
Why do we actually need the Pi-Calculus for
Business Process Management?

Frank Puhlmann

Business Process Technology Group
Hasso-Plattner-Institute for IT Systems Engineering

at the University of Potsdam
D-14482 Potsdam, Germany

frank.puhlmann@hpi.uni-potsdam.de

Abstract. This paper discusses the applicability of a process algebra,
the π-calculus, as a formal foundation for Business Process Management
(BPM). We therefore investigate the π-calculus from a technical view-
point based on current work in this area. The paper summarizes shifting
requirements and discusses evolving theories behind BPM from the past
over state–of–the–art to the future. The concepts and theories are con-
cluded by an illustrating example highlighting why the π-calculus is a
promising foundation for future BPM.

1 Introduction

This paper discusses the applicability of a process algebra for the description of
mobile systems, the π-calculus [1], as a formal foundation for Business Process
Management (BPM). BPM refers to an integrated set of activities for designing,
enacting, managing, analyzing, optimizing, and adapting business processes. To
distinguish economical from technical aspects, we denote computerized business
processes as workflows. Still, BPM lacks a uniform formal foundation for the
technical aspects [2], that might be filled by the π-calculus.

The paper complements the work on the π-calculus as a foundation for BPM
from an economical viewpoint as investigated by Smith and Fingar [3, 4] by
focusing on technical aspects. We therefore analyze three major shifts in the
area of BPM, ranging from system description and distribution aspects up to
changing environments in which business processes are executed. After describing
these shifting requirements, we analyze how the theory of computer science can
pace up with them starting by sequential over parallel up to mobile system
theories. We argue that the arising requirements for BPM can only be fulfilled by
mobile system theory, such as the π-calculus. Mobile systems are a complete new
approach to BPM, that have not yet been investigated as a formal foundation
for BPM. We discuss concepts like Workflow Patterns [5], service orchestration
and choreography as well as correlations [6] using recent work in the area of
mobile systems and BPM [7, 8].

The paper is organized as follows. We first introduce the shifting requirements
for BPM in section 2, followed by the discussion of theories for representing them

Send

Credit

Request

Receive and

Display Answer

Timeout

Start Finish

Fig. 1. Sample workflow in Workflow net notation [9].

in section 3. The paper continues with an example in section 4 and concludes in
section 5.

2 Shifting Requirements

Today there is an emerging shift in the area of Business Process Management.
People are used to state-based Workflow Management Systems (WfMS). In
these, a workflow consists of several activities or tasks1 guided by explicit con-
trol flow that defines the state the workflow is in [9]. The workflow itself often
resembles some kind of office process that is enacted in a well defined and closed
environment like the department of an enterprise. Structural change occurs sel-
dom and can be handled in a pre-defined manner [10]. An example is given in
figure 1.

However, things are changing to more flexible, distributed workflows. These
”new” workflows still have a state and are guided by control flow constraints.
But the ”new state” is made up of events instead of documents in certain places.
These events are consumed and produced by activities that have no static con-
nections but event-connectors. Events are used as preconditions to trigger ac-
tivities and produced as an outcome. Some activities are still executed in closed
environments, but most are distributed as services over open environments like
the internet. There is no absolute control of the workflow by a single engine, or
by any engine, as activities are outsourced and fulfilled not by technical issues
but rather by legal contracts. The event-based model allows the flexible inte-
gration of activities and sub-workflows into other workflows, wherever they are
distributed, and however they are executed, as long as their interaction behavior
is matching.

These sketched shifts in BPM bring up some very interesting questions re-
garding the formal, technical representation that will be discussed in detail now.
Each subsection is concluded with a short paragraph summarizing the issues and
deriving requirements for formalisms.

1 Although sometimes used differently, we use activity and task synonymous in this
paper.

78 BUSINESS INFORMATION SYSTEMS - BIS 2006

Receive

Credit

Request

Send

Credit

Response

Fig. 2. An abstract process for interaction with the workflow shown in figure 1.

2.1 From State to Message-based Systems

Traditional, academic workflow research focuses on state-based descriptions of
workflow, e.g. Workflow nets [9]. However, as the term workflow broadens to
inter-organizational workflow between companies, state-based process descrip-
tions have come to their limitations. This is especially true within service-
oriented computing (SOC) containing orchestration and choreography as a real-
ization for intra- and inter-organizational workflow [6].

