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Abstract: This paper investigates the direct position determination (DPD) problem
from passive measurements made with a moving antenna array in the case of a time-
varying number of emitting sources. We derive the Cramér-Rao Bound (CRB) for the
estimation problem and find an approximation that is applicable for a large number
of observations. We use two DPD approaches to solve the estimation problem based
on the Capon method and on the deterministic Maximum Likelihood (ML) estimator
using a low- and high-dimensional optimization, respectively. The ML-DPD approach
offers a superior performance compared to the Capon-DPD approach, but leads to a
high-dimensional optimization. We use the Alternating Projection technique to solve
the high-dimensional optimization by a sequence of low-dimensional optimizations.
We propose an iterative approach that combines the source location and the determi-
nation of the total number of sources (referred as detection). We use a sequence of
statistical tests to decide that the choice of the source number is correct. We present
simulation results that demonstrate the performance of the method.

1 Introduction

Location of multiple narrowband sources using passive antenna arrays is a fundamental

task encountered in various fields like wireless communication, radar, and sonar. We con-

sider a scenario with a single moving observer equipped with an antenna array. At N
different points in space the sensor receives signals of Q fixed sources and collects batches

of antenna outputs. The scenario is assumed to be stationary during one batch and non-

stationary from batch to batch.

According to the traditional approach to solving the location problem, first of all, the

Directions of Arrival (DOAs) of all sources are estimated with a direction-finding (DF)

estimator like the Capon method [Cap69] or the subspace-based Multiple Signal Classifi-

cation (MUSIC) method [Sch86]. Typically, DF systems report measurements of different

origin, e.g. true targets and clutter (false alarms). Then a bearing data association step

follows to partition the DOAs into sets of DOAs belonging to the same source. Multiple

Hypotheses Tracking (MHT) is generally accepted as the preferred method for solving the

data association problem [Bla04]. In the last step, the DOAs for each source are used to

estimate its position with the help of a suitable bearings-only tracking algorithm [Bec01].

Recently, some direct position determination (DPD) methods based on the antenna out-



puts have been proposed without computing intermediate parameters like DOAs. The

basic idea for a subspace-based DPD approach goes back to the pioneering work of Wax

and Kailath [WK85a]. They noted that in this way the data association step is avoided.

Moreover, this kind of approach was used for a multiarray network in order to estimate

the positions of multiple sources without explicitly computing DOAs and Times of Arrival

(TOAs) [WA06]. ML methods can be found e.g. in [Wei04, AW07], but they are more

computationally demanding in the case of multiple sources. The DPD approach can be

adapted to estimate DOAs and DOA rates [WE95].

In our previous work, we proposed a subspace-based DPD approach (referred to as Sub-

space Data Fusion (SDF)) for a single moving array [DOR08]. Moreover, we have shown

that the DPD approach can be extended to estimate the target states (e.g. positions, veloc-

ities) [OD08] and to the multisensor case to avoid the track-to-track association problem

[Ois09a]. Furthermore, we adapt the DPD approach to solve the bearing data association

problem in the presence of clutter by using a fictitious array [ODW08]. In all these DPD

approaches, the parameters of interest are obtained by minimizing a single cost function

into which all array batches enter jointly (Fig. 1). Moreover, the estimation accuracy of the

source position is much better than the traditional location approach in situations where the

variance of DOA estimates deviates from the corresponding Cramér-Rao Bound (CRB).

In [Ois09b], we investigated the case where the number of emitting sources is time-

varying. Farina et al. derived the CRB for the general case that the probability of detection

is smaller than unity [FRT02]. We extended the results to the case of multiple sources

with intermittent emission and adapted them to derive the CRB for the direct state deter-

mination problem. We used a SDF approach based on the MUSIC method [Sch86] and

proposed an extension by using the Subspace Fitting (SSF) method described in [VO91].

We have shown that the state estimation accuracy of the SSF-SDF approach is much better

compared to the MUSIC-SDF approach in situations of a time-varying number of emitting

sources.

In this paper, we present two DPD approaches based on the Capon method [Cap69] and

the deterministic Maximum Likelihood (ML) estimator. These approaches use the full

data covariance matrices instead of the corresponding subspaces. The ML-DPD approach

offers a superior performance in comparison to the Capon-DPD approach, but leads to

a high-dimensional optimization. We use the Alternating Projection (AP) technique to

solve the high-dimensional optimization by a sequence of low-dimensional optimizations
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Figure 1: Basic steps of the DPD approach



[ZW88] and we find similar results for the ML-DPD approach and the AP-DPD approach.

