of the power values before and after
geometric optimization shows that the optimization potential lies well in the two digit
percent zone for a representative circuit model in a 130nm process.

1 Introduction

Power consumption is one of the challenges in designing integrated circuits. Capacitive
power still makes up the highest part of the power consumed in numerous integrated sys-
tems of today. The major fraction of the interconnect capacitances is increasingly caused
by cross coupling wire segments within one metal layer as process geometries are scal-
ing down. Therefore the distances between wire segments are good candidates for power
optimization and build the focus of our paper.

Wire spacing, especially in combination with ordering, has been done in Electronic Design
Automation for a long time. People attempt to space and order mainly bus wires for dif-
ferent objectives like power [MPS03] [ZR05], crosstalk [CKP01] [MPS03], area [Gro89],
or timing [Moi04]. The latter work contains a more complete list.

Our approach takes a step forward. The optimiza-

Figure 1: Illustration of bus wires (the
darker the more active).

tion is done by writing the wire spacing problem
as a geometric program rather than developing a
heuristic. Figure 1 shows an unoptimized bus (a)
with an un-populated routing track. The idea is
to place the wires off-grid (b), so that the unused
space can be exploited: An individual distance is
assigned to each wire pair based on their activities.
(Cf. [ZWS05] for how to optimize any already de-
tail-routed layout topologies.)

The paper continues with a brief illustration of CMOS power basics and the consequential
formulation of power-optimal wire spacing as a geometric program. Section 3 quantifies
the optimization potential. Section 4 will conclude the article.
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Figure 2: Capacitances in a 0.13µm process.
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Figure 3: Correlation of power models.

2 Background

2.1 Power

The capacitive power consumption dissipated in the driving transistors of a circuit node i
is the product of the node’s capacitive load and a set of constant factors to be described
shortly: Pi = κi ·Ci with κi := α01,ifiV

2
DD,i. The factor κi collects the variables ’toggle

rate α01,i’, ’frequency of clock domain of node i, fi’, and ’square of supply voltage of
driving gate, V 2

DD,i’. Any of these factors has linear influence on power and can vary from
node to node. However, we shall assume that VDD,i and fi are constant from now on and
therefore κ ∝ α01.

2.2 Interconnect capacitance

It is widely understood that today the wire capacitance very often makes up the major part
of a node’s total capacitance in many ASIC circuits. Moreover, mainly the wire width is
minimized as technology scales [SIA05][HMH01]. To avoid timing problems caused by
too high resistances, but yet get acceptable integration densities, the wire thickness is kept
relatively high. Backed by the decreasing pitch, this leads to an important implication for
the interconnect capacitance: while in the past the highest fraction of the capacitance was
caused by the coupling between different layers, now the capacitances within one layer
dominate [WS02].

Figure 2 illustrates this situation for a wire (dotted) in a fully populated environment.
The total self capacitance (100%) is broken down into capacitances to all other objects.
The highest part (almost 2·38% for both sides) is the cross-coupling capacitance. We

approximate this part with the plate capacitor formula: Ci ∝
�

1
di

+ 1
di+1



. There is a

strong correlation between the power values calculated with this expression and the power
values calculated with extracted self capacitances, cf. Figure 3. So the applicability of this
approximation seems to be rectified.
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2.3 Power optimal wire spacing

Let us now consider N parallel wire segments of width w which must not get closer to
each other than a technology dependent constant dmin. Let us further assume that we are
given M possible routing tracks with pitch dpitch on which a grid-based router placed the
N wire segments. We can then formulate the power optimal wire spacing problem as a
geometric program:

Pi ∝

N+1�
n=1

(κn−1 + κn)

dn

= min! (1)

dn ≥ dmin ∀n = 1 . . . N + 1 (2)
N+1�
n=1

dn ≤ (M + 1)dpitch − N · w (3)

Cf. Figure 1 for an example with N = 8 and M = 9. At this point it should be noted that
we model the whole scenario to be enclosed in between two static wires with the numbers
0 and N + 1 to avoid edge effects which could influence the results. The analogon on a
chip could be power or shield wires. The right side of the area constraint (3) represents the
available space. We generally assume M > N , or, should dpitch − w > dmin, M ≥ N ,
otherwise no freedom for optimization exists.

