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Abstract: A new method to enhance the performance of multi radar tracking
systems is presented in this paper. In parallel to an IMM model type tracker a
second tracker estimates track heading and speed based upon differential
measurements from multiple sensors. A differential measurement contains the
differences between two subsequent measurements from one sensor. This new
method accepts information from multiple sensors but completely avoids sensor
registration problems.
While a common multi radar tracker must take into account at least residual
registration errors, the heading/speed tracker accepts the full accuracy of each
individual sensor. This leads to high manoeuvre susceptibility and also to a high
stability in the non manoeuvre case.
The results demonstrate the tracking performance enhancement achieved by the
combination of the new method with the standard tracking method.

1 Introduction

A major problem in tracking of multiple targets with multiple sensors is sensor
registration. Even after application of high sophisticated sensor alignment procedures a
residual systematic error remains. Taking into account this non Gaussian error, forces to
apply more restrictive filters. The side effect of restrictive filters is a reduced tracking
reactivity.

A method to avoid the effect of sensor misalignment on the track speed and heading is
presented in this paper. Key to overcome the sensor registration problems is the usage of
differential information from subsequent measurements instead of absolute values.
The differential azimuth (dþ) and the horizontal component of the differential range (dr)
from all available sensors are used to derive the horizontal speed (v) and the heading (<)
as well as the acceleration (a, dv/dt) and the turn rate (], d</dt)
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The basic idea is to establish an additional separate tracking filter for the estimation of
speed and heading, which is stable and robust in respect to misalignment and highly
sensitive to target manoeuvres.

The results presented in the paper show, that the separate speed and heading filter
provides higher accuracy of speed and heading values as the operational multi sensor
tracking system.

1.1 Combination of Filtering Methods

The track heading/speed filter provides estimation values for horizontal speed, heading,
acceleration, and turn rate. This information is not sufficient to solve multi target
association problems. Therefore only a combination of both methods leads to a complete
tracking system. In the combination, both filters are fed with the same measurements
and operate in parallel. As soon as the new filter provides a state vector, it can be mixed
with the according values derived by the common filter or even completely replace the
common filter's track state components horizontal speed, heading, acceleration or turn
rate.

2 The Speed and Heading Filter

The Speed and Heading Filter is a common extended Kalman Filter [1] for the
estimation of horizontal speed v, heading <, acceleration a, and turn rate ]. The
measurements comprise the distance difference dr and the azimuth difference dþ of two
subsequent radar measurements (r1, þ1), (r2, þ2).

2.1 System model

The system model comprises simple relaxation and maneuver states and is expressed by
the following relations:

e 1
-dt/dtav(t)dt)v(t τ+=+ (1)

e 2
-dt/dt(t)dt)(t τωϕϕ +=+ (2)

The relaxation times τ 1 for the acceleration relaxation and τ 2 for the turn relaxation are
different and depend on the maneuver state.
In matrix notation it reads as

xk(-)="k-1xk-1(+) (3)

2.2 Measurement model

The measurement model describes the relation between the measurement vector z=(dr,
dþ) and the state vector x=(v, <, a, ]) and is expressed by the function z=h(x).
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Figure 2-1 shows the geometrical relation between the state vector (v, <) and the raw
measurement vectors (r1,þ1), (r2,þ2).

After some algebraic reformatting we finally get:
dr = vdt cos(<-þ2) – r1(1– cos(þ2-þ1) ) (4)
dþ = arcsin(vdt sin(<-þ1)/r2) (5)

for the relation between (dr, dþ) and (v, <, a, ]).
The relation shows, that the model is complete, which means that the measurement
values z can be expressed by a function h(x) with the state variables and given constants.