The DPD approaches require knowledge of the total number of sources, but in practice this

number is unknown. We propose an iterative solution that combines the source location

and the determination of the total number of sources (in the field of array signal processing

referred to as detection). We use a sequence of statistical tests to decide that the choice

of the source number is correct. The basis of the tests is the fact that the optima of the

ML-DPD cost function are χ2-distributed. We present simulation results that demonstrate

the performance of the method.

This paper is organized as follows: Section 2 introduces the concept of emitting/non-

emitting sequences, Section 2.1 presents the data model, and Section 2.2 formulates the

estimation problem. In Section 2.3 we derive the CRB for the described DPD problem

and find an approximation which is applicable for practical purposes. In Section 3.1 and

Section 3.2, we outline the considered Capon-DPD approach and ML-DPD approach, in

Section 3.3 we compare both approaches in simulations, and in Section 3.4 we present

the AP technique to solve the high-dimensional optimization with a lower computational

complexity. In Section 4 we propose a combined detection and location approach. The

conclusions are given in Section 5.

The following notations are used throughout this paper: (·)T and (·)H denote transpose

and Hermitian transpose, respectively; In and 0n denote the n × n-dimensional identity

and zero matrix, respectively; and E {·} denotes the expectation operation.

2 Estimation Problem

For N observations, 2N possible emitting/non-emitting sequences per source can be formed

(Fig. 2). The κ-th possible sequence reads Sq,κ : (b1,q)κ, ..., (bN,q)κ, κ = 1, ..., 2N , where

bn,q is a binary variable that corresponds to the case where the q-th source, q = 1, ..., Q,

is emitting or non-emitting at time tn, n = 1, ..., N . For a given emitting probability
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Figure 2: List of all possible emitted sequences



Pe,q, which is constant over the number of observations, the probability of occurrence of

a particular emitting/non-emitting sequence is given by

P (Sq,κ) = P△κ
e,q (1 − Pe,q)

△̄κ , (1)

where △κ and △̄κ = N − △κ are the number of observations where the q-th source

does emit or does not emit, respectively. For Q sources, 2NQ collections of independent

emitting/non-emitting sequences called events are possible. The probability of occurrence

of a particular event Eℓ : (κ1)ℓ, ..., (κQ)ℓ, ℓ = 1, ..., 2NQ, is given by

P (Eℓ) =

Q
∏

q=1

P (Sq,(κq)ℓ
) . (2)

To illustrate with a simple example the nature of Eq. 1 and Eq. 2, we consider just four

observations of a single target. The emitting/non-emitting sequence (1, 1, 0, 1) has proba-

bility of occurrence P 3
e,1 (1 − Pe,1). For a second target with the sequence (1, 1, 1, 1), the

corresponding event has probability of occurrence P 3
e,1 (1−Pe,1)P 4

e,2. Similar expressions

can be written for the remaining events.

2.1 Data Model

We consider an antenna array composed of M elements mounted on a moving platform

and Q fixed sources located at xq = (xq, yq, zq)
T in the far field of the antenna array.

The sources are assumed to radiate narrowband signals (i.e. the source bandwidth is much

smaller than the reciprocal of the time delay across the array) with wavelengths centered

around a common wavelength λ. The sensor moves along an arbitrary but known trajectory

(Fig. 3). During the movement of the array, N batches of data are collected at the positions

rn, n = 1, ..., N . For the sake of simplicity, we assume that the antenna attitude does not

change with time, i.e. the orientation of the sensor-fixed coordinate system is fixed during

the batches. The distance between the q-th source and the observer at the n-th time slot,

△rn,q , is given by the length of the relative vector

△rn(xq) = rn − xq . (3)

Let sn,k,q denote the complex envelope of the k-th sample, k = 1, ...,K, of the q-th

source signal measured at time tn if this source emits, i.e. bn,q = 1, and let zn,k ∈ C
M×1

denote the complex envelopes formed from the signals received by the array elements.

