
CUDA-based multi-core implementation of MDS-based
bioinformatics algorithms

Thilo Fester
Martin-Luther-University Halle-Wittenberg

thilo.fester@student.uni-halle.de

Falk Schreiber
IPK Gatersleben & Martin-Luther-University Halle-Wittenberg

schreibe@ipk-gatersleben.de

Marc Strickert
IPK Gatersleben

stricker@ipk-gatersleben.de

Abstract: Solving problems in bioinformatics often needs extensive computational
power. Current trends in processor architecture, especially massive multi-core proces-
sors for graphic cards, combine a large number of cores into a single chip to improve
the overall performance. The Compute Unified Device Architecture (CUDA) provides
programming interfaces to make full use of the computing power of graphics process-
ing units. We present a way to use CUDA for substantial performance improvement
of methods based on multi-dimensional scaling (MDS). The suitability of the CUDA
architecture as a high-performance computing platform is studied by adapting a MDS
algorithm on specific hardware properties. We show how typical bioinformatics prob-
lems related to dimension reduction and network layout benefit from the multi-core
implementation of the MDS algorithm. CUDA-based methods are introduced and
compared to standard solutions, demonstrating 50-fold acceleration and above.

1 Introduction

Bioinformatics is faced with accelerating increase of data set sizes originating from pow-
erful high-throughput measuring devices. The implementation of computational intensive
tasks in parallel technology is one of the key solutions to time-efficient data processing.
Today, often compute jobs are performed on cluster computers or on large multi-core
servers to take advance of parallelization. We will discuss an evolving path to provide
work-efficient, parallel and desktop-suitable solutions based on acceleration by graph-
ics processing units using the compute unified device architecture (CUDA) for compu-
tation on commonly available graphics processing units (GPU). High-throughput multi-
dimensional scaling (HiT-MDS) is a versatile tool for biological data analyses that is sys-
tematically transferred to the GPU for taking advantages of the massively parallel hard-
ware architecture for scientific computing.

Fester et al. 67

1.1 Multidimensional Scaling

Multidimensional scaling (MDS) is a data processing method suitable for addressing sev-
eral analytical purposes: (i) for dimension reduction of vector data, providing a nonlin-
ear alternative to the projection to principal components; (ii) for the reconstruction of a
data dissimilarity matrix of pairwise relationships in the Euclidean output space; (iii) for
conversion of a given metric space, such as data compared by Manhattan distance, into
Euclidean space, (iv) for dealing with missing data relationships using zero force assump-
tion. These features make MDS a valuable tool for the analysis of large data tables and
for dealing with (partial) information about data relationships [IMO09, SSUS07, TO05].
We focus on two examples of MDS application: one is related to dimension reduction in
gene expression time series data, the other one is related to network layout from adjacency
information.

1.2 GPGPU Programming with NVIDIA CUDA

In the last ten years general purpose computing on graphics processors became more and
more important. Higher memory bandwidth, increasing (parallel) floating point perfor-
mance compared to CPUs and rising memory capacities as well as low costs get attractive
to scientists because of impressive speed up factors of up to several hundred times in dif-
ferent CUDA based analyses [BK09, GHGC09, JK09, LKPM09]. Following the trend to
take advance of a little ’supercomputer at home’, approaches with massive parallelism on
the GPU have been implemented in scientifically important tools such as MATLAB or
FORTRAN libraries [FJ07, GDD08].

Because of the development from simple graphics devices into highly parallel, multi-
threaded many-core processors, today GPUs are very appropriate to solve problems trans-
formable into data parallel instructions operation. That is, the more independent sub-
sequent instructions are the lower is the communication overhead which usually causes
performance loss. By massive parallel operations memory access latency can even be
avoided by in-place recalculations instead of accessing big data caches. For that purpose,
parallel instructions are embedded into a logical grid of thread blocks, which is mapped
to scalar processors by the instruction unit of a multiprocessor as illustrated in Figure 1.
This architecture is called SIMT (single-instruction, multiple-thread) which is similar to
the well-known SIMD (single-instruction, multiple-data) concept [Cor08].