To underpin these assumption, let’s take a closer look at the example shown
in figure 1. The simple workflow consists of a task that sends a credit request
and afterwards waits for either the response or a timeout if no response has been
received within a given timeframe. In traditional workflow systems, this process
lives alone. Each task appears at the work list of some employee who finally
executes it. The first task consists of writing and sending a letter. Afterwards,
two exclusive tasks appear at the work list. If an answer is received by mail within
the given timeframe, the answer is processed, whereas otherwise the timeout task
is selected (which contains some fallback actions).

Future BPM incorporates the service-oriented computing paradigm, where
now all tasks of the example are managed by computers. But what is required
for this to take place? Of course, a corresponding process we can interact with.
Let us assume this to be an abstract process, meaning that we only know the
parts we can use for interaction, shown in figure 2.

We use clouds to denote the hidden parts of the corresponding process and
call it a service. All we know about it is the interface description (receive a
request, send response with the corresponding parameter format not shown in
the visualization), as well as the interaction behavior (first receive a request,
then send a response). To denote the interaction between our workflow and
the service as a state-based description, we need to introduce additional states
that describe incoming requests and outgoing responses. The result contains two
Workflow nets which interact by shared places, shown in figure 3.

We want to stress that the complete system consists of two different work-
flows, executed by two different engines that use shared places for synchroniza-
tion. There exists some theoretical work of how to extend the service without
violating the interface behavior [11], as well as how to use state-based systems
to formalize these kinds of workflows systems, e.g. [12, 13].

Message-based systems, in contrast, have no need for this artificial layer of
virtual places to tie together workflow interactions. In practice, all state-based

WHY DO WE ACTUALLY NEED THE PI-CALCULUS FOR BUSINESS PROCESS MANAGEMENT 79

Send

Credit

Request

Receive and

Display Answer

Timeout

Start Finish

Receive

Credit

Request

Send

Credit

Response

Requests Responses

System

Border

Fig. 3. State-based interaction between the workflows from figure 1 and 2.

P1

Send

Credit

Request

P3

Timeout

P2

Receive and

Display Answer
S1

Receive

Credit

Request

S2

Send

Credit

Response

Other space

Our space

Fig. 4. Message-based routing and interaction view of figure 3.

workflow engines rely on message exchange for synchronizing their workflows.
The requests and responses of our sample workflow are actually messages that
move around, i.e. a special kind of event. But why should we use formalisms
relying on states and implementations based partly on states and partly on
messages? What if we not only base the interaction between different workflows
on messagess, but also the routing of the workflow itself?

The idea of routing workflows based on events or messages has been adapted
from active database management systems [14]. Each task has preconditions that
have to yield true to enable the task, and postconditions that hold after the task
has been executed. An example is shown in figure 4.

All tasks are represented as circles with a short name inside (not to be con-
fused with the states, or places of Workflow nets). The pre- and postconditions
of the tasks are not shown in the figure, however the dependencies between are
denoted by lines. Each line connects a postcondition of one task with the precon-
dition of another one, where the precondition-end is marked with a filled circle.

80 BUSINESS INFORMATION SYSTEMS - BIS 2006

We can detect dependencies between P1 and S1, P2, P3 as well as S2 and P2.
The tasks S1, P2, and P3 can only be activated after P1 has been executed,
thus meaning the preconditions of S1, P2, and P3 depend on the postconditions
of P1. The task S2 has some preconditions linked to S1 that are not known to
us.

As a key result of the shift to message-based systems, we can denote intra-
as well as inter-organizational workflow in one message-based paradigm for im-
plementation and formalization.

BPM Shift I: BPM shifts from state to message-based systems as the later
supports intra- and inter-organizational workflows without a paradigm break
between formalism and practical implementation.

New Requirement I: A formalism representing the first shift of BPM should be
based on messages, or events, rather than states.

2.2 From Central Engines to Distributed Services

As BPM Shift I is the foundation for the other shifts, figure 4 already denotes
the next shift moving from central engines to distributed services. The message-
based paradigm described in the last section not only describes how tasks in
a workflow can be routed and interaction between different workflows can be
modeled but furthermore introduces a loose coupling between the tasks.

These loose coupling between different tasks allows for highly distributed
systems. Instead of having a single engine controlling every aspect of a work-
flow, this knowledge is now spread across the parts of collaborating workflows.
Distributed tasks, called services, wait for messages to arrive that trigger the
activation and produce new messages to trigger other tasks. Of course, there are
some distinctions to be made.