This received vector can be expressed as

zn,k =

Q
∑

q=1

an(xq) bn,q sn,k,q + wn,k , (4)

where wn,k ∈ C
M×1 is the complex envelope of the noise. Let the array be sampled

sequentially at K different mutually exclusive time slots, and assume that the array transfer
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Figure 3: Geometry for the scenario of multiple inertially moving sources and a single moving sensor

vectors can be considered quasistatic in each slot, i.e. the sensor’s displacement during

each time slot is negligible. The array transfer vector expresses its complex response at

time tn to a planar wavefront arriving from the direction of the relative position △rn(xq)
(Eq. 3). External and blind array calibration techniques are well-known, e.g. the calibration

of an airborne antenna array is described in [MSHK07]. We assume that the antenna array

is perfectly calibrated for which the array transfer vector is a known function of the source

positions:

an(xq) =
(

e j k
T
n (xq)d1 , ..., e j k

T
n (xq)dM

)T

(5)

The array transfer vector depends on the position dm of the m-th antenna element, m =
1, ...,M , relative to the position rn, and the wavenumber vector

kn(xq) =
2π

λ

△rn(xq)

△rn,q

. (6)

Eq. 4 can be written more compactly as

zn,k = An(ρx,n) šn,k + wn,k , (7)

where An(ρx,n) = [an(x1) · · · an(xQn
)] ∈ C

M×Qn is the array transfer matrix, and

ρx,n = (xT
1 , ...,xT

Qn
)T ∈ R

3Qn×1

šn,k = (sn,k,1, ..., sn,k,Qn
)T ∈ C

Qn×1

denote subsets from the complete parameter vectors

ρx = (xT
1 , ...,xT

Q)T ∈ R
3Q×1



sn,k = (sn,k,1, ..., sn,k,Q)T ∈ C
Q×1 (8)

w.r.t. the effective number of emitting sources Qn =
∑Q

q=1 bn,q at the n-th batch.

Now, we introduce the compact data model

zk = A(ρx) šk + wk (9)

by stacking the vectors on top and using a block-diagonal matrix:

zk = (zT
1,k, ..., zT

N,k)T ∈ C
MN×1 ,

A(ρx) = diag[A1(ρx,1) · · ·AN (ρx,N )] ∈ C
MN×

P
n
Qn ,

šk = (šT
1,k, ..., šT

N,k)T ∈ C

P
n
Qn×1 ,

wk = (wT
1,k, ...,wT

N,k)T ∈ C
MN×1 .

2.2 Problem Formulation

The received data batches depend on the array transfer vectors, which depend on the

relative vectors, which themselves depend on the desired source positions. Now, the

problem is stated as follows: Estimate all source positions ρx from all received signals

Zn = [zn,1, ..., zn,K ] ∈ C
M×K , n = 1, ..., N . To solve the DPD problem, the following

assumptions are made:

A1. The noise vectors wk, k = 1, ...,K, (Eq. 9) are zero-mean complex Gaussian. They

are temporally and spatially uncorrelated with the covariance

E
{

wk w
H
k′

}

= σ2
w IMN δk,k′ ,

E
{

wk w
T
k′

}

= 0MN , (10)

where δk,k′ denotes the Kronecker delta.

A2. The signal vectors šn,k, n = 1, ..., N , k = 1, ...,K, (Eq. 7) are fixed and need to be

estimated (deterministic data model). This does not exclude the possibility that the

signals are sampled from a random process.

A3. The effective number of sources per batch Qn, n = 1, ..., N , is time-varying but

known. In the past, several methods have been proposed to determine the source

number, e.g. in [WK85b]. In Section 3, we assume that the total number of sources

Q is known, and in Section 4, Q is unknown.

2.3 Cramér-Rao Bound

For judging an estimation problem, it is important to know the maximum estimation ac-

curacy that can be attained with all given measurements Z. It is well known that the CRB



provides a lower bound on the estimation accuracy for any unbiased estimator ρ̂(Z) and

its parameter dependencies reveal characteristic features of the estimation problem. Given

a particular event Eℓ, the target parameters are comprised in the vector

ρ =
(

¯̌s
T
1 , ˜̌s

T

1 , ..., ¯̌s
T
K , ˜̌s

T

K ,ρT
x

)T

∈ R
2K
P

n
Qn+3Q×1 , (11)

where overbar and overtilde are the real and imaginary part of the source signals. Then,

the conditional CRB is related to the covariance matrix C of the estimation error △ρ =
ρ − ρ̂(Z) as

C = E
{

△ρ△ρ
T |Eℓ

}

≥ CRB(ρ|Eℓ) , (12)

where the inequality means that the matrix difference is positive semidefinite. If the esti-

mator attains the CRB then it is called efficient. The CRB is given by the inverse Fisher