For controlling the GPU computation CUDA was developed as a hybrid CPU-GPU inter-
action model. The above mentioned single-instruction functions are called from a CPU
thread (referred to as host in the following). Such functions are called kernels whose in-
structions and amount of executed threads can be specified by the coder. As shown by
Ryoo et al. not only aiming at best local acceleration, but also the distribution of threads
within the grids and blocks can significantly influence the performance [RRS+07].

Another important feature of NVIDIA’s CUDA enabled devices is the heterogeneous mem-
ory (see Figure 1). The large global memory reaching gigabytes of capacity contains small

68 Fester et al.

SIMT Multiprocessor 2

SIMT Multiprocessor ...

SIMT Multiprocessor 1

Global Memory

SP

Shared Memory

SP SP

R R R
IU

Constant Memory Cache

Texture Memory Cache

Grid A

Thread
(0,0)

Thread
(0,1)

Thread
(1,0)

Thread
(1,1)

Thread
(0,n)

Thread
(1,n)

Thread
(m,0)

Thread
(m,1)

Thread
(m,1)

Block (0,0)

Thread
(0,0)

Thread
(0,1)

Thread
(1,0)

Thread
(1,1)

Thread
(0,n)

Thread
(1,n)

Thread
(m,0)

Thread
(m,1)

Thread
(m,1)

Block (0,...)

Thread
(0,0)

Thread
(0,1)

Thread
(1,0)

Thread
(1,1)

Thread
(0,n)

Thread
(1,n)

Thread
(m,0)

Thread
(m,1)

Thread
(m,1)

Block (...,0)

Thread
(0,0)

Thread
(0,1)

Thread
(1,0)

Thread
(1,1)

Thread
(0,n)

Thread
(1,n)

Thread
(m,0)

Thread
(m,1)

Thread
(m,1)

Block (...,...)

Grid B

Thread
(0,0)

Thread
(0,1)

Thread
(1,0)

Thread
(1,1)

Thread
(0,n)

Thread
(1,n)

Thread
(m,0)

Thread
(m,1)

Thread
(m,1)

Block (0,0)

Thread
(0,0)

Thread
(0,1)

Thread
(1,0)

Thread
(1,1)

Thread
(0,n)

Thread
(1,n)

Thread
(m,0)

Thread
(m,1)

Thread
(m,1)

Block (0,...)

Thread
(0,0)

Thread
(0,1)

Thread
(1,0)

Thread
(1,1)

Thread
(0,n)

Thread
(1,n)

Thread
(m,0)

Thread
(m,1)

Thread
(m,1)

Block (...,0)

Thread
(0,0)

Thread
(0,1)

Thread
(1,0)

Thread
(1,1)

Thread
(0,n)

Thread
(1,n)

Thread
(m,0)

Thread
(m,1)

Thread
(m,1)

Block (...,...)

CPU / host

launch kernel A launch kernel B

Grid BGrid B
Block (0,0)Block (0,0)

Block (...,0)Block (...,0)

Grid BGrid BGrid BGrid B
Block (0,0)Block (0,0)

Block (...,0)Block (...,0)

Thread
(0,0)

Thread
(0,1)

Thread
(1,0)

Thread
(1,1)

Grid BGrid BThread
(0,n)

Thread
(1,n)

Thread
(m,0)

Thread
(m,1)

Thread
(m,1)

Block (...,0)

instruction flow

memory information flow

......

Figure 1: CUDA memory, processor and programming model. IU - Instruction Unit, R - Register,
SP - Scalar processor

subsets of two cached memory types, texture and constant memory, which are available
in every thread and accessible as fast as registers after being cached. The on-chip shared
memory is available within all threads of a block. In case of no bank conflicts, it is as
fast as register. Bank conflicts occur if two threads try to read the same memory contem-
poraneously, which is then serialised [Cor08]. Nearly all implementations use these fast
memories to achieve communication between threads. This leads to massive performance
gain compared to the usage of global memory or the even much worse communication de-
lay via host control [CMS08, Cor08, Sel08]. To get the best out of global memory Seland
pointed out to access contiguous (coalesced) memory and reported speed up factors of up
to ten by using this technique [Sel08].

Furthermore NVIDIA declares CUDA as an extension to the C programming language
and targets to simplify parallel computation. Hence working with CUDA is quite intuitive,
and there is a low learning curve even without much knowledge about graphics hardware
or OpenGL. This makes CUDA attractive for tool development for bioinformatics tasks.