They start with different spaces in the environment for the distributed tasks
to live in. In figure 4, this is denoted with Our Space and Other Space. Our
space is usually something like an intranet, where we control things like access
conditions, availability, implementation issues and so on. We make some of our
services available to the outer world, acting as interaction points, without pro-
viding knowledge or access to our internal structures. Indeed, we are free to
restructure our internals as wanted. Our workflow incorporates other tasks that
are available in the other space, typically in other intranets or the internet. These
other tasks are parts of systems such as ours, and represent interaction interfaces.
However, we have only limited control over them, mostly by legal agreements.
We cannot enforce their availability, functionality, or implementation. Still, we
are free to drop them as interaction partners and bound to others. This high flex-
ibility requires the shift from closed, central engines to open, distributed services
for representing workflows.

BPM Shift II: BPM shifts from central engines to distributed systems as inte-
gration becomes a core BPM activity.

WHY DO WE ACTUALLY NEED THE PI-CALCULUS FOR BUSINESS PROCESS MANAGEMENT 81

New Requirement II: A formalism supporting the second shift of BPM should
support advanced composition and visibility of its parts.

2.3 From Closed to Open Environments

In traditional workflow theory, the execution environments are quite static and
foreseeable. We denote this kind of environment closed, as the level of external
influences is rather low. However, with shifts from traditional departments and
companies up to virtual organizations and agile, customer order-specific collabo-
rations, the execution environment is shifting, too. This new kind of environment
is called open and is represented by large intranets as well as the internet.

Closed environments are usually accessible, deterministic, quite static, and
have a limited number of possible actions. Accessibility describes the level of
knowledge we have about the execution environment regarding completeness,
accuracy, and up-to-dateness of the information. In a single company or depart-
ment we should be able to exactly capture this knowledge. If we expand the
environment to the whole internet, there is much left in the dark that could
be useful or crucial for our business, however we are simply unable to find and
incorporate it.

Executing a task in an open environment is more uncertain then in a closed
one. This is denoted as the determinism of the actions. In an open environment
they are way more possibilities to foresee and handle. However, if the environ-
ment is complex enough, as e.g. the internet, we can not enforce everything.

While closed environments are quite static, open environments tend to be
constantly changing in large parts, regardless of our actions. Interaction partners
appear, disappear, are prevented, or something else happens that we have to take
into account for our business to run.

Furthermore, the number of interaction partners that can be invoked to per-
form a certain task is rising fast as the environment opens to the world. So our
decision making process of whom we incorporate into our business is getting
more complex.

BPM Shift III: BPM shifts from closed to open environments as the application
area is extended from internal office workflows to agile collaborations in open
networks like the internet.

New Requirement III: A formalism taking the third shift into account should
support dynamic process structures that can support change.

3 Evolving Theories

This section evaluates how we can cope with the shifting requirements from
a theoretical viewpoint. The theories behind computer science have evolved in
several steps, starting from theories describing sequential over parallel up to
mobile systems. Reasons why a theoretical foundation for BPM is required are

82 BUSINESS INFORMATION SYSTEMS - BIS 2006

Start Task Decision Stop

(a) Sequential System. (b) Parallel System.

P2

P3

P5

P4

P1

P2

P3

P5

P4

P1

Evolution

(c) Mobile System.

Fig. 5. Theories for describing BPM systems.

manifold. Well known reasons include the unambiguity of formal models as well
as the possibility for analysis. A detailed discussion can be found in [2].

Sequential systems are described in the λ-calculus by Alonzo Church and
Stephen Cole Kleene as well as Turing machines from Alan Turing. Both theories
have been developed in the 1930s. The science evolved to the description of
parallel systems by the use of Petri nets, developed by Carl Adam Petri in the
1960s. Another thirty years later, at around 1990, a theory of mobile systems,
called the π-calculus, has been developed by Robin Milner, Joachim Parrow, and
David Walker. Sequential systems are based on the concept of executing one step
after the other. Parallel systems as represented by Petri nets explicitly describe
static structures for concurrently executed steps. Mobile systems are made up
of parallel components which communicate and change their structure – thereby
overcoming the limitations of static structures.

The following subsections discuss each of these theories regarding to the
shifting BPM requirements.

