
56

Model-Based Generation of Enterprise Information Systems

Kai Adam,1 Lukas Netz,1 Simon Varga,1 Judith Michael,1 Bernhard Rumpe,1 Patricia

Heuser2 and Peter Letmathe2

Abstract:

Thick clients of client/server-information systems include increasingly more logic which leads to
several challenges in the development process: Resulting from the separate development of front-
and backend, the risk for inconsistencies between components on the one hand, and communication
overhead between developers on the other hand are high. We present an approach which helps to
overcome these challenges by using model-driven engineering for the development of data-intensive
enterprise information systems. WebDEx was developed as a generator for the creation of such
systems. It uses UML/P inspired modelling languages, as models (1) build the base for communication
among project members and (2) are used as input for the code generator which ensures consistency
by construction. This work relies on an infrastructure created by the language workbench and code
generation framework MontiCore. Moreover, this paper presents the practical application of this
approach for the agile development of a multi user, adaptable web-application to be used by more
than 400 chairs of RWTH Aachen University.

Keywords: Data-Intensive Enterprise Information Systems · Model-Based Software Engineering ·
Model-Driven Information System Development · Multi-User Web Applications · WebDEx · Agile
Development

1 Introduction

In the development of web-applications with classical thin clients, logic is defined on the
server-side. In modern architectures, thick clients, also known as smart clients, assign a
part of the functionality to the client-side. This type of software design is getting more in
common in modern architectures [JW06]. Hence frontend and backend are implemented
separately and often use different programming languages. Developers of both parts have to
communicate intensively and have to adjust their implementation to the corresponding other

side. Consequently, this increases the risk for communication overhead and inconsistencies.

Abstract models have proven to be a good approach to face these challenges. They can be

used as a foundation to all parts of the implementation. These models provide a viable input
for generators to create source code, which is consistent among various parts of the project

1 RWTH Aachen University, Software Engineering, Germany {nachname}@se-rwth.de
2 RWTH Aachen University, Controlling, Germany {nachname}@controlling.rwth-aachen.de

57

76

(consistency by construction). Domain experts with modelling skills are able to develop and

customize these models within their respective domain without being involved into details

of the implementation or other domains (similar to [HMM18]). Models build the base

for communication among project members. Moreover, changes of the models are easily

passed on to the source code and decrease development time. This provides advantages for

each of the three intended user groups: The developer needs only specific knowledge about

the implementation e. g. of types, but not about the involved domains. Domain experts

with modelling skills develop the models (data structure and GUI design) within their

scope, and need no knowledge about implementation details. The end user benefits from

fast handling of changes, easy adaptability to new guidelines and quick implementation of

feature requests.

This work is based on the model-driven software engineering (MDSE) experiences of the SE

group of RWTH Aachen university and the developed MontiCore (MC) language workbench

and code generation framework [KRV10]. Models, created with UML/P [Ru16] inspired

modelling languages, are used as input for this framework. The presented approach for the

development of enterprise information systems (EIS) is grounded in preliminary work of

the research group, e. g. several theses and the latest developed MontiCore Data Explorer

(MontiDEx) code generator [MRR15]. MontiDEx processes models to generate data-centric

applications in Java and Java Swing. The current approach includes the movement to a

different technology stack (Angular as a framework for client applications). Thus, a new EIS

generator called WebDEx was developed. There exist several approaches for the generation

of web applications using different platforms, e.g., Bernardi et al. [Be12] integrate three

meta-models based on a declarative language. Given the page limit, we refer the readers

for further discussion of related work to http://www.se-rwth.de (publications and

phdtheses).

The presented approach has a high proportion of generated code and shows its’ practical

application with a case study creating a data-intensive EIS within the MaCoCo project3. An

important goal of the project was the agile development and adaptability of this multi-user

web-application. Thus, lead users are involved actively in the development process, new

features are delivered quickly and frequently and the project team reacts fast to changes with

a focus on improving the quality of the EIS. MaCoCo will be used for financial and staff

management of more than 400 chairs of the university. Moreover, the findings from building

generic abstractions make our approach reuseable for other EIS development projects.

The paper is structured as follows: Section 2 specifies the general concept of the approach

and its’ main advantages. Section 3 presents the first practical realization of our approach in

the MaCoCo project. The last section reviews the current progress and highlights further

goals and next steps for our approach.

3The MaCoCo project is funded by the RWTH Aachen University and jointly realized by the chairs of Controlling

and Software Engineering.

58

 77

2 MDSE for data-intensive EIS

Our approach for the model-based generation of data-intensive EIS (Figure 1) consists of

three major components: (1) A set of models describing the software that will be generated

as input, (2) a powerful generator, including a set of parsers, capable of interpreting given

models and (3) the target, where the generated sources will be built in (in this case realized

as web-applications).

Generator

GUI
Model

▪▪▪

▪▪▪▪▪▪

DATA
Model

▪▪▪

▪▪▪▪▪▪

Backend

Source
code

Source
code

Domain-Expert

Domain-Expert

Developer

Generated

source code

Hand written

source code

Frontend

Source
code

Source
code

User

Template

{�}

Fig. 1: Approach for the model-based generation of data-intensive EIS with the WebDEx generator

(1) Domain experts provide models in corresponding textual domain specific languages

(DSLs): A GUI-designer provides a GUI-model (based on MontiViz [Re16]), whereas differ-

ent domain-experts provide data-models, e. g. class diagrams (created with UML/P [Ru16]

inspired modelling languages). These models describe different aspects and components of

the software.

