
cba doi:10.18420/se2023-ws-11

Iris Groher, Thomas Vogel (Hrsg.): Software Engineering 2023 Workshops,
92 Digital Library, Gesellschaft für Informatik, 2023

A Domain-Specific Language for Requirements Engineering
in Safety-Critical Automotive Software Development

Stefan Schlichthaerle1, Philipp Wullstein-Kammler2, Florian Schanda3

Abstract: Requirements engineering is a crucial part of every software development project. Deficits
in this discipline have tremendous impact on the overall project’s success.

In this paper, we present our approach that treats requirements like source code and therefore benefits
from modern software development workflows and paradigms, to bridge the gap between requirements
engineering and large-scale agile software development. We derive the requirements for our approach
and discuss the underlying tooling as well as the corresponding impact on processes. We show
examples, including validation of requirements and the traceability towards source code.

Keywords: Requirements engineering, Agile software development, Domain-specific language

1 Introduction

Innovation in the automotive domain is more and more driven by software [Fü10, Br06]. State
of the art vehicles released in 2020 contain more than 100 million lines of code, distributed
among dozens electronic control units (ECUs), that are developed by multiple parties and are
eventually integrated into one complex technical device [Mi21]. Requirements engineering
is not a new discipline. In the automotive domain, it has been used for decades to handle
complex supplier relationships and to describe all the pieces that form a vehicle, regardless
if they are physical devices or software products [Al09]. An agile software development
process, as well as the ever increasing complexity of software, demands an evolution of the
established processes, methods, and tools.

There are three obvious ways you can write requirements and code:

• Separate: code and requirements are separate but linked artefacts.

• In code: code is the main artefact, requirements are special comments. Examples of
this include Doxygen or Sphinx.

• In requirements: the requirement is the main artefact, code is embedded in it. This is
called literate programming. [Kn86]

1 BMW Group, 80788 Munich, Germany, stefan.schlichthaerle@bmw.de
2 BMW Group, 80788 Munich, Germany, philipp.wullstein-kammler@bmw.de
3 BMW Group, 80788 Munich, Germany, florian.schanda@bmw.de

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/se2023-ws-11
mailto:stefan.schlichthaerle@bmw.de
mailto:philipp.wullstein-kammler@bmw.de
mailto:florian.schanda@bmw.de


Treat Requirements Like Code 93

At BMW, requirements engineering follows the separate pattern, with the additional caveat
that the requirements are tied to databases totally detached from the source code, as it
is common with the usual requirements engineering tools such as DOORS, codebeamer,
SystemWeaver, etc. A specific pain point of these approaches is that code and requirements
need to be kept in sync; and occasionally variants (i.e. branches) need to be created,
maintained and possibly re-integrated. All tools – that we know of – operating on a separate
detached artefact make this process painful and costly: several full-time positions are used
just to deal with this, and provide internal extensions to these tools to make them more
usable.

We decided to improve the existing process by bringing the requirements closer to the code.
Our approach is called Treat Requirements Like Code. We represent all requirements and
their metadata in a domain-specific language and place them into the source repository, so
that all development processes that apply for source code, tests, as well as architectural
models [SBS20] can be applied for the requirements as well. Note that the domain here is
requirements engineering, the language is not specific to the automotive domain at all.

This solves both pain points identified above: we no longer need to perform a manual activity
to keep or demonstrate code/requirements correspondence (they always are); and we can
use modern version control systems like git to do branching, merging, diffing and reviewing.
In addition checking requirements and their relationship to code in CI allows us to maintain
any argumentation we need as we develop, branch, and merge the code base.

In this paper, we examine this approach in a large agile software development project at BMW,
which focuses on developing the software platform for driver assistance and automated
driving. We also introduce the domain-specific language as well as the environment and
processes, that are necessary to enable this approach.

2 Requirements and Goals for Requirements Engineering

According to ASPICE SWE.1, software requirements analysis is the basis to define scope
and functionality of the software product. To properly implement it, traceability between
requirements and the corresponding source code and test artefacts has to be established
[VD17]. ISO 26262 [IS18], the norm that defines safety-related automotive software
development, defines the specification of software safety requirements as mandatory phase
of the product development at the software level and requires a mapping from technical
safety requirements towards software. Therefore a key requirement for our requirements
engineering processes and tooling is compliance with ASPICE and ISO 26262, so that the
defined approach can be clearly linked into the respective norms and process frameworks.