Figure 2-1 Measurement Geometry

2.3 Differential measurement model

The differential measurement model is the Jacobian defined as the partial derivatives of
the measurement variables in respect to the system variables: Hij= Àhi/Àxj.
We get:

H11: Àdr/Àv = dt cos(<-þ2) (6)
H12: Àdr/À< = -vdt sin(<-þ2) (7)
H21: Àdþ/Àv = sin(<-þ1)r1dt /r2² (8)
H22: Àdþ/À<=vdt(vdt+r1cos(<-þ1))/r2² (9)

(XS,YS)

dy=dt v sin(<)

dx=dt v cos(<)

v, <

(r2,þ2)

(r1,þ1)

(x2,y2)

(x1,y1)

(<-þ1)
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2.4 Measurement error model

In accordance to the measurement definition, the difference between two subsequent
measurements, we get an error covariance matrix R with doubled variance contributions:

R = 2

2

2
2

ασ
σ r , (10)

2.5 System noise model, manoeuvre detection

The system noise model expresses the variation of the system covariance P due to
possible target manoeuvres. Possible target manoeuvres may begin at time tk-1 and lead
to an increment Q in the system covariance. With this incremental term we get for the
error covariance extrapolation:

Pk(-)="c
k-1(Pk-1(+)+Qk-1)"c

k-1
T (11)

The "c" in the propagation matrix denotes, that the system propagation matrix " used in
(3) differs from the error propagation matrix "c used in (11).

The system noise matrix Q contains the two components Q33 and Q44 which express the
possible acceleration and turn rate changes. The numerical values are derived from the
currently considered measurement triple with the current measurement and the last two
additional measurements from the same sensor. The instantaneous adaptation of the
system noise to the geometrical shape of a set of observations is very efficient maneuver
detection. The opposite, "non maneuver detection," if the acceleration and turn rate is
below a threshold, is a not less important criterion to detect maneuver termination or to
avoid maneuver initiation upon noise.

2.6 Extended Kalman Filter Definition

With the equations (3..12) the definition of an extended Kalman Filter is complete. The
additional equations for the Kalman Gain Matrix (12), the state estimate update (13) and
the error covariance update (14) are directly derived from equations (3..12) [1,Table 4.2-
1]

Kk=Pk(-)Hk
T[ Hk]Pk(-)Hk

T+Rk]-1 (12)
xk(+)=xk(-) + Kk[zk-hk(xk(-))] (13)
Pk(+)=[ I - KkHk]Pk(-)] (14)

The Extended Kalman Filter defined by the equations (1...14) is able to update tracks
with subsequent measurements z = (dr, dþ). Due to the composite nature of the
measurements a problem with the time order arises.
The validity time of a tuple m of measurements m1(t1),m2(t2) with the measurement
values dr,dþ is valid at time

tm = (t1+t2)/2=(t1+dt)/2. (15)
The effect of this validity time tm is that the time stream ti of measurements
mi=(ti,dri,dþi) is not monotonous. Nevertheless, the Extended Kalman Filter algorithm
requires a processing of the information in a strictly monotonous time order. Let us
assume that the slowest radar sensor has a turn time Tmax and the fastest sensor has a
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turn time Tmin. Let us further assume that after one miss of the slowest sensor the
resulting measurement tuple with dt=2Tmax shall be taken into account immediately after
a tuple of the fastest sensor has been processed. After processing a tuple of the fastest
sensor available at time tnow, the minimum time of validity is

tval/minl = tnow - Tmin/2. (16)
After processing a measurement tupel with one miss(!) from the slowest sensor, the
maximum time of validity is

tval/max = tnow - Tmax. (17)
The maximum possible time difference dtmax is therefore

dtmax= tval/minl - tval/max = Tmax - Tmin/2. (18)
If as an example Tmax is 12 seconds and Tmin is 3 seconds, the validity time becomes
rolled back for 10.5 seconds after the reception of the measurement from the slowest
turning sensor after one miss. In order to be able to process the incoming information
from the slow sensor within the correct time order, the processing since tval/actual-dtmax
must be repeated with all sets of measurement in the correct time order.
In order to be able to accomplish this, a set of state information back in time with a
delay of dtmax must be kept in mind for all tracks in combination with all measurement
tuples mi =(tval,dr,dþ)i within the validity time interval Itime.