2 Methods

This section is organised as follows: First we describe the multi-dimensional scaling
(MDS) method. Then the implementation and optimisation of the algorithms in CUDA
are described in detail. We close this section with two important applications of MDS:
gene expression analysis and automatic layout of biological networks.

Fester et al. 69

2.1 Multi Dimensional Scaling

Very intuitive visualisation of relationships between different data records can be obtained
by reconstructing these relationships as pairwise distances in the usual Euclidean 2D plane
or 3D space. Usually data projections to the principal components are used for that pur-
pose, referred to as PCA projection. However, PCA is restricted to linear mappings of
high-dimensional data, thereby focusing on directions of maximum Euclidean variance. A
more natural goal is to obtain a low-dimensional display of a Euclidean space that reflects
most faithfully the similarities among the source data.

In principle, this goal can be reached by using multi-dimensional scaling (MDS) tech-
niques. In classical approaches, distances between the reconstructed low-dimensional
points should be maximum similar to distances between the original data records. This
strict optimisation task can be very hard, though, because of ambiguous compromise solu-
tions for complex source relationships being rendered into a low-dimensional target space.
Most MDS methods define quite stringent cost functions, such as least squares approaches
targeting identity of the distances between the reconstructed point locations and the dis-
tances of corresponding input data.

Alternatively, Pearson correlation r ∈ [−1; 1] can be computed between the distance
matrices D = (dij)i,j=1...n and D̂ = (d̂ij)i,j=1...n of input data and of reconstructed
points, respectively, by

r(D, D̂) =

=n
i<j (dij − µD) · (d̂ij − µD̂)/=n

i<j (dij − µD)2 ·
/=n

i<j (d̂ij − µD̂)2
=:

B√
C · D

with µḊ =
2

n · (n − 1)
·

n?
i<j

ḋij , Ḋ ∈ {D, D̂} , ḋij ∈ {dij , d̂ij} . (1)

This correlation approach allows infinitely many more solutions than strict identity optimi-
sation, while ensuring maximum correlation between source and target distances. Relax-
ation of the optimisation procedure is explained by the invariance of Pearson correlation
against rescaling of vectors by a factor and against baseline shifts by an additive offset.
The following method, called high-throughput multidimensional scaling (HiT-MDS), de-
scribes how correlation is used to help alleviate the optimisation task of finding proper
low-dimensional point locations.

Referring to source vectors xi ∈ X, target vectors x̂i ∈ X̂ and their respective dimensions
q and q̂, the correlation r(D, D̂) between entries of the source distance matrix D and
the reconstructed distances D̂ is maximised by minimising the following embedding cost
function:

s = −r ◦ D̂ ◦ X̂ ⇒ ∂s
∂x̂i

k

= −
j (=i?

j=1...n

∂r

∂d̂ij

· ∂d̂ij

∂x̂i
k

→ 0, i = 1 . . . n (2)

Locations of all points x̂i in the target space induce pairwise distances and, consequently,

70 Fester et al.

correlations between source and target distances. These locations are obtained by gradi-
ent descent on the stress function s using the chain rule. The derivatives in Equation 2
are [SSUS07]

∂r

∂d̂ij

=
(dij − µD) − B

D · (d̂ij − µD̂)√
C · D

∂d̂ij

∂x̂i
k

= (x̂i
k − x̂j

k)
A

d̂ij for Euclidean d̂ij =

B?q̂

l=1
(x̂i

l − x̂j
l)2 .

While for intuitive plotting results target distances d̂ij are usually Euclidean, input dis-
tances can be mere dissimilarities, such as mirrored Pearson correlation dij = (1 −
r(xi, xj)) or powers of which. These correlations between data vectors must not be con-
fused with the target value r in the correlation-based cost function optimisation in Equa-
tion 2 of HiT-MDS.

Two major revisions are made to the previous version of HiT-MDS described in [SSUS07].

