Automatic Test Case Generation with NuSMV
Grygoriy Bunin

Riicker GmbH
Domagkstrale 13-15
D-80807 Miinchen
grygoriy.bunin@ruecker.de

Axel Schneider

Lucent Technologies Network Systems GmbH
Thurn-und-Taxis-Str. 10
D-90411 Niirnberg
aschneider@lucent.com

Christian Haubelt

University of Erlangen-Nuremberg, Germany
Am Weichselgarten 3
D-91058 Erlangen
haubelt@cs.fau.de

Jan Langer, Ulrich Heinkel

Chemnitz University of Technology, Germany
Reichenhainer Str. 70
D-09126 Chemnitz
{laja,heinkel} @infotech.tu-chemnitz.de

Abstract: Formal verification has become a key technology to ensure the quality
of complex (hardware/software) systems. Although formal verification is widely
used in the hardware design phase, it plays a minor role in software or even system
development. In this paper, we describe how we used the model checker NuSMV
to automatically generate executable test cases from an abstract system description.

For wverification with model checking the properties of a system are described in
temporal logic formulas (e.g. CTL, LTL) and proven against a formal system model. In
case the property is not fulfilled, the model checker provides a counterexample violating
the property. If used at all in industrial practice, formal techniques usually stop at this
point and test cases for simulation or test are still specified manually. The idea of the
approach described herein is: We first generate a formal model from an abstract system
description, then take a well-known method of generating stimuli and responses using
model checking [CSE1996] and finally convert the raw model checker output into

automatically executable test scripts for a particular test environment.

262

As real-world telecommunication example we use the so-called Timing Link Switch
functionality. This is a mechanism to select, based on several criteria, the most
appropriate input signal for synchronization of an optical data transmission system. The
functionality is described in a text document and formalized using the specification
language ADeVA [HHG2003]. From the abstract ADeVA model an SMV model is
generated with our code generator. Negated properties are used to generate test stimuli
and responses [WGHH2004]. However, the raw model checker output is not yet in a
suitable format for test execution. The NuSMV output needs to be transformed into an
executable test script by extracting the relevant signals and mapping them to function
calls of the system’s user interface. The whole process can be summarized as follows:

Describe the functionality with ADeV A, generate a SMV system model

Specify the system behavior, which should be tested, as CTL or LTL property
Verify the property with NuSMV, correct the specification until the property holds
Negate the property and run NuSMV again — the negated property fails

Extract relevant signals from the counterexample and map to system function calls

Not all kinds of properties can be used to generate a test case. The following LTL
template is an example, which may be used to specify an appropriate property:
G (<assumptions about system state> — <expected output values>)
where <assumptions about system state> contain the current values of internal or output
signals (i.e. current system state) and actions applied to the system (i.e. input signal
values). The second part <expected output values> contains the expected values of the
output signals. This property expresses: if the first part is fulfilled, always (G = globally)
the second part must be fulfilled. Negating a property means: every commitment in the
second part is negated, the assumptions in the first part stay unchanged. In the negated
property we claim that system states specified in the second part of the original property
are never reachable, which is obviously false. Thus, NuSMV will always provide a
counterexample in terms of input, internal and output signals. Considering only the input
signals, we get the complete input sequence that leads from the initial system state to the
desired state, as specified in the second part of the original property. The output signals
define the expected result of a test. To map these signals from the counterexample to real
function calls, we use a mapping database, maintained with our MappingEditor tool.

Bounded Model Checking may be used to find the shortest possible counterexample and
therewith generate the shortest possible test case, which verifies the desired behavior.
However, it must be kept in mind that the generated test case verifies only one out of (in
general) many system state transitions, in which the considered behavior occurs. In
future work, we will extend the test case generation to optimize the test coverage.

[WGHH2004] Wang F., Gossens S., Haas W., Heinkel U.: “Generierung von Testvorschldgen aus
tabellarischen Spezifikationen”, GI/ITG/GMM Workshop “Testmethoden und
Zuverlissigkeit von Schaltungen und Systemen*, Dresden, Germany, March 2004

[HHG2003] Haas W., Heinkel U., Gossens S.: “Semantics of a Formal Specification Language
for Advanced Design and Verification of ASICs (ADeVA)“, 11th E.I.S.-Workshop,
Erlangen, Germany, April 2003

[CSE1996] Callahan J., Schneider F., Easterbrook S.: “Automated Software Testing Using
Model-Checking”, Proceedings SPIN 1996 Workshop, Rutgers, NJ, August 1996

263

