
Multiple Criteria Project Selection  
Based on Contradictory Sorting Rules 

 
 

Alexey B.Petrovsky 
 
 

Institute for System Analysis  
Russian Academy of Sciences  
Prospect 60 Let Octyabrya 9 

Moscow 117312, Russia 
pab@isa.ru 

 
 

Abstract:  This paper considers the techniques for selecting a collection of 
projects which are estimated by several experts with many qualitative criteria and 
sorted beforehand into some classes by diverse individual sorting rules. These 
tools are based on the theory of multiset metric spaces and allow to generate 
classes of such objects and define a general classification rule which approximates 
the set of contradictory sorting rules.  

 
 

1  Introduction 
 
There are practical tasks where plurality and redundancy of data that characterize objects, 
alternatives, situations, and their properties are peculiar. Let X={A1,...,Ak} be a collection 
of k  projects submitted for the program. Suppose that these projects are evaluated 
beforehand by n experts by m qualitative criteria Q1,Q2,...,Qm and sorted into some classes 
X1,...,Xf. For instance, the questionnaire for the project estimation includes the following 
criteria: Q1 “The project contribution to the program goals”, Q2 “Long -range value of the 
project”, Q 3 “Novelty in the approach to solve the task”, Q4 “Qualification level for the 
team”, Q 5 “ Resources available for the project realization”, Q6 “Character of the project 
results” [ La89].  
 
Each criterion has a nominative or ordered scale of verbal estimates. The scale of the 
criterion Q4 “Qualification level for the team” can look like this:  

q4
1 – the team is one of the best by the experience and qualification level;  

q4
2 – the team has the experience and qualification level sufficient for the project 

realization; 
q4

3 – the team has the experience and qualification level insufficient for the project 
realization; 
q4

4 – an experience and qualification level of the team are unknown. 
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Several experts evaluate each project with all criteria Q1,...,Qm and make one of the 
following recommendations:  

r1 – to approve the project;  
r2 – to reject the project;  
r3 – to consider the project later after improving.  

Obviously, one and the same project can be differently evaluated by different experts. 
The expert recommendations for the project approval may also coincide or not. 
 
The project description consists of several groups of attributes G={Q1,...,Qm,R}. Each 

group Qs={ se
sq} (s=1,…,m; es=1,…,hs) is the attribute family that expresses the project 

properties. The group of attributes R={rt} is the set of expert individual sorting rules, 
which are assigned each project into the specific class Xt (t=1,…, f) and may be similar or 
discordant. Since each project is estimated by several independent experts, some of 

attributes se
sq , rt can be repeated several times. So, for the project selection it is desirable 

to construct a simple general classification rule that approximates the variety of expert 
rules and estimates.  
 
This paper describes an approach to generating the classes of such multiple criteria 
projects and defining boundaries between classes. The technique for project 
classification and construction of the general decision rule is based on representing 
projects with multisets and searching for the best decomposition of multisets in metric 
spaces. 
 
 

2  Problem of Object Classification 
 
Any classification deals with combining the initial collection of objects into several 
groups or sorting them out of the predefined categories. Information about the object 
properties can be presented with the set of attributes whose values are numerical and/or 
verbal. >From the point of formal logic, a procedure for object classification can be 
written as a sequence of the following decision rules: 

IF 〈conditions〉, THEN 〈decision〉.                 (1) 

There are direct and indirect classifications. The direct classification is an enumeration of 
objects within the class. So in this case, the term 〈conditions〉 includes the names of 
objects or the list of attribute values that describe the objects. The indirect classification 
is based on properties common for the class. And the term 〈conditions〉 expresses 
relations between different attributes and/or their values. The term 〈decision〉 signifies 
that an object belongs to a specific class.  
 
When objects are sorted by many experts, there is a family of decision rules which may 
be similar, diverse, or contradictory. Individual sorting rules are coincident or similar 
when the objects with identical or resembling values of attributes are included in the 
same class. Contradictory rules assign weakly discernible objects into diverse classes. 
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Inconsistencies of individual rules may be caused, for instance, by errors in expert 
classification of objects, incoherence between expert' estimates of objects and decision 
classes, intransitivity of expert judgements, and by other reasons. Note that knowledge 
bases of expert systems are built in the same manner. 
 