First, the update replaces the specific value of the cost function derivative in Equation 2
by the sign sgn(∂s/∂x̂i

k). This forces updates, irrespective of the order of magnitude
of the derivative for maintaining a constant convergence process. The effective rate of
convergence is controlled by a single factor only, the learning rate γt, decreasing in time.
Thus, an atomic update quantity of the k-th component of the i-th reconstruction point at
time point t is computed by

Δtx̂
i
k = −γt · sgn

5
∂s

∂x̂i
k

1
, γt → 0 for t → tmax . (3)

Convergence is forced by driving the learning rate monotonously to zero, in the limit of
maximum cycles tmax +1. In practice, the learning rate starts at γ0 = 0.1 and gets linearly
decreased to zero. This update scheme is very robust against the choice of the learning rate
and turns out to yield excellent results.

Secondly, batch optimisation is realised. This means that updates from all pairs of data
records are integrated before being applied synchronously to the reconstructed points.
This strategy can be formally expressed as operations on distance matrices and, hence,
efficiently parallelised. Illustrative MATLAB/Octave and R implementations with vec-
torised code as well as CUDA codes are available online [Hit].

A general formulation of the point reconstruction procedure is given in Algorithm 1. Much
of the work is actually done in line 8 of the program. Apparently, the depicted algorithm
is specialised in the task of fast reconstruction of a given dissimilarity matrix D, thereby
depending only on the target dimension, adaptation rate, and the number of cycles.

One of the main challenges of transferring the general algorithm to CUDA is an efficient
use of memory and threads, which is detailed in the next sections. Another important issue
to be discussed is the handling of adjacency matrices for being processed by the HiT-MDS
algorithm.

Fester et al. 71

Algorithm 1 General HiT-MDS algorithm
1: Initialise x̂i

k randomly from the unit interval
2: for t ← 1 . . . tmax {iterations} do
3: Calculate distance matrix D̂ of all x̂, including B, C , D , and µD̂

4: Calculate update rate γt ← γ0 · (1 − t/(tmax + 1))
5: for k ← 1 . . . q̂ {each target dimension} do
6: reset k-th dimension update vector y ← 0
7: for i ← 1 . . . n {each target point} do
8: yi ← Δtx̂

i
k (using Equation. 3)

9: end for
10: for i ← 1 . . . n {apply integrated update to each target point} do
11: x̂i

k ← x̂i
k + yi

12: end for
13: end for
14: end for

2.2 Implementation on CUDA

As depicted in equations 1, 2 and 3 the essential work of HiT-MDS is done by calculating
the Pearson correlation coefficient r(D, D̂). Therefore, three intensive summations in-
cluding mean value computation as well as the Euclidean distances have to be computed.
These two tasks are very well suited for being transformed into parallel problems, as de-
scribed following. We will point out the way of theoretical parallelization complexities and
CUDA specific implementation details. Additionally, we included a degree based and a
second all-pairs-shortest-path based algorithm to enhance the graph distance interpretation
possibilities of HiT-MDS for creating network layouts.

All pairwise distances are stored in a half n2-matrix and accessed by a function
getPos(x, y) = row coord[y] + x for a graph G = (V, E), (x, y) ∈ E. row coord
contains pre-calculated coordinates of starting points for each row of the given half ma-
trix. On the GPU this is realised as an array in fast constant memory to provide best access
times.

The Prefix Reduction or partial-sums problem is a well understood algorithmic ap-
proach to maintain partial sums of a given array A[1..n]. It is specified for elements A[i]
to come from an arbitrary group H containing at least 2δ elements. For the cell-probe
model with b-bit cells a problem complexity of Ω =

7
δ
b · lg n

3
was proven [PD04].

For parallel implementations, it was shown that the naı̈ve algorithm’s time complexity
is O (log n) performing O (n log2 n) addition operations. Furthermore, work efficient
implementations (Algorithm 2) perform only O (n) addition operations [HSO07].

To get additional speed improvements, it is necessary to take advantage of the multiproces-
sors shared memory. All threads running in the same block have communication access to
the same shared memory. In this case, communication means to copy all elements known

72 Fester et al.

Algorithm 2 Work-efficient partial-sum algorithm
1: for d ← 0 . . . log2 n − 1 do
2: for k ← 0 . . . n − 1 by 2d+1 in parallel do
3: A[k + 2d+1 − 1] ← A[k + 2d − 1] + A[k + 2d+1 − 1]
4: end for
5: end for

by a thread into a smaller shared memory array. As mentioned above, shared memory is
substantially faster than global memory.