3.1 Sequential Systems

Sequential systems can be formally described by the λ-calculus [15] as well as
Turing machines [16]. The λ-calculus is a formal system designed to investigate
the definition of functions, which are used for sequential computing. It brought
the ideas of recursion and the precise definition of a computable function into
discussion even before the first computers have been constructed. In the view of
computer science, the λ-calculus can be seen as the smallest universal program-
ming language as any computable function can be expressed and evaluated us-
ing this formalism. A different approach, computational equal to the λ-calculus,
are Turing machines that form the foundation for imperative programming lan-
guages. Both, the λ-calculus as well as Turing machines, can be used to represent
business processes at a very low level of abstraction, already making concepts

WHY DO WE ACTUALLY NEED THE PI-CALCULUS FOR BUSINESS PROCESS MANAGEMENT 83

like parallelism a complexity overwhelm. A typical representation of a sequential
system are flow-charts, represented in figure 5(a).

BPM and Sequential Systems. Sequential systems are widely used for everyday
BPM implementations. They can be used to model messages, distribution, as well
as dynamic process structures at a very low level of abstraction. However, the low
abstraction of their respective formalisms make them complexity overwhelming
as a theoretical foundation for modeling and reasoning about business processes.

3.2 Parallel Systems

While the λ-calculus formed the foundation for many computer science related
topics like programming languages, the description of workflows required a dif-
ferent approach. In a typical workflow tasks are not only executed in sequential
order, furthermore tasks are executed in parallel by different employees to speed
up the processing. These different – then again sequential – processing paths
have to be created and joined at some points in the business process. Even fur-
ther, parallel processing tasks could depend on each other. The optimization
of business processes usually adds parallelism and dependencies as this is an
effective way to reduce the throughput time.

These kinds of parallel processes are hard to describe in terms of the λ-
calculus. To overcome the limitations of sequential systems, an approach to rep-
resent parallel systems called Petri nets [17] has been adapted for workflow rep-
resentation. Petri nets have a simple but yet powerful mathematical foundation
as well as a strong visual representation. They use the concept of an explicit
state representation for parallel systems. Each Petri net is always in a precisely
defined state denoted by the distribution of tokens over places contained in the
net. The state of the system could then be changed by firing transitions which
relocate the token distribution over the places. Petri nets have been adapted
by many systems that are used in the business process management domain to
describe business processes [18, 19]. A Petri net, as a typical representation of a
parallel system, is shown in figure 5(b).

Beside the advantages of Petri nets for the business process management
domain, that include strong visualization capabilities, mathematical foundations,
as well as their main purpose, the description of parallel systems, Petri nets
also have some drawbacks. The main drawbacks are the static structure of the
nets (that do not support dynamic process structures) as well as the missing
capabilities for advanced composition as for instance recursion. Of course, Petri
have been extended with support for dynamic structure, like self modifying Petri
nets [20], recursion [21], and objects [22]. However, these enhancements also
complicate the theory of the nets and thus have reached restricted usage only.
A broad research on the capabilities of Petri nets regarding common patterns
of behavior found in business processes showed that they fulfill basic tasks like
splitting and merging process paths easily, while they fail at advanced patterns
like multiple instances of a task with dynamic boundaries [5]. Whereas there exist

84 BUSINESS INFORMATION SYSTEMS - BIS 2006

approaches to overcome some or all of the limitations regarding the behavior [9,
23], the static structure and limited composition of Petri nets remains.

BPM and Parallel Systems. Parallel systems, i.e. Petri nets, are quite common in
modeling workflows at a rather high abstraction level. They allow a formalized
reasoning on things like deadlocks, livelocks, or optimization issues. However,
they fail to deliver a robust foundation even for common workflow patterns [23],
as well as supporting dynamic process structures. Distribution and messages
required for BPM systems are partly possible, but add more complexity without
directly supporting the underlaying concepts.

3.3 Mobile Systems

To overcome the limitations of Petri nets, which are not only concerning the
BPM domain, theories of mobile systems have been developed. Thereby a mobile
system is made up of entities that move in a certain space. The space consists
of processes, and the entities that move are either links between the processes
(link passing mobility) or the processes themselves (process passing mobility).