Itime = tval/actual >tvali> tval/actual - dtmax (19)

2.7 Initiation model

Initial values x(~) for the system state x based upon one set of measurements z are given
by the inverse measurement model function x(~)=h-1(z).
But instead of inverting the equations (4,5) it is more easy to derive the inverse
measurement model function directly from the geometry. In order to be able to derive
the full state vector including a and ], it is necessary to consider three subsequent
measurements of the target position P0,P1,P2.

Figure 2-2 Target Movement Geometry
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Figure 2-2 shows the geometrical relations based upon three subsequently measured
positions P0(t0), P1(t1), P2(t2)
We get:
v1((t0+t1)/2) = d1/(t1-t0) (15)
<1((t0+t1)/2) = arctan((P1(y)-P0(y))/(P1(x)-P0(x))) (16)
v2((t1+t2)/2) = d2/(t2-t1) (17)
<2((t1+t2)/2) = arctan((P2(y)-P1(y))/(P2(x)-P1(x))) (18)
a((t1+t2)/2) = v2((t1+t2)/2)-v1((t0+t1)/2) (19)

(t1+t2)/2 - (t0+t1)/2
]((t1+t2)/2) = <2((t1+t2)/2)- <1((t0+t1)/2) (20)

(t1+t2)/2 - (t0+t1)/2
The initial covariance P(~) is given by

P(~)=(P 1
0
− +(HTR-1H))-1 (21)

with a default covariance P 0 which represents default knowledge about possible state
values which might be not observable with the available set of measurements. Without
the default covariance part, the matrix inversion may lead to non realistic values.

3 Integration of the Heading Speed Filter

Like a common filter, the heading speed filter accepts plots from different sensors for
each track and provides an estimate for speed, heading, acceleration, and turn rate. But
the results are not suitable to solve multi target association problems. Therefore for
multi target tracking this filter only can be used in combination with a common tracking
filter which estimates the full state vector including position. The combination of the
filters implies that state values of the common tracking filter are modified. These
modifications however must be consistent. As an example if the speed estimate becomes
modified, the filters capability to estimate acceleration is affected. Therefore the
information transfer from the speed/heading filter to the complete tracking filter must
comprise the full state vector (v, <, a, ]). Another aspect is the decision, to which
extend the estimate of the complete filter is replaced. A fixed rate of 75%has been
selected in the examples which are discussed below.

Figure 3-1shows the result using the speed heading estimate in a tracking system. The
white path with speed heading display represents the original tracking result, while the
yellow path results in a 75%acceptance of the heading, speed estimate in the tracking
system. The result shows a reduction of the track displacement of about 30Figure 3-1b
shows the same comparison as shown in Figure3-1a for a noisy part of a straight flight
path. The red path corresponds to the original tracking result. The figure shows that
there is no significant reaction on the noise, if the heading filter is applied.
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Figure 3-1 a Maneuver and b StraightTracking, one Sensor

4 Conclusion

The solution presented in this paper addresses the problem of multi sensor tracking
taking into account sensor registration problems. A standard method to avoid sensor
registration problems is to apply single sensor tracking and track fusion. A more stable
method is direct sensor data fusion supported by automated and highly accurate sensor
registration. But due to still present residual systematic sensor errors a stable tracking
requires to underestimate the sensor accuracy. This restriction could be removed with
the new method presented in this paper.
A new supplementary multi sensor tracking method using single sensor plot tuples as
differential measurements has been presented. The new method estimates speed,
heading, acceleration and turn rate of targets. With simulated data, it could be shown
that the method is appropriate to generate estimation values which represent the given
trajectory values accurately. Applied to tracking with recorded live data, it could be
demonstrated that for maneuvering targets the tracking performance can be enhanced
significantly, without loss of tracking stability.
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