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Abstract: Face image quality assessment algorithms attempt to estimate the utility of face images for
biometric systems, typically face recognition, since the performance of these systems can be limited
by the image quality. Hand-crafted quality score fusion has previously been examined for a variety
of mostly factor-specific quality assessment algorithms. This paper instead examines score fusion for
various recent “monolithic” quality assessment deep learning models. The evaluation methodology
is based on Error-versus-Reject-Characteristic partial-Area-Under-Curve values, which are used to
quantitatively rank quality assessment configurations in a face recognition context. Mean quality
score fusion configurations were found to slightly improve performance on the TinyFace database,
while the tested fusion types were ineffective on the LFW database.
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1 Introduction

FIQA (Face Image Quality Assessment) is an active research area predominantly fo-
cused on automatic utility [ISO16] estimation for face recognition in the visible spectrum
[Sch+21], although the term FIQA can also be applicable for other biometric scenarios. A
concrete use case for face recognition and FIQA is automated border control.

For the purposes of this paper, FIQA methods have these properties, which correspond to
Figure 1: The input is one 2D image, cropped and aligned via detected facial landmarks.
The output is one scalar quality score. Higher quality scores imply better face recognition
utility. Quality scores may or may not be restricted to the [0,1] value range, depending
on the method. Either way, quality score distributions for a given set of images may differ
between methods. The definition can be less strict outside of this paper [Sch+21], but these
properties apply to all of the methods examined herein.

FIQA methods can be conceptually specific to certain human-interpretable “factors”, such
as blur/sharpness, or they can instead be “monolithic” in the sense that they do not con-
ceptually correspond to such an isolated factor [Sch+21]. The FIQA methods examined
herein are deep learning models that belong to the monolithic category. These models are
specifically intended to holistically estimate utility for face recognition, whereas a sin-
gle factor-specific (e.g. blur measurement) FIQA concept may only be partially linked to
utility.
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Fig. 1: The FIQA (Face Image Quality Assessment) process.

Quality score fusion takes a number of quality scores as input and generates a “fused”
quality score as output, as illustrated in Figure 2. Each FIQA method fusion configuration
can thus itself be considered as a new FIQA method.

After the following section on related work, this paper presents an evaluation methodology
to quantitatively evaluate the performance of FIQA method fusion configurations, which
is then applied to various recent monolithic FIQA models across multiple datasets for a
number of fusion functions.
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Fig. 2: The quality score fusion process.

2 Related Work

In the FIQA literature, fusion approaches are broadly categorized as “explicit”, “trained”,
or “cascade” in [Sch+21]. Explicit approaches are hand-crafted fusion functions, with-
out automatic database-specific fine tuning if adjustable parameters are involved (e.g. for
weighted sum fusion). Trained approaches in contrast involve fine tuning, or machine
learning in general (e.g. fusion via artificial neural networks). Both explicit and trained
approaches process all input quality scores at once, as in Figure 2. Cascade approaches in-
stead run the involved FIQA methods in multiple stages so that the process can be aborted
(e.g. due to very low early quality scores) before all methods are run, to potentially reduce
the total computational workload. The cascade approaches surveyed in [Sch+21] could
alternatively be considered as a special case of explicit fusion, since the concrete cas-
cade fusion algorithms were hand-crafted. This work is focusing on explicit (non-cascade)
fusion of monolithic FIQA methods. Of the works surveyed in [Sch+21], the arguably
most closely related one is [Aba+14] by Abaza et al., which evaluated explicit and trained
fusion configurations in a binary “good”/“bad” image quality classification scenario for
factor-specific (contrast, brightness, illumination) FIQA methods. The best performance
was achieved with an artificial neural network, i.e. trained fusion. Refer to [Sch+21] for
various more indirectly related instances of fusion in the FIQA literature.
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3 Methodology

As described in the introduction and illustrated in Figure 1, the single FIQA methods
receive one face image as input. A preprocessing step first detects the facial landmarks
within the image, which are then used to align and crop the image. The resulting prepro-
cessed image also has a size (i.e. width/height in pixels) specific to each FIQA method.
The quality of this preprocessed image is then assessed by the method as a scalar qual-
ity score. In this process (Figure 1), only the facial landmark detection step is allowed to
fail depending on the image, in which case the images are completely excluded for the
following experiments.