To avoid bank conflicts, we use the blockIDs and threadIDs to calculate memory addresses
of elements in shared memory that a thread adds up, schematically given as

sum = shared [threadID] + shared [threadID + blockDim/2] (4)

Thus, with a limitation to the maximum number of threads per block of 512, caused by
CUDA constraints, one can add 1024 elements per block. The result is written back to
global memory and is source of the next loop. Therefore, in every step of outer for-loop of
Algorithm 2, there are 2 · k global memory accesses. To take advance of coalescing mem-
ory, we address the elements read from global memory by a similar idea as in formula 4.

Euclidean Distances computation time complexity is in O
;

n2

p

4
. We reached accelera-

tion factors of more than 20 up to 30 by using a simple kernel according to Algorithm 3.
This approach uses the CUDA built-in register variables id.x and id.y to find out the vir-
tual location of an active thread.

Algorithm 3 Parallel pairwise Euclidean distances with thread IDs in q̂-dimensional space
1: for i ← 0 . . . n2 in parallel do

2: d̂id.x,id.y ←
/=q̂

l=1(x̂
id.x
l − x̂id.y

l)2

3: end for

Floyd-Warshall Algorithm According to use MDS as graph layout tool, a simple ap-
proach to get more information out of sparse graphs is to compute extra distances from
existing graph edges by finding all node pairs shortest path. The Floyd-Warshall algo-
rithm was designed with this in mind and is, similar to the Euclidean distances algorithm,
very simple to transform into a parallel version. It is a single O (n) operation looping over
O (n) threads as shown in Algorithm 4 and pointed out by Harish and Narayanan [HN07]
who reported significant speed improvements. Again, we use the texture memory access
method to profit from caching effects.

Degree Based Distance Manipulation An alternative and fast method to visualise net-
work structures is to pre-compute distances out of adjacencies. The main idea is to declare

Fester et al. 73

Algorithm 4 Parallel Floyd-Warshall(G=(V,E))
1: create adjacency matrix A from G
2: for k ← 1 . . . n do
3: for all elements in the adjacency matrix A, where 1 ≤ i, j ≤ n in parallel do
4: A[i, j] ← min(A[i, j], A[i, k] + A[k, i])
5: end for
6: end for

nodes with many neighbours as large nodes. Basically, this method is in a time complex-
ity of O(no) with o is the average number of neighbours per node. Since most networks
in biology are sparse, the algorithm works very fast. In substance, in such a network
G = (V, E) the distances are defined as l(e) = deg(u) + deg(v) for e = (u, v) ∈ E.

HiT-MDS is applied two times on the pre-computed distance values using half of the stan-
dard cycle number each. In the first run, we set unknown distances belonging to different
components to the graph’s doubled diameter. This first step separates all components.
In the second step, and hence, during the second half of total algorithm cycles, points
are moved to their best correlation based positions. A result of this approach is given in
Figure 2.

Figure 2: Yeast protein interaction network with 4554 nodes, evaluated with degree based distance
interpretation. The node positions are visualised on the basis of CUDA’s OpenGL-interoperability.

74 Fester et al.

Figure 3: HiT-MDS scatter plot of embedded temporal gene expression data. Correlation similarity
(1− r(xi, xj))p is considered at p = 8 for magnification of high-correlation subsets, which explains
the characteristic sand glass shape.

2.3 Application Examples

2.3.1 Global Patterns of Gene Expression

Visualisation is sought for 4824 high-quality genes covering 14 time points of developing
Barley
grains [SSUS07]. Their scatter plot is obtained by running HiT-MDS for 50 data cycles,
yielding the high-quality display shown in Figure 3. In contrast to previous results the
processing time dropped from 861 seconds by a sequential C program to merely 6 seconds
using CUDA (not including disk read).