Agile software development is increasingly popular in all areas of software development,
including embedded software for cyber-physical systems [Sh12]. Its lean structure is focusing
on the software product itself, so that there is always a shippable product available. The



94 Stefan Schlichthaerle, Philipp Wullstein-Kammler, Florian Schanda

ability to adapt to changed circumstances, or requirements, is a fundamental aspect of agile
software development. Therefore another requirement for our requirements engineering
processes and tools is compatibility with agile software development, which means it
shall strengthen the agile approach and not contradict it for example by introducing tool
breaks or heavyweight processes, which prevent fast iteration cycles.

Fast iteration cycles are a key element of agile software development [Be01]. They enable
fast adaption to changed requirements, for example the latest findings from customer
surveys, as well as previously unknown technical challenges in the technology stack used.
To support this approach, it is important to have all artefacts of the software product,
namely requirements, source code, tests on all levels, and documentation, in a consistent,
linked representation, so that the actual change can be applied consistently to all artefacts.
Specifically, using database tools and trying to integrate them into the agile development
process, often leads to fundamental clashes and incompatibilities, resulting in asynchronous
change processes with different timelines, that prevent consistent artefacts [SBS20].

In order to strengthen the aspect of a consistent change, that can be applied to all artefacts
of the software product, a harmonised workflow aligned to changes in the source code is
another requirement for our requirements engineering processes and tools. Managing source
code in a repository and applying changes via a pull request is the de facto industry standard
for large software projects. Thus we aligned to this approach, and decided to manage
requirements with text-based domain-specific language directly in the repository, right next
to the source code that has to fulfil the requirements. Another aspect is that, in our experience,
the acceptance of software developers towards requirements engineering increases since
they can apply their existing workflows and tools to this kind of engineering work as well.

3 Related Work

In [LB15], the authors describe the usage of a domain-specific language for requirements
engineering in the context of IT development. In a concrete project, they use a DSL to
describe customer requirements as well as the resulting use cases that shall be fulfilled by the
IT system. One key benefit they identified is the fact that the DSL can be formally processed
and validated, is also accessible and understandable to non-IT users of the resulting product,
and thus fosters the overall requirements elicitation process. They also emphasise benefits
on report generation and well as artefact transformation.

The author of [Ga18] is proposing a domain-specific language for requirements engineering,
to reduce inconsistency between requirements and resulting implementation and test. The
Goal of the DSL is to address all stakeholders, so that formal specifications can also
be handled by developers not familiar with them. The paper proposes to use an existing
programming language, so that the requirements can be executed, similar to a test case. In
addition, the language is extended with linkage abilities, so that the requirement can link
into source code as well as other documents.



Treat Requirements Like Code 95

4 Treat Requirements Like Code (TRLC)

TRLC is an open4 framework that enables requirements engineering based on source files
located in a repository. The TRLC language itself, which is part of the framework, is a
simple but extensible text-based language to express requirements written in natural or
formal language, and linking to other items. In addition to linking, which is essential for
software traceability, in large organisations there are often rules on meta-data. For example
“an ASIL-D requirement must be traced to a safety goal”.

We should be clear about the scope: TRLC is a carrier format, it is not in itself a method to
write requirements. It neither encourages or discourages any approach. You could write
your requirements in a natural language; or you could write them in Z[IS02]. An example of
some formality is the TRLC LRM5 (Language Reference Manual) itself, where we intend
to validate the BNF grammar contained within, the language examples quoted, and generate
parts of its own lexer from itself. An example of some semi-formality in the automotive
domain could be generating configuration data from TRLC requirements.