Since the quality score distributions can vary between FIQA methods, a normalization step
is used before any fusion function is applied. The normalization parameters are derived
from a set of quality scores for each FIQA method, as illustrated in Figure 3. Note that the
order of images by their normalized quality scores remains identical to the order by the
original quality scores1. The normalized quality scores are then fused via a fusion function,
as illustrated in Figure 2. A fusion function takes two or more normalized quality scores
stemming from different FIQA methods as input, and produces one fused quality score
as output. Depending on the fusion function, the number of input quality scores may be
further restricted to e.g. exactly two, or to more than two.

To evaluate the performance of the single FIQA methods and the FIQA fusions we em-
ploy the “Error-versus-Reject-Characteristic” (ERC) [GT07][Sch+21], using the “False-
Non-Match-Rate” (FNMR) [ISO17] as the error, or “FNM-ERC” in short. FNM-ERC
performance evaluations have been used in the (recent) FIQA literature to compare the
performance of FIQA methods [Sch+21]. Since the fusion of FIQA methods effectively
creates new FIQA methods, this evaluation method can be applied directly. In the context
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Fig. 3: The quality score normalization process. The normalization parameters are derived from a
set of quality scores for the same FIQA method.

of FIQA2, a FNM-ERC configuration involves one set of mated face image comparison
pairs [ISO17], one or more face recognition model(s), each with a face recognition com-
parison score threshold [ISO17], and multiple FIQA methods. First, the FNMR is com-
puted for the given images and face recognition configuration, independent of the FIQA
methods. Next, for each FIQA method, the per-image quality scores are used to derive
per-pair quality scores. In this work, lower quality scores imply lower face recognition
utility, thus the minimum of the two images’ quality scores is selected for each comparison

1 IEEE 754 floating-point precision errors could technically change the order, but this should not be relevant for
the purposes of fusion herein.

2 The FNM-ERC and pAUC concept can also be used for other modalities.
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pair. Pairs with the lowest quality3 are then progressively “rejected”4, and the correspond-
ing FNMR is recomputed for the remaining pairs. Each resulting data point contains the
FNMR (the error value) and the fraction of comparisons “rejected” by quality. A curve can
then be plotted for each FIQA method to show how effectively the FNMR is reduced by
the “rejection” of low-quality images (and thus the corresponding comparisons). Finally,
“partial-Area-Under-Curve” (pAUC) [OŠB16] values can be computed to quantitatively
rank FIQA methods. The pAUC values are the area-under-curve for a chosen “reject”-
fraction range, e.g. [0%,1%].

Although pAUC values suffice to rank the FIQA methods without adjustments, the mag-
nitude of the differences might not necessarily be clearly interpretable, since the raw
pAUC values depend on the FNM-ERC starting error5 and the chosen “reject”-fraction
range. Olsen et al. [OŠB16] proposed to subtract the “area under theoretical best” from
the (p)AUC. This refers to the area under the FNM-ERC curve for the “theoretical best
case where the decrease in FNMR equals the fraction of samples6 rejected due to qual-
ity” [OŠB16], i.e. the area under max(0,Error−Re jectFraction) with the “error” being
the FNMR. Note that this is an approximation or lower limit of the theoretical best case,
not the actual best case for the given comparison pairs, since the actual best case curve
cannot be strictly monotonically decreasing7. Subtracting the “area under theoretical best”
from the pAUC values does not change the ranking of FIQA methods, since the same
value is subtracted for each pAUC “reject”-range configuration in which FIQA methods
are ranked. It can however serve as an adjustment to make the pAUC values more easily
interpretable, since it removes the effect of the area that cannot possibly be improved. In
addition to this theoretical (hard) best case lower error bound curve, a theoretical (soft)
worst case upper error bound curve can also be defined: The constant FNM-ERC start-
ing error line approximates the average of infinite curves for random quality scores, and
a FIQA method should of course preferably never increase the FNMR above this value
regardless of the “reject”-fraction. Therefore, the pAUC values for FIQA methods can
be made relative to the pAUC for this upper error bound line8 for the purposes of inter-
pretability (i.e. the ranking remains unaffected). This work uses the term “relative-pAUC”
(rpAUC) for these values. The rpAUC values range from 0% (best case) to 100% or higher
(soft worst case), independent of the pAUC “reject”-fraction range and independent of the
FNM-ERC starting error, which should improve the interpretability across different eval-
uation configurations. An rpAUC value above 100% would indicate that the method is not
practically useful, or “worse than random quality assessment”.