The characteristic sand glass shape results from using eighth power of the correlation
measure, more precisely, (1 − r(xi, xj))8, applied to highly correlated 14-dimensional
time series profiles of up-regulation vs. down-regulation processes. The power of eight
magnifies subtle dissimilarities in highly correlated genes, this way enhancing their visual
differentiation. By posterior labelling with known gene annotations, the exemplary group
of hormone and signaling related genes are highlighted in orange colours, other func-
tional categories are marked in gray. Additionally, data boxes, brushed in blue, and their
corresponding plots of temporal patterns have been manually picked in order to demon-
strate the high spatial connectivity of similar regulatory profiles and their embedded two-
dimensional counterparts. A smooth transition can be found from the western side (W)
with patterns of down-regulation, via south (S) corresponding to patterns of intermedi-
ate up-regulation and up-regulation located in the east (E) to north (N) with intermediate
down-regulation, back to west. Since the underlying array was designed for capturing gene
expression connected to developmental processes, the majority of genes is in fact expected
to be either up- or down-regulated, as visually confirmed by the two major structures. Rare
and unique regulation patterns are found in the interior of the sand glass shape.

The prominent temporal expression patterns are easily revealed by browsing the scatter

Fester et al. 75

plot in the way described above. The plot shows that the correlation space is very homo-
geneous, dominated by patterns of up- and down-regulation, according to the experimental
design. Overall, the HiT-MDS embedding procedure applied to transcriptome data of bar-
ley tissue development yields a faithful arrangement of genes with their typical temporal
expressions. Together with functional annotation data this is a very instrumental tool for
screening sets of co-regulation and for an initial derivation of tentative pathways.

2.3.2 Network Layout

Many processes and interactions in biology are represented as networks. Furthermore,
there are two common ways to interpret experimental data resulting in networks: i) as a
biological network and ii) in the context of an underlying network. Due to the increasing
amount of experimental data and the steadily growing size of networks, automatic network
layout is important to better understand the relationships and interactions between biolog-
ical objects such as genes, transcripts, proteins and metabolites. One widely used method
for network layout is the force-directed layout method [FR91].

Let G = (V, E) be a network consisting of a set of nodes V = {v1, . . . , vn} represent-
ing the biological objects (e. g. proteins) and a set of edges E = {(vi, vj)|vi, vj ∈ V }
representing the interactions between the biological objects (e. g. interactions between
proteins). A layout of the network is represented by coordinates for the nodes and curves
for the edges. A force-directed layout method uses a physical analogy to draw networks.
It simulates a system of physical forces defined on the network and produces a drawing
which represents a locally minimal energy configuration of that physical system. Force-
directed layout methods consist of two parts: i) a system of forces defined by the nodes
and edges, and ii) a method to find positions for the nodes (representing the layout of the
network) such that for each node the total force is (close to) zero.

A typical method interprets nodes as mutually repulsive ’particles’ and edges as ’springs’
connecting these particles. This results in attractive forces fa between adjacent nodes and
repulsive forces fr between non-adjacent nodes. For the current layout for each node v ∈
V the force F (v) =

=
(u,v)∈E fa(u, v)+

=
(u,v)∈V ×V fr(u, v) is computed, which is the

sum of all attractive forces fa and all repulsive forces fr affecting node v. For example, for
the x component the forces fa and fr are defined as fa(u, v) = c1 ·(d(u, v)− l) · x(v)−x(u)

d(u,v)

and fr(u, v) = c2
d(u,v)2 · x(v)−x(u)

d(u,v) , respectively, where l is the optimal distance between
any pair of adjacent nodes, d(u, v) is the current distance between the nodes u and v, x(v)
is the x-coordinate of node v, and c1, c2 are positive constants. Iterative numerical analysis
is used to find a locally minimal energy configuration by moving each node in the direction
of F (v) to produce a new layout. Finally, the nodes are connected by straight lines.

There are several often used varieties of force-directed methods [Ead84, KK89, SM95].
The computation of the layout is computationally demanding, and fast force-directed
methods have been proposed such as an incremental multidimensional scaling heuris-
tic [Bas99] or Walshaw’s algorithm (a multi level version of the original algorithm [FR91])
in [HJP02]. The previously shown network example in Figure 2 is based on the HiT-MDS
node layout for visualizing a protein interaction network in yeast containing 4554 nodes.

76 Fester et al.

instant size MATLAB [s] CUDA [s] speedup
64 0.114±0.010 0.012±0.004 9.5 x

128 0.126±0.006 0.014±0.007 9.0 x
256 0.616±0.012 0.021±0.003 29.3 x
512 2.777±0.205 0.048±0.004 57.9 x

1024 9.975±0.485 0.178±0.004 56.0 x
2048 43.473±2.832 0.721±0.003 60.3 x
4096 183.700±11.915 3.361±0.024 54.7 x
8192 750.129±48.643 13.997±0.015 53.6 x

Table 1: Performance comparison of optimized MATLAB and CUDA code on test instances of
different sizes. The target dimension is three. Measurements refer to time in seconds, excluding data
import time.