Information Matrix (FIM)

J(ρ|Eℓ) = E

{

(

∂L(Z;ρ)

∂ρ

)(

∂L(Z;ρ)

∂ρ

)T
∣

∣

∣

∣

∣

Eℓ

}

, (13)

where

L(Z;ρ) = −KMN ln(πσ2
w) −

1

σ2
w

K
∑

k=1

|zk − A(ρx) šk|
2

, (14)

is the log-likelihood function and the parameters refers to the event Eℓ. In this log-

likelihood function zk, k = 1, ...,K, are random variables due to the random variables

wk, k = 1, ...,K, and the expectation operation in Eq. 13 is w.r.t. these random variables.

Performing all calculations analog to [Ois09b, SN89, YB92], we obtain the deterministic

CRB for all source positions after some algebra (Assumption A1):

CRB(ρx|Eℓ) =
σ2

w

2

[

K
∑

k=1

Re
{

S
H
k D

H
P

⊥

A DSk

}

]−1

(15)

with

Sk = I3Q ⊗ šk ∈ C
3Q
P

n
Qn×3Q ,

D =

[

∂A

∂x1
,
∂A

∂y1
,
∂A

∂z1
, · · · ,

∂A

∂xQ

,
∂A

∂yQ

,
∂A

∂zQ

]

∈ C
MN×3Q

P
n
Qn ,

P
⊥

A = IMN − A (AH
A)−1

A
H ∈ C

MN×MN ,

where ⊗ denotes the Kronecker product.



The bound in Eq. 15 is conditioned on the particular event Eℓ. The unconditional CRB is

obtained by taking expectation and using Eq. 2

CRB(ρx) =

2NQ

∑

ℓ=1

P (Eℓ)CRB(ρx|Eℓ) . (16)

Observe that although the number of possible events grows exponentially with the number

of batches N and sources Q, the probabilities of the vast majority of events (Eq. 2) are

negligible.

The cumulative distribution function (cdf) φq of the number of batches △̄ = 0, ..., N with

the non-emitting q-th source is given by [FRT02, Eq. 23]

φq(△̄) =

△̄
∑

δ̄=0

(

N

δ̄

)

PN−δ̄
e,q (1 − Pe,q)

δ̄ . (17)

By definition, φq(N) = 1. Above a certain threshold value △̄thr,q, all events correspond-

ing to this sequences can be safely ignored in the calculation of the CRB in Eq. 16 for all

practical purposes. The threshold value △̄thr,q can be determined by progressively com-

puting Eq. 17 for △̄ = 0, 1, 2, ... until its value is greater than some cdf threshold φthr,

which should be chosen to be marginally less than 1, e.g. φthr = 0.99, i.e. [FRT02, Eq. 24]

△̄thr,q = min{△̄ , s.t. φq(△̄) > φthr} . (18)

This strategy ensures that only events are considered which contribute significantly. Eq. 19

gives the number of events Lapprox to take into account in the approximate calculation of

the CRB (Eq. 16). A reduction of φthr would correspond to less computational load but

also a reduced accuracy.

Lapprox =

Q
∏

q=1

△̄thr,q
∑

δ̄=0

(

N

δ̄

)

≪ 2NQ (19)

As an example, we consider two sources (Q = 2) with the emitting probabilities Pe,1 =
0.9 and Pe,2 = 0.7, and N = 12 observations. Then, the total number of all possible

events is 2NQ = 16, 777, 216. Fig. 4 displays the cdf (Eq. 17) of the misses, namely △̄.

For the first and the second source are sequences with more than 4 or 7 misses, respectively,

very unlikely. Consequently, this sequences can be ignored and the number of sequences

is reduced 794 or 3302 for the first and second source, respectively. Finally, we take

Lapprox = 2, 621, 788 events into account to evaluate Eq. 17.

3 Direct Location

In this section, we outline the DPD approaches (Fig. 1) to solving the location problem

with the assumption that the number of sources Q is known. This approach relies on the
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same key idea as the localization approach of Wax and Kailath for decentralized array

processing [WK85a]. They mentioned that this kind of estimation offers the advantage

that the association problem inherent to the traditional method is circumvented. Further-

more, no intermediate parameters like DOAs or additional parameters like DOA variances

are necessary. Note that the proposed DPD approaches do not use knowledge about the

emitting probabilities Pe,q, because they are not sensor parameters like the probability of

detection.