3 I.e. among the remaining pairs in each step.
4 While common in FIQA literature [Sch+21], the term “reject” is currently contentious in this context since a

different meaning is standardized [ISO17], hence the quotation marks.
5 I.e. the FNMR for the full set of comparisons without any “rejection”.
6 Or technically the fraction of comparisons.
7 A real FNM-ERC curve can only change by “rejecting” a non-fractional number of comparisons per data point.
8 Both preferably adjusted by subtracting the lower bound.
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4 Experiments

Two databases are used in the experiments, LFW [Hua+07] and TinyFace [CZG18]. For
TinyFace, the images in “Testing Set/Gallery Match” and “Testing Set/Probe” were used.
Exact file duplicates were removed within each database9, removing 184 images for Tiny-
Face and 2 for LFW. The subsequent facial landmark detection step failed for 132 TinyFace
images, excluding them from the experiments. All possible (order-independent) mated
comparisons are formed between the images for each subject per database. There were
no subjects with only one image, so every used image is involved in at least one mated
comparison. In total, 8039/13233 images and 19894/242257 mated comparison pairs from
TinyFace/LFW are used.
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Fig. 4: Normalized quality score (horizontal axis) distribution probability (vertical axis).

Tab. 1: Truncated Z-score normalization parameters for each FIQA method per database.

LFW TinyFace
FIQA method µ σ

FaceQnet-v1 0.4072 0.1009
MagFace 28.8884 1.7604

PCNet 10.0567 2.0058
SER-FIQ 0.8903 0.0042

FIQA method µ σ

FaceQnet-v1 0.3140 0.0942
MagFace 22.2361 1.5408

PCNet 4.8270 1.6985
SER-FIQ 0.8739 0.0127
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Fig. 5: FNM-ERC plots with 0.01 starting error with curves for the best fusion configuration results
versus the best single FIQA method results for different pAUC range rankings. Horizontal axes
correspond to the reject fraction, vertical axes to the FNMR. The lower dashed gray line is the
“theoretical best”.

9 The first image was kept for each duplicate set, sorted by path.
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Publicly available InsightFace models10 are used for facial landmark detection and face
recognition: The RetinaFace-R50 model [Den+20] is used for facial landmark detection11,
and ArcFace-R100-MS1MV2 [DGZ19] is used for face recognition. The landmark-based
image preprocessing used for ArcFace is also used for the FIQA models, only the output
size differs, as mentioned in section 3. Four modern FIQA models are used: FaceQnet-v1
[Her+20] (trained on VGGFace2 [Cao+18], 224×224 input image size), PCNet [XBZ20]
(trained on VGGFace2 [Cao+18], 224×224 input image size), SER-FIQ [Ter+20] (“same
model” variant using ArcFace, 112× 112 input image size), MagFace [Men+21] (“iRes-
Net100” backbone trained on MS1MV2 [DGZ19], 112× 112 input image size). Z-score
normalization is used to adjust the “raw” quality score output of a single FIQA method
before fusion: Qn =