3 Results

The core HiT-MDS algorithm has been implemented on three different platforms. Two
vectorized code samples are available for R and MATLAB/GNU Octave as well as the
CUDA version. Code profiling tools of MATLAB and CUDA were used to optimize the
performance. Code for R and GNU Octave was manually optimized and is by a factor of
2 to 4 slower than the MATLAB version, because only MATLAB is able to make use of
fast single precision arithmetics, thereby using multi-threaded linear algebra routines and
loop optimization. Therefore, the fastest code of MATLAB is compared with the CUDA
implementation.

Random distance matrices of different sizes were generated for performance tests on the
reference server machine, a 16 core server equipped with 3 GHz AMD Opteron CPUs and
a NVidia TESLA S870 GPU rack. MATLAB 7.7.0 with multi-thread mode and CUDA 2.1
were used for performance comparisons. Average run times of 10 independent starts with
50 cycles per run were measured and compiled in Table 1. The instant size column refers
to matrices representing between 64x64 to 8192x8192 distances. For the fixed number
of cycles, the embedding speed is independent of the matrix entries, no matter if full or
sparse matrices are processed. This also indicates a general validity of the recorded speed,
no matter if for scatter plot generation or for network layout.

Significantly faster execution times of CUDA are found. Yet, small instances yield less
speedup than instances of sizes around 2048x2048 for which robust factors over 50 fold
acceleration can be stated. Moreover, very small standard deviations are obtained for
CUDA, indicating undisturbed use of the GPU hardware for high-performance scientific
calculations.

Fester et al. 77

4 Discussion

HiT-MDS is a versatile algorithm with good parallelization potential for reconstruction
of dissimilarity relationships in a Euclidean space. It can be used as faithful dimension
reduction method, for converting data with a specific data metric into a Euclidean repre-
sentation, and, by a straight-forward extension, for network reconstruction of adjacency
matrices. The method is thus perfectly suited for dealing with data screening, complexity
reduction, and relationship characterization, tasks that regularly exist in biological sci-
ences.

At first glance the presented performance comparison between MATLAB and CUDA
might seem to be unfair. Yet, only few lines of MATLAB code need to be interpreted
per algorithmic cycle. Virtually all matrix operations are handled by internal MATLAB
functions of optimized algebra subroutines that can be hardly beaten by hand-written C++
code. Just another theoretical factor of 2 would be gained for MATLAB if symmetry of the
matrices could be efficiently exploited. Yet another clear time benefit of CUDA remains:
thanks to the GPU server architecture heavy computations can run almost independent of
the host, if memory transfer between CPU and GPU remains at a low level.

The main ingredients to successful utilization of CUDA turned out to be (i) the consistent
use of the reduction principle for using fast shared memory on the multiprocessors instead
of slow global memory on the graphics board, (ii) the use of texture memory, and (iii) a
good arrangement of threads into logical blocks, and (vi) the use of thread-interleaving
memory access (coalescence). For the computing task at hand, single precision floating
point numbers of 32 bit worked as reliably as double precision. The technical limitation of
the size of the distance matrix is currently at about 14000x14000 elements on a graphics
board with 1.5 GB memory. Yet, larger memory capacity, double precision calculations,
and more multiprocessors per GPU are already available at low prices.

Future tasks are related to deal with larger network structures, which requires an imple-
mentation of a sparse matrix data structure. Another challenge will be the identification of
network nodes in very large graph structures.

References

[Bas99] W. Basalaj. Incremental Multidimensional Scaling Method for Database Visualization.
In R. F. Erbacher, P. C. Chen, and C. M. Wittenbrink, editors, Visual Data Exploration
and Analysis VI (Proc. SPIE), volume 3643 of Proceedings of SPIE, pages 149–158,
1999.

[BK09] J. Breitbart and G. Khanna. An exploration of CUDA and CBEA for a gravitational
wave data-analysis application. Einstein@Home, 2009.