The DPD approaches calculate the source positions directly in one step from the full co-

variance matrices at all sensor positions rn, n = 1, ..., N , (Fig. 1):

Rn =
1

K
Zn Z

H
n . (20)

In our previous work [Ois09b], we used similar approaches that calculate the source posi-

tions from the corresponding subspace data (referred to as SDF). We made the assumption

that R
−1
n ≈ Un U

H
n , where Un ∈ C

M×M−Qn are the eigenvectors spanning the noise

subspace of the covariance Rn.

3.1 Capon Approach

This DPD approach uses a Capon-type cost function [Cap69], which minimizes the sum of

all projections of the array transfer vectors at the sensor positions onto the corresponding

noise subspaces. The source positions are calculated directly in one step by fusing the

covariances of all batches of all sensors:

fCapon-DPD(x) =

N
∑

n=1

a
H
n (x)R−1

n an(x) , (21)



where the array transfer vector (Eq. 5) is parameterized by the source position x. The cost

function shows minima for a proper choice of x, if the covariance matrix of each batch is

consistent with to the corresponding array transfer vector.

3.2 Maximum Likelihood Approach

This DPD approach is based on the same sequence of covariance matrices. Since the

source signals šk, k = 1, ...,K, need to be estimated, we fix ρx,n and minimize Eq. 14

w.r.t. the signals. Substituting the well-known result back into Eq. 14, we obtain the

cost function of the deterministic ML estimator, which obtains the array transfer matrix

An(ρx) to the measurements in a least squares sense by minimizing

fML-DPD(ρx) =
2K

σ2
w

N
∑

n=1

tr
{

P
⊥

An(ρ
x
) Rn

}

, (22)

where tr{·} denotes the trace operation and

P
⊥

X = IM − X (XH
X)−1

X
H (23)

is a M ×M -dimensional projection matrix that projects onto the column space of X. This

leads to a single search in 3Q dimensions instead of Q searches in 3 dimensions for the

DPD approach (Assumption 3), but there are more degrees of freedom available for fitting.

3.3 Comparison of the DPD Approaches

As an illustration, we consider the DPD problem and a scenario in which the sensor moves

along an arc from (−0.5,−0.5, 0.5)T km to (0.5,−0.5, 0.5)T km. Two sources are located

on the ground at the positions x1 = (0,−0.5, 0)T km and x2 = (0, 0.5, 0)T km (Fig. 5,

upper left). Furthermore, we consider a 10-element uniform circular array with element

positions dm = ρ (cos mπ
5 , sin mπ

5 , 0)T and radius ρ = λ
2 (sin π

10 )−1.

With the assumption that the sensor lies always above each source (△zn,q > 0, n =
1, ..., N , q = 1, ..., Q), the considered problem has a unique solution, because the condi-

tion for unique DF of narrowband sources holds, which implies that Q < M [WZ89], and

the observability condition established in [Bec93] is satisfied.

Moreover, we assume N = 12 batches with K = 100 samples per batch. For the emitted

waveforms of each source we assume that they have constant amplitude at the sensor

positions: |sn,k,q| = s, and we define the signal-to-noise ratio of a single source and

single element: SNR = s2/σ2
w.

Fig. 5 compares the cost functions of the DPD approaches for a fixed z-coordinate, and

SNR = 0 dB. Furthermore, in the lower right plot the coordinates of the first source are

fixed. In the upper right plot, we assume an emitting probability of Pe,1 = Pe,2 = 1. The
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Capon-DPD cost function displays well-pronounced minima at the true target positions

and no further local minima. In the following cases, the emitting probability of the second

source is reduced to Pe,2 = 0.7. Then, the Capon-DPD cost function introduces significant

errors (lower left plot), while the ML-DPD cost function can account for missing signals

(lower right plot). Note that for some events the Capon-DPD cost function displays no

minimum at the location of the second source.