Qr−µ

σ
, with Qn/Qr respectively being the normalized and raw quality

score, and µ/σ being the mean and standard deviation of a set of raw quality scores. To
mitigate the effect of imperfect normalization on the FIQA fusion evaluation, the set of
all raw quality scores for each database is used to compute µ and σ per FIQA method, as
listed in Table 1.
Tab. 2: FNM-ERC rpAUC rankings for different pAUC ranges with starting error 0.01 on TinyFace.
The “∆-Best” columns show the rpAUC difference to the best result. F/P/S/M stand for FaceQnet-v1/
PCNet/SER-FIQ/MagFace.

pAUC range [0,0.05] pAUC range [0,0.20]
Method Rank rpAUC ∆-Best

Mean-[S,M] 1 0.8182 0.0000
Mean-[F,S,M] 2 0.8268 0.0087

Mean-[F,P,S,M] 3 0.8294 0.0112
Mean-[P,S,M] 4 0.8350 0.0168

SER-FIQ 5 0.8421 0.0239
. . .

MagFace 24 0.9236 0.1054
. . .

PCNet 32 0.9681 0.1500
. . .

FaceQnet-v1 40 1.0034 0.1852
. . .

Max-[F,P] 42 1.0131 0.1949

Method Rank rpAUC ∆-Best
Mean-[S,M] 1 0.6514 0.0000

Min-[P,S] 2 0.6649 0.0135
SER-FIQ 3 0.6649 0.0135

Min-[S,M] 4 0.6692 0.0178
Mean-[P,S,M] 5 0.6729 0.0215

. . .
MagFace 20 0.7418 0.0904

. . .
PCNet 34 0.9343 0.2829

. . .
FaceQnet-v1 41 0.9755 0.3241

Max-[F,P] 42 1.0132 0.3618

Four fusion functions are employed, all without parameters to avoid the question of fine
tuning: The minimum (min), maximum (max), arithmetic mean, and median of the input
quality scores. The median fusion function is only used with three or more input quality
scores, since it would be equivalent to the mean function for two inputs. The other func-
tions use two or more inputs. All possible (order-independent) combinations of the single
FIQA methods are used to form fusion configurations for each fusion function. Rankings

10 https://github.com/deepinsight/insightface/tree/8857513df4f5fefa4ba6f0ae5cca4de03d

a74bd3/model_zoo
11 Both rectangular face regions and facial landmark points are detected, but the landmarks are the relevant part

for the face image preprocessing step.

https://github.com/deepinsight/insightface/tree/8857513df4f5fefa4ba6f0ae5cca4de03da74bd3/model_zoo
https://github.com/deepinsight/insightface/tree/8857513df4f5fefa4ba6f0ae5cca4de03da74bd3/model_zoo
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for the pAUC ranges [0,0.01], [0,0.05], and [0,0.20] are examined for the three ERC start-
ing errors (FNMRs) 0.01, 0.05, and 0.10.

Figure 4 shows the distribution of the normalized quality scores for each single FIQA
method for the databases, with more variation being visible for TinyFace than for LFW.
The comparison of the best ERC curves among the fusion configurations and single FIQA
methods according to the examined pAUC ranges in Figure 5 indicates that the tested
fusion approaches are more viable for TinyFace than for LFW. Results are only shown for
the 0.01 starting error due to limited space, but similar results were observed for the tested
0.05 and 0.10 starting error. For LFW with 0.01 starting error, MagFace by itself provided
the best results, and only one min-fusion with PCNet happened to very slightly improve
performance in the [0,0.01] pAUC range. For TinyFace, SER-FIQ provided the best results
for the three pAUC ranges among the single FIQA methods. Table 2 lists a subset of the
more detailed results. The only fusion configuration better than SER-FIQ over all three
pAUC ranges was the mean-fusion of MagFace and SER-FIQ.

5 Conclusion

Simple fusion configurations using modern monolithic FIQA models can slightly improve
performance on some databases using different fusion configurations. It should be noted
that fusion will naturally increase the computational workload relative to running only
a single FIQA model, so constraints for practical scenarios may or may not justify the
small potential performance improvements. Future work could e.g. examine more complex
fusion types with tuneable parameters, fuse both factor-specific and monolithic models, or
expand the evaluation to other databases.
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