3 Example

3.1 Setup

To quantify the optimization potential we used FastCap [Nab05], a public domain capac-
itance extractor from MIT, a public domain geometric program optimizer [Lab00], and a
typical 130 nm process. For a given N , we first chose a fixed set of switching activities,
randomly generated by assuming a 1/x shaped distribution (similar to an actual micro-
processor [Emb04]). We distributed the N wires to the M routing tracks and then had
FastCap extract the wire capacitances. Providing the switching activities to the geometric
optimizer (which used the simpler 1/d formula as capacitance model, as mentioned above)
gave us an optimal wire spacing. Using this spacing and FastCap we obtained a second
set of capacitances for the optimized case. It was shown that net ordering has influence on
the optimization potential [ZR05]. Since this effect is not in the focus of this paper, it was
eliminated by randomly permuting the distribution of wires to the routing tracks. From all
those capacitances we could now calculate the power savings. Again, doing all the above
a lot of times for different sets of switching activities gave us an average saving for given
N and M . For FastCap we used N simple straight wires on layer metal2, spacing either
derived from random allocation on M tracks or computed by the geometric optimizer.
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Figure 4: Optimized to unoptimized power val-
ues for N=16, M=20
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Figure 5: Power savings to standard deviation
of toggle rates for N=64, M=65

3.2 Results

The table shows the power savings (P − Popt)/P for the
N\M N N+1 1.25N

4 6.2 15.1 15.1
16 12.9 16.2 21.7
64 20.4 21.4 28.0

Table 1: Power savings [%].

parameters N and M . The basis for the comparison is a bus
with N lines which were randomly assigned to M possible
tracks. Thus, both the influence of the problem size (N )
and the area (M ) to the power optimization potential are re-
flected in the table. The optimized situation is derived after
allowing the N tracks to run off-grid. FastCap extracted the

self capacitances required to calculate the power. For example, if we are given 16 bus wires
and 17 tracks, 16.2% capacitive switching power can be saved on average if we assigned
individual spacings derived by geometric optimization.

3.3 Analysis

The savings in Table 1 are quite large. We assume this is because in our 130 nm process,
the wire pitch less wire width is greater than the wire spacing, giving the geometric opti-
mizer a lot of freedom (s := (dpitch −w)/dmin = 1.4, cf. Section 2.3). We therefore also
analyzed the results for processes with smaller s. Remarkably, the measured savings show
the same orders of magnitudes even for s = 1.0. Regardless of N and s, the dependency
of the savings on M is strictly concave. This means that a limited percentage of free area
has to be present to exploit most of the optimization potential. For more numbers, refer
to [Mül05].

Figure 4 shows unoptimized power values plotted against their optimized correspondents
for thousands of instances with varying sets of κ and constant N = 16 and M = 20.
The power savings aren’t spread out very widely but instead occur at almost the same per-
centage for given unoptimized power usage, regardless of the variety of toggle rates. In
Figure 5 we plotted the standard deviation of the κ against the resulting power savings,
showing that one can expect specific power savings within a certain range for given stan-
dard deviation of the toggle rates. Overall, the power savings are not only quite significant
but also appear to be highly predictable and show great potential in wire spacing.
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4 Summary and Concluding Remarks

In this paper we formulated the wire spacing problem for low power as a geometric pro-
gram. We assumed a set of parallel wires on equidistant tracks and approximated their
wire-to-wire capacitances with the plate capacitor formula. A geometric programming
solver was used to find the new individual distances between the wires. Even with very
little extra routing space we can claim that the optimization potential for the capacitive
power lies well in the two digit percent zone. A future work could address timing and
crosstalk problems with the same wire spacing technique if the meaning of κ in (1) is
changed.
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