The TRLC language consists has three major parts: type definitions, check definitions, and
requirements declarations. The type definitions introduce enumerations and records, which
can later be used to write requirements. There is no built-in requirement type, as one of the
design goals of TRLC is to not have any built-in business logic. You will need to make one
that is suitable for your needs. For example:

1 enum ASIL {QM A B C D}
2

3 type Requirement {
4 description String
5 }
6

7 type Safey_Requirement extends Requirement {
8 asil ASIL
9 derives_from optional Requirement

10 codebeamer_id optional Integer
11 }

The check definitions add custom constraints for validating requirements:
1 checks Requirement {
2 len(description) < 10,
3 warning "isn't this is a bit too short?"
4 }
5 }
6

4 TRLC and its tools are free software: https://github.com/bmw-software-engineering.
TRLC (the language) is released under the GFDL1.3,
TRLC (the tools) are released under the GPL3, and
LOBSTER (the traceability tools) are released under the AGPL3.

5 https://github.com/bmw-software-engineering/trlc/tree/main/language-reference-manual

https://github.com/bmw-software-engineering


96 Stefan Schlichthaerle, Philipp Wullstein-Kammler, Florian Schanda

7 checks Safety_Requirement {
8 asil != ASIL.QM implies
9 (derives_from != null or

10 codebeamer_id != null)
11 error "an ASIL requirement must be linked"
12 }

The check language is fairly expressive (it supports Boolean logic, quantifiers, arithmetic,
and string manipulation including regular expressions) but it currently has one key limitation:
you can only base your check on the current requirement (i.e. you cannot talk about other
requirements). We are considering lifting this limitation if there is demand for it, although
these kinds of checks can already be implemented with user scripts using the Python API.

Finally, we can use these type to write our requirements:
1 package Example
2

3 Safety_Requirement car_integrity {
4 description = '''
5 We shall not explode, accidentally
6 or otherwise.
7 '''
8 codebeamer_id = 12345
9 asil = ASIL.D

10 }

The ease of parsing this format enables a much more fine-grained and accurate software
tracing. We can add special comments or pragmas in code, for example:

1 bool should_we_explode () {
2 // lobster-trace: Example.car_integrity
3 return false;
4 }

These tags can be extracted for any reasonable implementation language or framework and
cross-correlated with the LOBSTER6 tool, which is also published under a free-software
license, to produce a software tracing report that is entirely generated from the information
stored in your source repository. This can even be done offline, but the main benefit is that
you now maintain your tracing evidence incrementally and atomically on every commit
and you no longer have to worry about it near the delivery date: making a significant
improvement and simplification to the agile workflow.

6 Lightweight Open BMW Software Traceability Evidence Report. In this tool we support TRLC, C, C++, Python,
MATLAB or GNU Octave, and GoogleTest. We plan to also support Rust, Java, Kotlin, Ada/SPARK, Simulink,
and Franka+, and anything else the community provides.



Treat Requirements Like Code 97

5 TRLC Modelling Approach

In the following section, we describe in detail how a project setup may look like that uses
the TRLC framework as well as the TRLC language for requirements engineering. Starting
from the repository structure and corresponding continuous integration infrastructure, we
also discuss the key part of configuration as code, which is also enabled by TRLC.

5.1 Repository Structure

As stated earlier, TRLC allows us to put the requirements for a software product into the
same repository as the source code.

We recommend to structure the repository in the following way:

• Store the type definitions and their checks in one central location. This helps the
requirements management team to establish ownership over the type definitions.
Software development teams do not always have an overview of all the requirements
management needs of other teams, especially in very large software projects.

• Store the requirements in distributed files as close to the relevant source code as
possible, for example in the same directory. This helps the software development
teams to find their requirements easily even without proper traceability. The close
proximity between source code and requirements can already serve as a simple way
of linking requirements to software components or units.

• Use a continuous integration system and install checks that ensure the completeness
of requirements before a merge to the main development branch. We will further
elaborate on this point in section 5.5.

5.2 Dealing with evolving Software Development Process

Large software development projects often face the problem that the corresponding software
development process is evolving in parallel to the project execution. Especially in the
beginning of a project, during definition of the initial process and selection of development
tools, we cannot reasonably foresee all implications of these choices.