A theory for mobile systems, the π-calculus, overcomes the limitations of
Petri nets regarding the static structure and limited composition capabilities at
the cost of a more complex representation. The π-calculus represents mobility by
directly expressing movements of links in an abstract space of linked processes
(i.e. link passing mobility). Practical examples are hypertext links that can be
created, passed around, and disappear. The π-calculus does not, however, sup-
port another kind of mobility that represents the movement of processes. An
example is code that is sent across a network and executed at its destination.

The π-calculus uses the concept of names with a certain scope for interaction
between different parallel processes. Names are a collective term for concepts like
channels, links, pointers, and so on. As the mobile system evolves, names are
communicated between processes and extrude or intrude their scope regarding
to certain processes. As the synchronization between processes is based on in-
teraction and received names are also used as communication channels, the link
structure is changed dynamically all the time the mobile system evolves. An ex-
ample is shown in figure 5(c). The processes are denoted as circles, whereas the
links between are lines. A dot at a line end represents a process that is receiving
messages on this link, the scope (visibility) of a link is denoted with a dotted
circle. As the link structure of mobile systems changes all the time the processes
evolve, we can only draw snapshots of the current system configuration. This is
denoted with the Evolution arrow in the figure.

BPM and Mobile Systems. Mobile Systems, i.e. the π-calculus, are recently dis-
cussed as foundations for BPM, see e.g. [3, 4, 24]. Standards like WS-CDL [25] or
BPML [26] claim to be based on the π-calculus. Recent research has shown that
the π-calculus is indeed able to easily implement all of the documented work-
flow patterns [7] as well as represent powerful service choreographies [8]. The
π-calculus allows the direct representation of message-based systems, with the

WHY DO WE ACTUALLY NEED THE PI-CALCULUS FOR BUSINESS PROCESS MANAGEMENT 85

Credit
Request

Calculate
Part Sum

Select
Model

Manual
Handling

Display
Offer

Manual
Handling

Wholesaler Marketplace

Credit Broker Service Bank

C
o

m
p

u
te

r
S

h
o

p

Customized

Standard

Receive
Request

Fig. 6. A Workflow/Collaboration view in BPMN notation [27].

ability of distributing its components. Link mobility supports dynamic, evolving
process structures within the core grammar of the calculus. It is already used to
describe service correlations in WS-CDL, formally described in [8]. Together with
a message-based representation, link mobility can also be used to dynamically
include new behavioral as well as interaction patterns in running workflows.

4 Example

This section investigates the shifting requirements for BPM based on a practical
example and discusses the pros and cons of different formalizations.

Figure 6 shows an internal workflow of a computer shop as well as its inter-
action with the (digital) environment. We use the Business Process Modeling
Notation (BPMN), as it is the only standard notation supporting orchestration
as well as choreography [27].

The computer shop offers the advantage of financing a computer purchase
with the lowest possible interest for a certain customer as well as calculating
realtime prices for the components. For the first advantage, the shop incorpo-
rates an external credit broker service. The services mediates loans up to e5000
based on the personal data of the customer. After finding the lowest customer
specific interest, the offering bank is informed to send a binding credit offer to
the computer shop. The second advantage is given by incorporating a wholesaler
marketplace that searches for the lowest available component prices.

The example in figure 6 contains the internal workflow for processing a re-
quest from a customer. This results in an offer containing a loan offer with the
specific conditions. As the credit processing takes some time and is independent
of a specific sum up to e5000, it is the first task in the internal workflow. Tech-
nically, it is an asynchronous service invocation, containing a correlation to the
workflow instance for the callback action of the bank. Afterwards, the customer
request is further evaluated. If the customer selects a standard, pre-configured
computer, the price is taken from an internal database. If the computer should
be customized, the wholesaler marketplace is searched for the lowest available

86 BUSINESS INFORMATION SYSTEMS - BIS 2006

prices. Technically, this is implemented by a synchronous service invocation. If
this task did not finish within a given timeframe, the offer has to be handled
manually. Afterward the workflow consists of a deferred choice pattern, modeled
using an event-based BPMN gateway. If a response from a bank is received, the
offer is displayed. Otherwise a manual handling is required.

The interesting questions in this example, from a theoretical as well as prac-
tical viewpoint, are then: How can we represent the internal workflow matching
to the choreography? How do we ensure that the selected bank can call back
exactly our instance of the workflow, while there are many banks for the credit
broker service to choose from? Further problems, that are not discussed here, are
later on for example: How do we interact with a bank maybe not known before?
How can we incorporate the interaction pattern dynamically in our workflow
(e.g. requesting a security, further information, etc.)?