(2) The generator interprets the models with parsers (created with MontiCore4). In a next

step, the generator detects conflicts between the given models, e. g. names are assigned

twice, and applies standards which are defined at a global level, e. g. getters and setters for

each data class or default parameters. Once the abstract representations of the models are

processed, the generator uses platform specific templates to generate source code. Such a

template is a blueprint for code fragments in a certain programming language, like method

or attribute definitions (e. g. how to write a toString() method in Java code). They can

be exchanged to generate source code in different programming languages, while using the

same set of models.

(3) Depending on it’s configuration, the generator will create code for both front- and

backend. The generated code is easy to read and interpret, can be easily extended to include

hand written code, and reacts well to model changes by domain experts.

4MontiCore provides parsers for textual DSLs if provided with a corresponding grammar. See http://www.

monticore.de/ for more information.

59

78

To sum up, the main advantages of using the generator are: it works iteratively and deals

thus well with changes, it is responsive to existing hand written code and already provides

extension points to enable the enhancement of the generated functionality by hand.

3 Practical Realization: MaCoCo

In academia research projects’ financial management is becoming increasingly demand-

ing: Different funding authorities, a variety of funding schemes and especially diverse

requirements for accounting make it a challenging field for researchers and administration.

Similar challenges occur for staff management, where different sorts of contracts and salary

schemes, official restrictions for employments and changing assignments to projects keep

administration busy. The more projects a chair has, the more researchers are hired and the

more important it is to keep an overview.

Out of this need, the chairs for Controlling and Software Engineering started the MaCoCo

(Management Cockpit for Controlling) project5, which realizes a data-intensive EIS as

web application. Supported features are extended financial and staff management as well

as course administration for professors. MaCoCo is intended to replace and standardize

existing management processes and is planned to be used by up to 400 chairs of RWTH

Aachen University.

In a first realization step, a handwritten prototype has been realized to outline the project’s

scope. Based on this source code a generator was created to replace the handwritten parts

step-by-step with generated code [Gr06]. Whereas it may seem quite unusual to develop a

project like this, this first realization step was very useful to evaluate the initial concept and

get more into the domain. Anyhow, here is no need to follow this way of realization in other

projects: The generator can now be used to create a new application, without preceding

handwritten implementations.

As readers can imagine, each chair has different requirements for such a system and they

can change over time due to external influences. This means agile development for quick

implementation of requests is a must. Using a model driven approach in combination with

the generator makes it possible to react quickly to changes in the data model and still

produce a consistent product. Changes of data types of existing attributes or adding new

attributes in the model will result in a corresponding change in the generated application.

Currently nearly two thirds of the dynamic parts of the application are generated. Runtime

environments and services are currently hand written, but could be easily generated as well.

5See https://git.rwth-aachen.de/macoco/extern/wikis/home for further details.

60

 79

4 Conclusion

To sum up the main contribution of this paper: The presented approach makes it possible to

generate large parts of an EIS and to develop such systems in an agile manner. As a proof of

concept we presented the practical application of the approach in a case study. It is possible

to use multiple models as an input and to generate source code in two different programming

languages (TypeScript, Java). The most challenging aspect was building abstractions of the

existing hand written source code fragments. Generic parts had to be identiĄed in order to

efficiently create templates. Nevertheless, once these generic abstractions exist, they are

reusable for other EIS development projects.

Up to now visualizations and SQL statements are not generated. Thus, next steps include the

development of a generator for visualization models and the generation of SQL statements

related with the visualization. Furthermore, we are interested in using additional models,

e. g., state charts and sequence diagrams, as generator input to improve program logics.

References

[Be12] Bernardi, M. L.; Cimitile, M.; Di Lucca, G. A.; Maggi, F. M.: M3D: A Tool for

the Model Driven Development of Web Applications. In: Proceedings of the

Twelfth International Workshop on Web Information and Data Management.

WIDM Š12, ACM, Maui, Hawaii, USA, pp. 73Ű80, 2012.

[Gr06] Grönniger, H.; Krahn, H.; Rumpe, B.; Schindler, M.: Integration von Modellen

in einen codebasierten Softwareentwicklungsprozess. In: Modellierung 2006

Conference. Vol. 82. LNI, pp. 67Ű81, 2006.

[HMM18] Hernandez-Mendez, A.; Michel, F.; Matthes, F.: A Practice-Proven Reference

Architecture for Model-Based Collaborative Information Systems. Enterprise

Modelling and Information Systems Architectures 13/, pp. 262Ű273, 2018.

[JW06] John, S.; Wi-Mei, M. H.: A proposed framework for an effective integration

of supporting environments for smart client application development. In: Int.

Conference on Computing Informatics. Pp. 1Ű6, 2006.

[KRV10] Krahn, H.; Rumpe, B.; Völkel, S.: MontiCore: a Framework for Compositional

Development of Domain SpeciĄc Languages. International Journal on Software

Tools for Technology Transfer (STTT) 12/5, pp. 353Ű372, 2010.

[MRR15] Mir Seyed Nazari, P.; Roth, A.; Rumpe, B.: Mixed Generative and Handcoded

Development of Adaptable Data-centric Business Applications. In: Domain-

SpeciĄc Modeling Workshop (DSMŠ15). ACM, pp. 43Ű44, 2015.

[Re16] Reiß, D.: Modellgetriebene generative Entwicklung von Web-

Informationssystemen. Shaker Verlag, 2016.

[Ru16] Rumpe, B.: Modeling with UML: Language, Concepts, Methods. Springer

International, 2016.