This is generally not a problem for TRLC; as TRLC allows the requirements managers
to make decisions as fast as possible and refactor the type definitions later when needed.
Changing the structure of requirements retroactively is an activity that is extremely difficult
with tools based around external databases, and TRLC makes this activity much easier:
part of it can usually be automated and the CI checks can enforce consistency retroactively
through the TRLC check language.



98 Stefan Schlichthaerle, Philipp Wullstein-Kammler, Florian Schanda

A typical evolution of a project using TRLC as its framework for requirements engineering
may looks like this:

1. Project start: requirement types and attributes are defined.

2. Early phase: engineers write requirements and source code. The product grows and
features are added.

3. Unforeseen event: for example, parts of the software stack are delegated to a collabo-
ration with another company, and it will now be developed as a SEooC7, where it
had previously been developed in-context. SEooC requirements may need different
attributes, and some refactoring work will be necessary within the requirements to
introduce a split between in-context development and out-of-context development.
The requirements managers together with the engineers can perform the refactoring
on a separate branch, and merge it after a review. This even works when the project is
large and has thousands of requirements.

4. Now the code base (including requirements) looks like as if it had always been
developed according to the new business model.

5.3 Configuration as Code

TRLC allows to declare individual types with individual attributes. Our domain-specific
language does not impose any standards as to how a requirement type shall look like. For
example, an information object might have different attributes than a requirement object.
TRLC is a language to define these kind of types. There is no limit to the number of such
types that can be defined. Through type extension there is also support for specialised
requirement types, for instance security-related requirements might have different attributes
than requirements coming from legal laws.

TRLC gives the requirements managers the freedom they need. As seen in the examples
from section 4, the type definitions are stored in text files. This way they are easy to refactor.
This is what we call “Configuration as Code”.

These files are under version control in the repository, same as the files containing the
content. Being able to merge a configuration update together with a content update in an
atomic step is an important enabler to refactor quickly while having a shippable product at
every point in time.

7 safety-element out of context, see ISO 26262



Treat Requirements Like Code 99

5.4 Examples for Configuration as Code

5.4.1 Mass Edit

Imagine a new external party will be responsible for testing a sub-set of the requirements
to solve a resource bottleneck problem. Previously the testing was done in-house by the
feature teams themselves. Most likely the requirements manager did not think of such
a scenario upfront when they designed the requirements engineering process, and the
established attributes don’t allow to manage this new business model well. Suddenly they
need to introduce a test responsibility into the requirements. A refactoring of the attributes
is required, and initial test responsibilities must be added to each requirement. Most likely a
script is needed to set the initial values. This is what we call a “mass edit” situation. Many
hundreds of requirements might need to be touched. This is very easy to achieve with our
Python interface for TRLC, that allows custom scripts to be developed, that can operate on
the model. The solution is to branch off, create the necessary changes, review the changes
together with architects and business managers, and merge them back into the main branch.

5.4.2 Feature Team Request

Usually feature teams know best what they need. And they might know it better than
their requirements managers. Putting the requirements configuration under version control
enables feature teams to demonstrate their needs to the requirements managers easily by
creating a pull request which contains the desired changes. The requirements managers can
then decide whether the proposed solution will be a benefit for all teams working in the
project, or whether the team at hand is exposed to a special situation and needs a special
requirements configuration and process.

5.5 Continuous Integration

We highly recommend to use a CI system which ensures completeness8 of the requirements
as far as possible. Confirming completeness requires human judgement in the end, but
many aspects can be checked with validation rules and by implementing custom checks via
scripts. In this section we present a few examples of such completeness checks that a CI can
perform for every new pull request:

ASIL Decomposition The functional safety manager of a product might define rules
about when and how ASIL9 decomposition is allowed. A check could look at the trace

8 Completeness here means no further work is necessary. The requirements work is done.
9 Automotive Safety Integrity Level as in ISO 26262, but the concept is obviously also applicable to SIL from

IEC 61508



100 Stefan Schlichthaerle, Philipp Wullstein-Kammler, Florian Schanda

between two requirements and forbid a merge to the main branch if the derived requirement
has a deviating ASIL compared to the higher-level requirement.