For having a precise understanding of the processes described, the graphical
notation, as well as possible assumptions, have to be formalized. The formaliza-
tion can then be used to enact the workflow as well as allow reasoning about
properties like soundness, interaction correctness, or non-functional properties.
An extended example can for instance use a more complex interaction pattern
for the wholesaler marketplace, including callback actions if a price drops be-
low a limit, etc. Using interaction correctness criteria, it can be checked if the
internal workflow matches the interaction behavior of the marketplace.

Sequential Systems. A formalization in sequential systems is very difficult. We
have different interaction partners as well as complex workflow patterns. The
resulting representation, e.g. Java, would be unusable for reasoning about the
properties of the processes.

Parallel Systems. A formalization with Workflow nets is partly possible. How-
ever, advanced workflow patterns, like the intermediate timeout at a certain task
(called Event-based Rerouting [8]), are difficult to describe in Workflow nets. So-
phisticated aspects like the correlation of the credit broker request with a certain
instance of the workflow are even harder, resulting in very complex nets. Tak-
ing into account that we have a large set of banks, wholesalers, etc. with static
connections to our workflow makes distribution quite difficult. Adapting new in-
teraction behavior for a certain bank into our workflow requires the definition of
new nets. Thus, the static structure of the nets make distribution and adaption
to a changing environment quite difficult.

Mobile Systems. Mobile systems are the most promising approach of formaliz-
ing processes based on the shifting requirements. They support message-based
interaction that directly complies with the distributed nature of the example,
as well as the dynamic integration of initially unknown participants, like the
banks. They easily describe correlations in a formal manner, and are open for
the integration of new processes, as they are not linked statically. Various types
of reasoning have been developed for the π-calculus. For instance, weak open

WHY DO WE ACTUALLY NEED THE PI-CALCULUS FOR BUSINESS PROCESS MANAGEMENT 87

bisimulation [28] allows for matching the interaction behavior of a process with
another one. A complete formalization of the example can be found in [8].

5 Conclusion

This paper investigated why traditional formalisms for workflow, like Workflow
nets, are not well suited for future BPM, as they do not match the shifting
requirements of message-based, distributed, and dynamically adapting processes.

Recent results [7, 8] have shown that the π-calculus is well suited for modeling
classical workflows, nowadays known as service orchestrations, as well as service
choreographies that together form a core foundation of future BPM based on the
shifting requirements. While recent standards like BPEL4WS [29], BPMN [27],
or WS-CDL [25] tackle the problem from a practical side, a formal foundation
for BPM is still missing. This paper revealed the strengths of mobile systems,
i.e. the π-calculus, as a formal foundation for BPM.

Acknowledgments. The author would like to thank the members of the business
process technology group at the Hasso-Plattner-Institute for their interesting
discussions and challenging questions regarding the π-calculus and BPM.

References

1. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, Part I/II.
Information and Computation 100 (1992) 1–77

2. van der Aalst, W.M.P., ter Hofstede, A.H., Weske, M.: Business Process Manage-
ment: A Survey. In van der Aalst, W.M.P., ter Hofstede, A.H., Weske, M., eds.:
Proceedings of the 1st International Conference on Business Process Management,
volume 2678 of LNCS, Berlin, Springer-Verlag (2003) 1–12

3. Smith, H., Fingar, P.: Business Process Management – The Third Wave. Meghan-
Kiffer Press, Tampa (2002)

4. Smith, H., Fingar, P.: Workflow is just a pi process. BPTrends (2004) http:

//www.bpmi.org/downloads/LIB-2004-01-4.pdf (September 23, 2005).
5. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.: Work-

flow patterns. Distributed and Parallel Databases 14(1) (2003) 5–51
6. Havey, M.: Essential Business Process Modeling. O’Reilly, Cambridge (2005)
7. Puhlmann, F., Weske, M.: Using the pi-calculus for formalizing workflow patterns.