If the number of objects and attributes is rather small, then decision rules are reviewed 
and utilized relatively easily. The greater the family of decision rules, the more difficult the 
analysis of these rules. In this case the problem arises: how to generate the simple 
approximating rule(s) which would maximally coincide with the individual sorting rules. 
The final decision rule would include a minimal number of attributes and assign objects 
into the given classes with admitted accuracy. The construction of generalized decision 
rule allows also to discover divergences in the initial contradictory sorting rules and to 
correct them if necessary. 
 
The classification of multi-attribute qualitative objects has some additional peculiarities. 
Firstly, the amount, complexity and peculiarities of information necessary to specify 
qualitative objects are essentially larger and more varied then that for quantitative 
objects. Secondly, multiplicity and redundancy of factors, that express the substance of 
the considered problem, are possible. Thirdly, the multi-attribute space and indexes of 
similarity/difference between objects are to be chosen corresponding to the qualitative 
nature of object properties. And finally, in order to classify qualitative objects, a lot of 
verbal and numerical data are to be taken into consideration simultaneously and 
processed without unfounded transformations (like “averaging”, “mixing”, “weighting” 
attributes, and so on). So, the special procedures to collect and process these kinds of 
data are needed [LM97], [Pe94], [Pe97]. 
 
 

3  Multiset Model for Presentation of Multiple Criteria Projects 
 
A multiset (also called a bag ) or set with repeating elements is a very convenient 
mathematical model in order to present and analyze a collection of objects, that are 
described with many qualitative attributes and can exist in several copies with various 
values of attributes. Unlike the set, each element may occur in the multiset more than 
once [Kn69], [Ya86], [Pe94], [Pe97]. Let G={g1,g2,...,gj,...} be a crisp set, where all elements 
gj are different. A is called a multiset drawn from G if A can be presented by the set of 
pairs as A={nA(g)•g}, where nA(g) is called a counting function. This function defines the 
number of occurrences of the element g in the multiset A, and nA: G→N+. The element g is 
said to be a member of the multiset A (g∈A), and there are k  copies of g in A, if nA(g)=k>0. 
If nA(g)=0, then g∉A. The sign • denotes that nA copies of element g occur within the 
multiset A. When nA(g) is equal to χA(g)={0,1}, the multiset A becomes an ordinary set. 
The set G={gj} is said to be a generic domain for the collection of multisets X, if all 
multisets from X are composed from the elements of G. The multiset is called: an empty 
multiset ∅, if n∅(g)=0 for all g∈G; a maximum multiset U, if nU(g)=max nA(g) for all 
multisets A⊆U. The cardinality of multiset A is a total number of all elements in the 
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multiset  |A|= )(gn
Gg

A∑
∈

; and the dimensionality of multiset A is a number of different 

elements in the multiset  [A]= )(g
Gg

A∑
∈

χ .  

 
Define the following operations under multisets: 

a union of multisets         A ΥB = {g | nA∪B(g) = max (nA(g), nB(g))}; 

an intersection of multisets       A Ι B = {g | nA∩B(g) = min (nA(g), nB(g))}; 

a sum of multisets          A+B = {g | nA+B(g) = nA(g) + nB(g)}; 

a difference of multisets        A−B = {g | nA−B(g) = nA(g) − nA∩B(g)}; 

a symmetrical difference of multisets   A∆B = {g | nA∆ B(g) = |nA(g) − nB(g)|}; 

a multiplication of multiset on scalar k  k ⋅A = {g | nk⋅A(g) = knA(g), k>0, integer}; 

a product of multisets        A⋅B = {g | nA⋅B(g) = nA(g)⋅nB(g)}; 

a complement of multiset       A  = {g | )(gn A  = nU(g) − nA(g)}. 