Mandatory Attributes Most attributes for a requirement are mandatory, but some are
optional under certain situations. A check could evaluate the conditions and forbid a merge
to the main branch if attributes are missing. For example, a rationale must be given in case
of safety-related requirements.

Export Consistency Requirements may reference other requirements in their text body
or through attributes. If such a requirement is exported to a supplier, then a check could
verify if the referenced requirement is also marked to be exported. Otherwise a merge will
be prevented by the CI system.

Release consistency Often a set of requirements is used for multiple releases of a software,
where single requirements are applicable to selected releases only. In analogy to the above
check regarding export consistency, the consistency of the requirements must be checked
for each release individually. The CI system can easily generate a report for each release
and allow to merge the requirements only if they are consistent for every release.

Traceability Requirements are not the only artefacts in a software development project.
Apart from traceability between requirements, the CI can check that the linkage to or from
the following artefacts exists:

• software design and architecture

• bus signal definitions

• security analysis

• safety analysis, FMEA10, HARA11, HAZOP12

• release management

• test cases or proofs

• source code

• argumentation

10 Failure Mode and Effects Analysis
11 Hazard Analysis and Risk Assessment
12 Hazard and Operability Study



Treat Requirements Like Code 101

To illustrate the power of such automated checks, think about a new feature request that
requires to change the ASIL from QM13 to some higher value. The checks, especially the
ASIL decomposition check, now basically behave as an impact analysis and help to estimate
the development costs of the new feature. The time a requirements engineer needs to update
all the affected requirements until all checks signal a green light is a very good indicator as
to how long it will take to implement the change in source code.

Note that applying rules ensures that many inconsistencies are detected even before the
requirements go into the main branch. Ideally one does not need a status attribute for
requirements, because the main branch contains only valid requirements by definition.

6 Requirements Engineering Process Development

Every project has to embed the TRLC approach as well as the corresponding tooling into
their requirements engineering process. Methodology decisions must be made, like how to
identify requirements that must be reviewed by a security expert, or how to link requirements
with the software design.

TRLC was designed to speed up the initial phase of a project, where topics like above are
discussed and decided. It is our clear recommendation to take decisions fast, start developing
the product, and refactor the TRLC configuration later, as soon as more information is
available.

TRLC was also designed to measure key performance indicators (KPIs) from the beginning.
A requirements manager can use our Python API to access all TRLC objects immediately,
and measure the KPIs right after the first merge to the main branch. At the beginning the
script to measure the KPIs might need frequent changes, just like the type definitions. The
alternative is to create a prototype of the tool chain first, and start the product development
afterwards once the tool chain is available. This traditional approach is not suited for a
volatile, uncertain, complex and ambiguous environment, though, as it is simply too slow
until a shippable product is available.

It is important to emphasise that the TRLC framework does not provide any guidance on
how the requirements engineering process actually looks like. It also does not impose any
restrictions. Process development is still required as part of every project setup. The benefit
of using the TRLC framework is the ability to implement every process in an agile way and
being able to react on changes appropriately.

7 Limitations and Future Work

Like any approach, there are limitations. One in particular that should be highlighted is
that of non-technical users. TRLC is more powerful and automates many things that were
13 Quality Managed, which is the lowest level in ISO 26262



102 Stefan Schlichthaerle, Philipp Wullstein-Kammler, Florian Schanda

painful before, but users not happy with using e.g. git will likely have similar issues. There
are two mitigating factors however:

• First, reading requirements should not be any harder than it was before, as it is possible
to e.g. generate a more readable HTML or PDF document. This is something we’re
prototyping with TRLC itself: the LRM of TRLC will be a set of TRLC requirements,
and a script will convert this to a nicer HTML document.

• Second, it is possible to separate the worlds (in the spirit of using the best tool for each
job): high level requirements could be kept in a traditional tool where non-technical
feature designers write requirements; and software and component requirements can
be expressed in TRCL. In fact this is the most likely scenario for our use-case at
BMW, and the two worlds can be linked together using LOBSTER.

We expect to develop the language in a backwards compatible way as various new use-cases
arise, and similarly maintain the tooling. On the road map are various IDE or editor
integrations for the language (e.g. EMACS or VS Code); a linter for checking consistency
of the checks themselves; and some performance improvements.

