
Investigation of Generic Observer/Controller Architectures
in a Traffic Scenario

Emre Cakar, Jörg Hähner and Christian Müller-Schloer∗

Abstract:
The Organic Computing (OC) initiative deals with new design concepts, which fa-

cilitate developing technical systems with life-like properties such as self-organisation,
self-optimisation and self-configuration in order to make them robust, flexible and
adaptive. In this context, a generic observer/controller architecture1 has been proposed
in [RMB+06] in order to establish the self-organisation in technical systems. In this
paper, we investigate different distribution possibilities of the generic o/c architecture
and the resulting collaboration and communication patterns in a traffic scenario.

1 Introduction

Self-organising systems can tolerate disturbances either from inside the system, e.g. in
case of defective system elements, or from outside the system, e.g. in case of a dynamic
environment, and continue working properly adapting to changes in their environment. In
order to design self-organising systems some degrees of freedom must be given to system
elements so that they can adapt their behavior and/or structure to new environmental situ-
ations. The self-organisation process on its own may lead a system to an undesirable state
that does not conform with a system goal given by the developer. Hence, this process must
be controlled in some way so that the system can adapt to its dynamically changing envi-
ronment and work towards a predefined goal at the same time. The generic o/c architec-
ture has been proposed in [RMB+06] in order to establish the controlled self-organisation
in technical systems. In this paper, we investigate different distribution possibilities of
the generic o/c architecture. As a test scenario we consider a resource sharing problem
presented through an intersection without traffic lights. We expect an advantage of a cen-
tralized architecture in case of a low-conflict scenario whereas a distributed architecture
should performe better in more complex scenarios.

2 The Generic Observer/Controller Architecture

There are architectures presented in the literatur, which exibit promising results in col-
laborative problem solving in multi-agent systems. However, they are either specialized
in solving specific problems [CM06, TLG+02, KOV+03] or are used in specific problem
domains [CTRC03, LGMV05]. Generic concepts and methodologies related to the obser-
vation and control of collaborative systems are investigated only in [RMB+06, BMMS+].

∗In close cooperation with Hartmut Schmeck und Urban Richter, KIT / University of Karlsruhe
1In the rest of the paper we use the abbreviation ”o/c architecture“.

733



The generic o/c architecture [RMB+06] has been proposed in this context. There are
many distribution possibilities of the proposed architecture varying from fully central to
fully distributed. In the former case, there is only one observer and one controller for the
whole system (see Fig. 1(a)), whereas in the latter case there is one observer and one
controller for each agent (see Fig. 1(b)) in the system. The fully central and the fully dis-
tributed architectures define the two extreme points in the design space. So, there are also
many other distribution possibilities like a multi-level architecture between these extreme
points (see Fig. 1(c)).

(a) Central (b) Distributed (c) Multi-level

Figure 1: Distribution possibilities of the generic observer/controller architecture

Our goal is to investigate different distribution possibilities of the generic o/c architecture.
In this context, we implemented a sample traffic scenario to explore different collaboration
and communication patterns resulting from application of implemented o/c architectures
to the system.

3 Problem Description

We used the agent-based modeling and simulation toolkit “RePast” to implement our sce-
nario. RePast provides a scheduler, which triggers agents to perform their predefined
behavior in each time step. A time step in a RePast simulation is called a “Tick”. In our
experiments, we also used the notion of ticks in producing experimental results. Since we
have a simulated traffic scenario, we can adopt metrics that are already used in the litera-
ture to measure the system performance in our scenario. Common metrics used in traffic
scenarios are waiting time, the difference between the minimum possible travel time and
actual travel time, percentage of stopped cars, density of cars and travel time. We used the
mean waiting time in the intersection to measure the system performance. All cars in the
intersection exhibit the same behaviour. A car (C1) first tries to move forward. If another
car (C2) is in front of it, C1 tries to overtake C2 from the right. If the intended position
is occupied by another car (C3), so C1 tries to overtake C2 from the left. C1 doesn’t
change its position in the case where all intended positions are already occupied. We first
ran the simulation without an o/c architecture to identify the system performance without
an intervention. We observed that cars with different driving directions block each other
in the intersection. We call the part of the intersection, where this happens, the “critical
area”. Some cars in the critical area either need much more time than others to cross over

734



the intersection or in the worst case, they remain blocked in a large cluster over the whole
simulation time (see Fig. 2). The problem defined here is very close to the scheduling

Figure 2: The critical area and the clus-
tering behavior in this area

problem known from operating system theory. In
this context, cars in the intersection can be consid-
ered as different processes running on the same ma-
chine and the critical area can be considered as a
shared resource, e.g. the CPU, for which processes
compete. We used a priority based scheduling al-
gorithm, which is adopted from operating systems
theory, in order to cope with the clustering problem
in the critical area. Just as in the case of a sched-
uler in an operating system, we determine priorities
for cars with respect to their waiting times in the in-
tersection. A car (or a group of cars) with higher
waiting time gets a higher priority. In our work we
used this priority allocation mechanism on different
distribution levels of the generic o/c architecture.