 
The metric spaces of multisets were introduced in [Pe94]. Different metric spaces (X,d) 
can be determined for the same collection of objects by introducing various types of 
distances d(A,B). The following metrics can exist in multiset spaces: 

d0(A,B) = m(A∆ B);   d1(A,B) = m(A∆ B)/m(U);   d2(A,B) = m(A∆ B)/m(A ΥB). 

Here, m(A) is the measure of multiset A that can be determined in various ways, for 
instance, as a linear combination of counting functions m(A)=∑jwjnA(gj), wj>0. Functions 
d1(A,B) and d2(A,B) satisfy the normalization condition 0≤d(A,B)≤1. Note, that due to the 
continuity of the multiset measure, the distance d2(A,B) is undefined for A=B=∅. So, 
d2(∅,∅)=0 by the definition. 
 
In our case, the multiple criteria project Ai (i=1,…, k) can be presented as the following 
multiset Ai∈X drawn from the domain G={Q1,...,Qm,R}={gj}: 

Ai = {(ni(gj)•gj)} = {(ni( se
sq )• se

sq ), (ni(rt)•rt)}.             (2) 

Here ni(gj) is a number of attribute gj (j=1,…, h, h=h1+...+hm+f) or, in other words, a number 
of experts who have estimated the project Ai with the attribute gj. The arguments in the 
formula (2) are associated with the decision rule (1) as follows: the various combinations 

of attribute values ni( se
sq ) correspond to the term 〈conditions〉; the term 〈decision〉 

reflects that the project Ai belongs to the class Xt, that is Ai∈Xt iff ni(rt)≥∑p≠tni(rp). So the 
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problem of project selection can be considered as the problem of multiset classification in 
a metric space. 
 
In order to simplify the problem assume that the collection of projects X={A1,...,Ak} is to 
be sorted only in two classes Xa and Xb. In this case the collection X can be represented 
as the following decompositions of multisets: 
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where t
e
s

e
st III ss Ι= ; Irt=Ir Ι It; It is the subset of indexes i for Ai∈Xt with ni(rt)> ni(rp), p≠t; 

se
sI  is the subset of indexes i for Ai∈X with ni( se

sq )≠0, ni( ve
vq )=0, v≠s, ni(rt)=0; Ir is the 

subset of indexes i for Ai∈X with ni(rt)≠0, ni( se
sq )=0. 

 
The demand to sort objects into two classes is not the principle restriction. Whenever 
objects are to be classified into more than two classes, it is possible to divide the 
collection X into two groups, then into subgroups, and so on. For instance, competitive 
projects can be classified into projects approved and not approved, then the not 
approved projects can be divided into projects rejected and considered later, and so on. 
 

 
4  Approximation of Contradictory Classification Rules 
 
The main idea of approximating a large family of contradictory sorting rules with the 
compact decision algorithm or simple decision rule can be formulated as follows. The 
pairs of new multisets are generated in the metric space of multisets (X,d) for every group 
of attributes Q1,...,Qm,R. The multisets within each pair are to be spaced at the maximum 
distance, and be mostly coincident with the initial expert sorting of projects in the classes 
Xa and Xb. Combinations of attributes that define the pairs of the generated multisets 
produce the generalized decision rule.  
 
Obviously, the decomposition R={Ra,Rb} is the best partition of the project collection 
X={Ai} into the classes Xa and Xb. The distance between multisets Ra,Rb in the metric 
space (X,d) is maximum and equal to 

d(Ra,Rb) = max d(Ra,Rb) = d*.                   (4) 

In the case of the ideal classification without inconsistencies of individual sorting rules, 
the maximum distances are equal to d0

*=kn, d1
*=1/h, d2

*=1. 
 
The problem of how to approximate diverse rules for sorting a collection of multiple 
criteria projects is transformed into the problem of how to find the best binary 
decompositions Qs={Qsa,Qsb}, where multisets Qsa,Qsb are to be at the maximum distance in 
the metric space (X,d). In other words, the following m optimization problems should be 
solved: 
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d(Qsa,Qsb) → max d(Qsa,Qsb) = d(Qsa
*,Qsb

*).              (5) 

Here Qs
*={Qsa

*,Qsb
*} is the best binary decomposition of the multiset Qs. The solution of 

each optimization problem (5) can be presented as the sum of submultisets Qst
*1+Qst

*2 
(t=a,b). The boundary between submultisets Qst

*1 and Qst
*2 is determined by the so-called 

approximating attribute qs
*. Combinations of approximating attributes qs

* for various 
numbers s of attribute groups define conditions for assigning the project Ai∈X into a 
certain class Xt. 
 