[CMS08] S. Che, J. Meng, and J. W. Sheaffer. A performance study of general purpose ap-
plications on graphics processors using CUDA. Journal of Parallel and Distributed
Computing, 68(10):1370–1380, 2008.

[Cor08] NVIDIA Corporation. NVIDIA CUDA Programming Guide Version 2.1, 12/8/2008.

78 Fester et al.

[Ead84] P. Eades. A Heuristic for Graph Drawing. Congressus Numerantium, 42:149–160,
1984.

[FJ07] M. Fatica and W. Jeong. Accelerating MATLAB with CUDA. HPEC, 2007.

[FR91] T. Fruchterman and E. Reingold. Graph Drawing by Force-directed Placement. Soft-
ware - Practice and Experience, 21(11):1129–1164, 1991.

[GDD08] N. A. Gumerov, R. Duraiswami, and W. Dorland. Efficient Personal Supercomputing in
Fortran 9x on CPU-GPU Systems. CSCAMM, 2008.

[GHGC09] A. Godiyal, J. Hoberock, M. Garland, and J. C.Hart. Rapid Multipole Graph Drawing
on the GPU. In Graph Drawing, volume 5417 of LNCS, pages 90–101. Springer, 2009.

[Hit] HiT-MDS at IPK Gatersleben - Data Inspection Group. http://dig.ipk-gatersleben.de/.

[HJP02] K. Han, B.-H. Ju, and J. H. Park. InterViewer: Dynamic Visualization of Protein-
Protein Interactions. In M. T. Goodrich and S. G. Kobourov, editors, Graph Drawing
(Proc. GD ’02), volume 2528 of LNCS, pages 364–365. Springer, 2002.

[HN07] P. Harish and P.J. Narayanan. Accelerating Large Graph Algorithms on the GPU Us-
ing CUDA. In High Performance Computing, volume 4873 of LNCS, pages 197–208.
Springer, 2007.

[HSO07] M. Harris, S. Sengupta, and J. D. Owens. Parallel Prefix Sum (Scan) with CUDA. In
GPU Gems 3, pages 851–875. NVIDIA Corporation, 2007.

[IMO09] S. Ingram, T. Munzner, and M. Olano. Glimmer: Multilevel MDS on the GPU. IEEE
Transactions on Visualization and Computer Graphics, 15(2):249–261, 2009.

[JK09] M. Januszewski and M. Kostur. Accelerating numerical solution of Stochastic Differ-
ential Equations with CUDA. ArXiv e-prints, 2009.

[KK89] T. Kamada and S. Kawai. An Algorithm for Drawing General Undirected Graphs.
Information Processing Letters, 31(1):7–15, 1989.

[LKPM09] H. Li, A. Kolpas, L. Petzold, and J. Moehlis. Parallel Simulation for a Fish Schooling
Model on a General-Purpose Graphics Processing Unit. In Concurrency and Computa-
tion: Practice and Experience, 21(6), pages 725–737, 2009.

[PD04] M. Pătraşcu and Demaine. Lower Bounds for Dynamic Connectivity. In Encyclopedia
of Algorithms, pages 473–477. Springer, 2004.

[RRS+07] S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S. Ueng, and W. W. Hwu.
Program optimization study on a 128-core GPU. Presented at the First Workshop on
General Purpose Processing on Graphics Processing Units, October 2007.

[Sel08] J. Seland. CUDA Programming, 2008. http://heim.ifi.uio.no/ knutm/geilo2008/seland.pdf.

[SM95] K. Sugiyama and K. Misue. A Simple and Unified Method for Drawing Graphs:
Magnetic-Spring Algorithm. In R. Tamassia and I. G. Tollis, editors, Graph Drawing
(Proc. GD’94), volume 894 of LNCS, pages 364–375. Springer, 1995.

[SSUS07] M. Strickert, N. Sreenivasulu, B. Usadel, and U. Seiffert. Correlation-maximizing sur-
rogate gene space for visual mining of gene expression patterns in developing barley
endosperm tissue. BMC Bioinformatics, 8:165, 2007.

[TO05] Y.-H. Taguchi and Y. Oono. Relational patterns of gene expression via non-metric
multidimensional scaling analysis. Bioinformatics, 21(6):730–740, 2005.

Fester et al. 79