4 Observer/Controller Architectures

We first implemented a fully distributed o/c architecture, where each car is endowed
with a pair of an observer and a controller. The view of each observer and controller
is limited to the direct neighborhood of the corresponding car. As depicted in Fig. 3

Figure 3: The direct neighborhood of
Car1

only Car2, Car3 and Car4 are in the direct neigh-
borhood of Car1. Considering this type of neigh-
borhood, local rules are defined for the observer and
controller, which determine the behavior of a car in
the next simulation step. In the following, these lo-
cal rules are explained in the sample situation given
in Fig. 3. The observer creates a list of situation pa-
rameters considering the neighborhood of its corre-
sponding car. These parameters include cars in the
direct neighborhood, their waiting times and their
positions relative to the car, to which the observer
belongs. In the example given in Fig. 3, the pa-
rameters created by the observer of Car1 look like
[Car2 - W2 - On the left], [Car3 - W3 - Conflict]

and [Car4 - W4 - Behind]. The observer of Car2 creates only the parameter [Car1 - W1
- On the Right], since there is only one car (Car1) in its direct neighborhood. The word
“Conflict” in the parameter list of Car1 indicates that either Car1 or Car3 can move forward
in the next simulation step. After creating all situation parameters, the observer sends them
to the controller. According to parameters from the observer, the controller sends either a
“Stop” or a “Go” signal to its corresponding car. The controller first checks relative po-
sitions in the parameter list. If it encounters one of the relative positions “On the Right”,

735



“On the Left” or “Conflict”, it compares the waiting time of its corresponding car with the
waiting time of the car in the encountered relative position. In case of Car1, the controller
sends a stop signal to Car1, if W3 > W1. That means Car3 has a higher priority than Car1
and Car1 yields right of way to Car3. In case of Car2, the controller sends a stop signal
to Car2, if W1 ≥ W2 and Car1 is stopped by its own controller. That means there is a car
(Car3), which is not in the neighborhood of Car2, but has a higher waiting time than Car2
so that the right neighbor (Car1) stopped and yielded right of way to that car. So, Car2
makes a decision based on the behavior of its right neighbor.

We also implemented the priority allocation mechanism presented in section 3 on the cen-
tral level. The central observer and the central controller can interact with all cars in the
intersection, i.e. their view is not limited. Since we have a different view and granular-
ity level than what we had in the fully distributed case, we can use the priority allocation
mechanism to determine priorities for groups of cars on the central level. Thus, we assign

Figure 4: The cumulative waiting times of
cars w1 and w2

priorities to cars in each traffic flow with re-
spect to their cumulative waiting times (see
Fig. 4). On the central level, the observer in-
teracts with each car, which has not entered the
critical area (see cars in red and blue circles in
Fig. 4) in determining priorities for each traffic
flow. After collecting waiting times, the ob-
server calculates cumulative waiting times for
each group of cars. This is the first parameter
sent to the controller. The second parameter is
related to cars, which could enter the critical
area in the next simulation step. These are ac-
tually cars, which get a stop/go signal from the
controller. That means, if the controller decides
to stop a traffic flow, it only sends a stop signal

to cars, which could enter the critical area in the next simulation step, but did not enter
yet. After getting cumulative waiting times and a list of cars, the controller determines
priorities for traffic flows and sends stop and go signals to corresponding cars.

5 Experimental Results

We used two different test scenarios to measure and compare system performances, which
result from the application of each architecture to the system. In scenario A, cars cross over
the intersection without changing their driving directions, whereas in scenario B 20% of all
created cars try to change their driving directions after they get into the critical area. The
experimental results are shown in Fig. 5. The central architecture provides a better system
performance than the distributed one in scenario A (see Fig. 5(a)). The application of the
distributed architecture leads to a better system performance in scenario B (see Fig. 5(b)).
In scenario A, we have cars with orthogonal driving directions in the critical area at the
same time only if we use the distributed architecture, whereas in scenario B this is always
the case regardless of which architecture we use. But the central architecture does not

736



(a) Scenario A: Cars don’t change their driving directions (b) Scenario B: 20% of cars change their driving direc-
tions

Figure 5: System performances resulting from the application of central and distributed o/c archi-
tectures to the system

Information retrieved from
the cars (Observer)

Information sent to the
cars (Controller)

Total

Central 261.04 Kb/Tick 0.42 Kb/Tick 261.46 Kb/Tick
Distributed 923.40 Kb/Tick 0 Kb/Tick 923.40 Kb/Tick