Once we have used the tools ourselves over a longer period of time on more projects, we
intend to publish metrics and findings.

8 Summary and Conclusion

In this paper, we presented the TRLC framework, which was developed to bridge the
gap between agile software development and requirements engineering for safety-critical
software products. We explained the background and our motivation for such an approach,
as well as the key elements of the TRLC framework, including its integration in continuous
integration, as well as the corresponding software process development. We highlighted the
importance of TRLC to a better requirements traceability process.

In a nutshell, TRLC is a framework including a lean yet powerful domain-specific language
that comes along with a free software tool chain and Python API. It shrinks the project
start-up phase (with respect to the requirements management process) to a couple of
days, so that the product development can start quickly, without neglecting the crucial
aspect of requirements engineering. This also holds in a safety-related environment where
ISO 26262 must be adhered to. Software projects are not bound to heavy-weight tool chains
anymore, whose “external database” approach collides with fast iterations required in agile
software development. Instead they can easily build up their own requirements engineering
configuration, as well as light-weight supporting tools for validation, KPI calculation, as
well as all kinds of data transformation. Depending on the company’s size and the amount
of projects it is managing at the same time, design patterns as well as guidelines and other
templates for TRLC can be shared within the requirements engineering community, to
speed up the project setup even more.



Treat Requirements Like Code 103

Bibliography
[Al09] Allmann, C.: Situations- und szenariobasiertes Anforderungsmanagement in der automotive

Elektronikentwicklung. Audi Dissertationsreihe. Cuvillier Verlag, 2009.

[Be01] Beck, Kent; Beedle, Mike; Van Bennekum, Arie; Cockburn, Alistair; Cunningham, Ward;
Fowler, Martin; Grenning, James; Highsmith, Jim; Hunt, Andrew; Jeffries, Ron et al.: ,
Manifesto for agile software development, 2001.

[Br06] Broy, Manfred: Challenges in automotive software engineering. In: Proceedings of the 28th
international conference on Software engineering. ACM, pp. 33–42, 2006.

[Fü10] Fürst, Simon: Challenges in the design of automotive software. In: Proceedings of the
Conference on Design, Automation and Test in Europe. European Design and Automation
Association, pp. 256–258, 2010.

[Ga18] Galinier, Florian: A DSL for requirements in the context of a seamless approach. In: 2018
33rd IEEE/ACM International Conference on Automated Software Engineering (ASE). pp.
932–935, 09 2018.

[IS02] ISO/IEC JTC 1/SC 22: Z formal specification notation - Syntax, type system and semantics.
Standard, International Organization for Standardization, 2002.

[IS18] ISO/TC 22/SC 32: Road vehicles - Functional safety - Part 6: Product development at the
software level. Technical report, International Organization for Standardization, 2018.

[Kn86] Knuth, Donald Ervin: METAFONT: the program. Addison-Wesley Longman Publishing
Co., Inc., 1986.

[LB15] Leuser, Jörg; Ballhause, Christoph: Anforderungen programmieren - eine domänenspezi-
fische Sprache (DSL) im Praxiseinsatz. OBJEKTspektrum, Online special Requirements
Engineering, 6 2015.

[Mi21] Mihailovici, Marius: , Wenn Software Software Schreibt. Porsche Engineering Magazin, 1
2021.

[SBS20] Schlichthaerle, Stefan; Becker, Klaus; Sperber, Sebastian: A Domain-Specific Language
Based Architecture Modeling Approach for Safety Critical Automotive Software Systems.
In: Software Engineering (Workshops). 2020.

[Sh12] Shen, Mengjiao; Yang, Wenrong; Rong, Guoping; Shao, Dong: Applying agile methods
to embedded software development: A systematic review. In: 2012 Second International
Workshop on Software Engineering for Embedded Systems (SEES). pp. 30–36, 2012.

[VD17] VDA QMC Working Group 13 / Automotive SIG: Automotive SPICE Process Assessment /
Reference Model. Technical report, VDA QMC), 2017.