Approximating attributes qs

* can be ordered according to values of distances d(Qsa
*,Qsb

*). 
Then, attributes qs

*, which occupy first places in this ranking, are to be included in the 
generalized decision rule. The nearer the distances d(Qsa

*,Qsb
*) to the maximum distance 

d*, the more accurate the approximation of individual sorting rules. The accuracy of 
sorting rules approximation can be estimated by the expression 

δs = d(Qsa*,Qsb*)/d*,                      (6) 

where the distance d* is determined by (4). Approximating attributes qs
*, which provide 

the demanded accuracy of approximation δs≥δ0, are included in the generalized decision 
rule (1) for project classification. 
 
Relations between the collection of objects X={Ai} and the set of their attributes G={gj} 
can be expressed by the matrix C=||ni(gj)||. The matrix C is often used in data analysis, 
pattern recognition and called the "object-attribute" table, information table or decision 
table. In our case, information on properties of the multi-attribute objects Ai and 
information that the object Ai belongs to a certain decision class can be presented as the 
decision table C, that has a dimension k×h, and consists of 2(m+1) boxes which 
correspond to multisets Qsa, Qsb and Ra, Rb (k  is a number of objects, h is a number of 
object attributes, m+1 is a number of attributes groups). The reduced decision table 
C’=||ni’(gj)|| has a dimension 2×h, and consists of two rows na’(gj) and nb’(gj) which 
correspond to the classes Xa and Xb.  
 
The procedure for generating the generalized decision rule can be summarized as follows. 
1. Compute the decision table C = ||ni(gj)|| of dimension k×h, that presents to the 

collection of objects X={Ai} and consists of 2(m+1) boxes. 
2. Combine the objects Ai related to the given classes Xa, Xb using the formula (3). Obtain 

the reduced decision table C’= ||ni’(gj)|| of dimension 2×h, that corresponds to the 
specified classes Xa and Xb. 

3. Solve the optimization problem (5) for every binary decomposition Qs and find the 
approximating attributes qs

* in every s-th box of the reduced matrix C'. 
4. Range the approximating attributes qs

* by the values of distances d(Qsa
*,Qsb

*). 
5. Select the attributes qs

* that provide the demanded value of approximation accuracy 
δs≥δ0. The set of corresponding attributes {qs

*} forms the generalized decision rule for 
sorting the objects. 
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The proposed method for approximation of contradictory sorting rules was tested on the 
base of expert decisions related to the State Scientific and Technological Program. The 
following general decision rules for selecting competitive projects were found: 
“The team must be one of the best or have the experience and qualification level 
sufficient for the project realization” (the estimates q4

1 or q4
2; the approximation accuracy 

δs≥0,65); 
“The project is to be very important or important for achievement of the major program 
goals, the team must be one of the best or have the experience, qualification level, and 
resources sufficient for the project realization” (the estimates q1

1 or q1
2, and q4

1 or q4
2, and 

q5
1 or q5

2; the approximation accuracy d s≥0,55). 
The last decision rule completely coincides with the rule mentioned in [La89]. 
 
 

5  Conclusions 
 
In this paper, we have suggested the tools  for classifying a collection of objects 
represented by many qualitative attributes, when a lot of copies of objects and a set of 
diverse sorting rules can exist. These tools are based on the theory of multiset metric 
spaces. The multiset approach allows to discover, present and utilize the available 
information contained in the object descriptions, to interpret the results of classification 
and their peculiarities, especially in the case of individual sorting rules and objects’ 
properties inconsistencies. Some of the techniques proposed here were applied to 
prepare and analyze decisions related to the real-life cases of science management. 
 
This work is supported partially by the Russian Foundation for Basic Research (project 
N99-01-00476). 
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