Table 1: Communication costs in Kb/Tick

consider conflict situations of that kind since it determines priorities for groups of cars on
the macro level before they enter the critical area. This leads to development of temporary
clusters, which disperse after some time without an intervention from a controller, and this
in turn increases the mean waiting time in the intersection. The distributed architecture
on the other hand, can determine priorities for each car on the micro level and prevent the
development of clusters in the critical area. Therefore, the distributed architecture provides
a better system performance in scenario B depicted in Fig. 5(b). Thus, a central approach
that tries to solve problems in a given system on a higher abstraction level doesn’t scale
with an increasing number of problem situations, which occur on a lower abstraction level.
The distributed approach performs better in such a case, since it determines and solves
problems effectively on the same abstraction level. Communication cost resulting from the
application of both architectures to the system can be found in table 1. We considered only
car-to-car comunication in the distributed case. That means, we omitted the information
exchange between an o/c pair and their corresponding car in determining communication
costs. Therefore, the amount of information sent to the system is 0, since a controller in the
distributed case sends messages only to its own car. The corresponding observer; on the
other hand, communicates with all cars that are in the direct neighbourhood and receives
messages from them. That means that each car must send a message not only to a single
observer as in the central case but to each observer in its neighbourhood, which in turn
leads to a higher communication cost. In determining response times 1, we assume that a
single message has a maximum size of 1375 Byte and is sent via an IEEE 802.11 network
with 5.5 MBit/s, which leads approximately to 2 ms message transmission time. Table 2

1The response time of an o/c pair is the time between the moment when the observer retrieves information
from the system according to its observation model and the moment when the corresponding controller sends
appropriate signals to the system according situation parameters from the observer.

737



Observer Controller Response time
Central 25.58 ms 2.93 ms 28.51 ms
Distributed 12.43 ms 2.00 ms 14.43 ms

Table 2: Response times in ms

shows the resulting response times in the central and in the distributed cases.

6 Conclusion and Outlook

We have investigated different distribution possibilities of the generic o/c architecture in
the case of an intersection without traffic lights. Our experiments show that a central con-
troller, which works on a macroscopic level, doesn’t scale with an increasing number of
conflict situations that occur on a microscopic level. In other words, a central control
mechanism with a larger view on the system, which accordingly makes decisions on a
low granularity level, doesn’t address the complexity that occurs on agent level. The re-
sults suggest an adaptive architecture switching between a centralized and a distributed
o/c architecture depending on the current complexity domain. Future work will have to
determine criteria for a transition between the domains.

References

[BMMS+] Jürgen Branke, Moez Mnif, Christian Müller-Schloer, Holger Prothmann, Urban
Richter, Fabian Rochner, and Hartmut Schmeck. Organic Computing - Addressing
Complexity by Controlled Self-organization. In Proceedings of ISoLA 2006.

[CM06] Nikolaus Correll and Alcherio Martinoli. Collective Inspection of Regular Structures
using a Swarm of Miniature Robots. In The 9th Int. Symposium on Experimental
Robotics (ISER 2006), Springer Tracts in Advanced Robotics, pages 375–385, 2006.

[CTRC03] Steven A. Curtis, Walter F. Truszkowski, Michael L. Rilee, and Pamela E. Clark. ANTS
for Human Exploration and Development of Space. In Proceedings of IEEE Aerospace
Conference, volume 1, pages 1–261, 2003.

[KOV+03] Kurt Konolige, Charles Ortiz, Regis Vincent, Andrew Agno, Michael Eriksen, Benson
Limketkai, Mark Lewis, Linda Briesemeister, Enrique Ruspini, Dieter Fox, Jonathan
Ko, Benjamin Stewart, and Leonidas Guibas. CENTIBOTS Large Scale Robot Teams.
2003.

[LGMV05] M. Long, A. Gage, R. Murphy, and K. Valavanis. Application of the Distributed Field
Robot Architecture to a Simulated Demining Task. In Proceedings of the IEEE Inter-
national Conference on Robotics and Automation, pages 3193–3200, 2005.

[RMB+06] Urban Richter, Moez Mnif, Jürgen Branke, Christian Müller-Schloer, and Hartmut
Schmeck. Towards a generic observer/controller architecture for Organic Computing.
In INFORMATIK 2006 – Informatik für Menschen!, volume P-93 of GI-Edition - Lec-
ture Notes in Informatics (LNI), pages 112–119. Bonner Kllen Verlag, 2006.

[TLG+02] Vito Trianni, Thomas H. Labella, Roderich Groß, Erol Sahin, Marco Dorigo, and
Jean-Louis Deneubourg. Modeling Pattern Formation in a Swarm of Self-Assembling
Robots. (TR/IRIDIA/2002-12), 2002.

738