3.4 Alternating Projection Technique

The solution of the deterministic ML approach in Section 3.2 can be found by adapting the

Alternating Projection (AP) algorithm described in [ZW88] from the DF problem to the

direct location problem. The iterative AP technique is a simple technique for multidimen-

sional optimization. Therein, at every iteration a minimization is performed w.r.t. a single

parameter while all other parameters are held fixed. To solve the DPD problem, we held

all parameters of a single source fixed (Fig. 6). Then, the AP-DPD algorithm performs

the 3Q-dimensional optimization by optimizing a sequence of 3-dimensional cost func-

tions (Assumption 3). The q-th source position estimate at the (i + 1)-th iteration, x̂i+1
q , is

obtained by minimizing

fAP-DPD(xq) =
2K

σ2
w

N
∑

n=1

tr
{

P
⊥

[An(ρ̂i
x,¬q),an(xq)] Rn

}

(24)

where ρ̂
i
x,¬q is a 3(Q − 1) × 1-dimensional vector of the computed parameters in the i-th

iteration step, but without the parameters of the q-th source:

ρ̂
i
x,¬q = (x̂i T

1 , ..., x̂i T
q−1, x̂

i T
q+1, ..., x̂

i T
Q )T . (25)

We find the same performance for the ML-DPD and the AP-DPD approach (compare

Fig. 5 (lower right) and Fig. 6 (right)).

As the initialization is critical for the global convergence, we start by minimizing Eq. 22

for a single source: An(x0
1) = an(x0

1). Next, we solve Eq. 22 for the second source,

assuming the first source location is at x̂0
1: An(x0

2) = [an(x̂0
1),an(x0

2)]. Finally, all initial

values x̂
0
q , q = 1, ..., Q, are computed by continuing in this fashion [ZW88].

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x1 [km]→

y
1

[k
m

]
→

first source

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x2 [km]→

y
2

[k
m

]
→

second source

Figure 6: Cost functions of the AP-DPD for both sources in the case Pe,1 = 1 and Pe,2 = 0.7



4 Direct Detection and Location

In practice, the total number of sources Q is unknown, but the proposed approach in Sec-

tion 3 requires the knowledge of Q in order to choose the correct dimension of ρx. A

statistical test is necessary, to decide that the choice of Q̂ is correct. The basis of the

test proposed here is the following observation which is similar to the result in [VOK91,

Sec. IV] for the DF problem: The quantity fML-DPD(ρx) (Eq. 22) is χ2
ν-distributed with

ν = 2K
∑N

n=1(M −Qn) degrees of freedom. For many degrees of freedom (ν > 30), the

χ2
ν-distribution can be approximated by a normal distribution with mean ν and variance

2ν. We perform a sequence of tests increasing the number of sources Q̂ = Q0, ...,M
starting with some value Q0, e.g. Q0 = 1. If

fML-DPD(ρ̂x) ≤ χ2
α;ν , ρ̂x ∈ R

Q̂×1 (26)

holds, i.e. if the result of Eq. 22 is consistent with the expected χ2
ν-distribution, then

we stop, otherwise we increase the number of sources Q̂. The quantity χ2
α;ν is the α-

percentage point of the χ2
ν-distribution. The probability to overestimate the number of

sources, i.e. the probability of false alarm, will be equal to α. We keep testing until Eq. 22

fits to the expected χ2
ν-distribution. The case of an imperfect detection leads to false targets

(Q̂ > Q) or misses (Q̂ < Q). Generally false targets are preferred.

For the scenario considered in the previous sections, Monte Carlo simulations with 1000

runs have been carried out to study the performance of the proposed approach. In ap-

prox. 99% of the cases, we find the true number for all considered SNR values, but for

SNR = −10 dB, we underestimate the source number in approx. 40% of the cases due

to resolution conflicts. In Fig. 7, we compare the root mean square error (RMSE) of the
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Figure 7: Square-root of the CRB for the considered Pe,q (solid lines) and Pe,q = 1 (dashed lines)
and the RMSE for the proposed approach (dotted lines) versus SNR for x-coordinate; source 1
(blue), source 2 (red)



estimates with the approximation of the CRB (Eq. 16). The RMSE attains the CRB for a

high SNR and degrades slightly for weak sources.

5 Conclusions

We investigated the DPD problem for multiple sources with intermittent emission and

proposed direct location approaches to solving the estimation problem. We summarize the

content of the paper as follows:

1. We derived the deterministic CRB and presented a computationally convenient ap-

proximation which is applicable for practical purposes.

2. In simulations, we demonstrated the superior performance of the Capon-DPD ap-

proach compared to the ML-DPD approach.

3. We used the AP technique to solve the high-dimensional optimization by a sequence

of low-dimensional optimizations. We find similar results for the ML-DPD ap-

proach and the AP-DPD approach. Furthermore, we present an initialization strat-

egy that can be applied to the considered DPD approaches.

4. We proposed an iterative direct detection and location approach to determine the

number of targets and the corresponding target locations. We investigate the pro-

posed method in simulations.
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