In van der Aalst, W., Benatallah, B., Casati, F., eds.: Proceedings of the 3rd
International Conference on Business Process Management, volume 3649 of LNCS,
Berlin, Springer-Verlag (2005) 153–168

8. Overdick, H., Puhlmann, F., Weske, M.: Towards a formal model for agile service
discovery and integration. In: International Workshop on Dynamic Web Processes,
associated with the 3rd International Conference on Service Oriented Computing,
Amsterdam, The Netherlands (2005)

. van der Aalst, W., van Hee, K.: Workflow Management. MIT Press (2002)
10. van der Aalst, W.M.P.: Exterminating the Dynamic Change Bug: A Concrete

Approach to Support Workflow Change. Information System Frontiers 3(3) (2001)
297–317

88 BUSINESS INFORMATION SYSTEMS - BIS 2006

11. Aalst, W.v.d., Basten, T.: Inheritance of Workflows: An approach to tackling prob-
lems related to change. Computing science reports 99/06, Eindhoven University
of Technology, Eindhoven (1999)

12. van der Aalst, W.M.P., Weske, M.: The P2P approach to Interorganizational Work-
flow. In Dittrich, K., Geppert, A., Norrie, M., eds.: Proceedings of the 13th Inter-
national Conference on Advanced Information Systems Engineering (CAiSE’01),
volume 2068 of LNCS, Berlin, Springer-Verlag (2001) 140–156

13. Martens, A.: Analyzing web service based business processes. In Cerioli, M., ed.:
Proceedings of Intl. Conference on Fundamental Approaches to Software Engi-
neering (FASE’05), Part of the 2005 European Joint Conferences on Theory and
Practice of Software (ETAPS’05). Volume 3442 of Lecture Notes in Computer
Science., Springer-Verlag (2005)

14. Dayal, U., Hsu, M., Ladin, R.: Organizing long-running activities with triggers and
transactions. In: Proceedings of the 1990 ACM SIGMOD international conference
on Management of data, New York, ACM Press (1990) 204–214

15. Barendregt, H.P.: The Lambda Calculus. Elsevier, Amsterdam (1985)
16. Turing, A.M.: On computable numbers, with an application to the entschei-

dungsproblem. Proceedings of the London Mathematical Society 2(42) (1936)
230–265

17. Petri, C.A.: Kommunikation mit Automaten. PhD thesis, Institut für Instru-
mentelle Mathematik, Bonn (1962)

18. Emmerich, W., Gruhn, V.: Funsoft nets: a petri-net based software process mod-
eling language. In: IWSSD ’91: Proceedings of the 6th international workshop
on Software specification and design, Los Alamitos, CA, USA, IEEE Computer
Society Press (1991) 175–184

19. van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management.
The Journal of Circuits, Systems and Computers 8(1) (1998) 21–66

20. Valk, R.: Self-Modifying Nets, a Natural Extension of Petri Nets. In Ausiello, G.,
Böhm, C., eds.: Automate, Languages, and Programming, volume 62 of LNCS,
Berlin, Springer-Verlag (1978) 464–476

21. Haddad, S., Poitrenaud, D.: Theoretical aspects of recursive petri nets. In Do-
natelli, S., Kleijn, J., eds.: ICATPN’99, volume 1639 of LNCS, Berlin, Springer-
Verlag (1999) 228–247

22. Moldt, D., Valk, R.: Object oriented petri nets in business process modeling. In
van der Aalst et al., W., ed.: Business Process Management, volume 1806 of LNCS,
Berlin, Springer-Verlag (2000) 254–273

23. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow Lan-
guage (Revised version. Technical Report FIT-TR-2003-04, Queensland University
of Technology, Brisbane (2003)

24. van der Aalst, W.M.P.: Pi calculus versus petri nets: Let us eat ”hum-
ble pie” rather than further inflate the ”pi hype”. BPTrends (2005)
http://www.bptrends.com/publicationfiles/05%2D05%20Pi%20Calc%20vs%

20Petri%20Nets%20%2D%20Aalst%2Epdf (September 23, 2005).
25. W3C.org: Web Service Choreography Description Language. 1.0 edn. (2004)
26. BPMI.org: Business Process Modeling Language. Technical report (2002)
27. BPMI.org: Business Process odeling Notation. 1.0 edn. (2004)
28. Sangiorgi, D.: A theory of bisimulation for the pi-calculus. In: CONCUR ’93:

Proceedings of the 4th International Conference on Concurrency Theory, Berlin,
Springer-Verlag (1993) 127–142

29. BEA Systems, IBM, Microsoft, SAP, Siebel Systems: Business Process Execution
Language for Web Services Version 1.1. (2003)

WHY DO WE ACTUALLY NEED THE PI-CALCULUS FOR BUSINESS PROCESS MANAGEMENT 89

