
Explainable Static Analysis

Eric Bodden1, Lisa Nguyen Quang Do2

Abstract: Static code analysis is an important tool that aids in the early detection of programming
errors, e.g. functional Ćaws, performance bottlenecks or security vulnerabilities. Past research in static
analysis has mainly focused on the precise and eicient detection of programming mistakes, allowing
new analyses to return more accurate results in a shorter time. However, end-user experience or static
analysis tools in industry shows high abandonment rates. Previous work has discovered that current
analysis tools are ill-adapted to meet the needs of their users, taking a long time to yield results and
causing warnings to be frequently misinterpreted. This can quickly make the overall beneĄt of static
analyses deteriorate.

In this work, we argue for the need of developing a line of research on aiding users of static analysis
tools, e.g., code developers, to better understand the Ąndings reported by those tools. We outline how
we plan to address this problem space by a novel line of research that ultimately seeks to change static
analysis tools from being tools for static analysis experts to tools that can be mastered by general code
developers. To achieve this goal, we plan to develop novel techniques for formulating, inspecting and
debugging static analyses and the rule sets they validate programs against.

Keywords: static analysis; debugging; visualization; program understanding

1 State of the Art

Historically, static code analysis tools have always faced the problem of unsatisĄed
users [Jo13, XWM14, CB16, Wi15]. In order to provide complete results, static analysis
algorithms are known to over-approximate, returning all potential errors to the end-user, and
sometimes overwhelming them with a Şwall of bugsŤ [Jo13]. To lower the number of false
positives, analyses are made more complex, but they take longer to run: minutes to hours to
days. This forces developers to wait for a long time before they receive feedback on their
code. Additionally, analysis tools often present warnings without explaining why they are
returned, making it diicult for the code developer to distinguish false positives from genuine
warnings. As researchers from the static-analysis tool vendor Coverity [Sy] (now owned by
Synopsis) pointed out in 2010 [Be10], the lack of easy-to-understand warning messages is
a primary cause of user dissatisfaction. Another one is the insuicient integration of the
analysis tool with the developerŠs workĆow [CB16].

As static analysis is generally an undecidable problem, all static-analysis tools must
approximate their computations, thus unavoidably reporting false positives. In practice,

1 Heinz Nixdorf Institute, Paderborn University & Fraunhofer IEM eric.bodden@upb.de
2 Fraunhofer IEM lisa.nguyen@iem.fraunhofer.de

cbe

M. Tichy, E. Bodden, M. Kuhrmann, S. Wagner, J.-P. Steghöfer (Hrsg.): SE 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 205

https://creativecommons.org/licenses/by-nc/3.0/
eric.bodden@upb.de
lisa.nguyen@iem.fraunhofer.de
https://creativecommons.org/licenses/by-nc/3.0/


no tool can be precise enough to be false-positive free, which means that ultimately, the
developer is the Ąnal judge in deciding whether a warning is true or false. Situations have
been observed where complex warnings explained poorly by the tool misled the developer
into thinking they were false positives [Be10]. Moreover, the notion of a false positive can
by highly subjective, as even a true warning might not be relevant to certain developers.
Therefore, there is a dire need for tools that eiciently help developers in determining which
warnings are relevant to them.

2 Challenges

When trying to address the problems presented above, one faces the following challenges:

• To allow developers to better understand warnings, an analysis tool must provide richer
information about why the analysis thinks that a certain program part is erroneous.
Such information is not readily available. In fact, the static analysis tool must compute
it while it conducts the analysis or as part of a post-processing module that runs after
the analysis Ąnishes. However, if no care is taken, such additional computations can
signiĄcantly increase the time and memory consumption of the static analysis.

• Warnings must be presented to the developer in a way that is easy to understand. Little
research has been performed on assessing which representations aid and donŠt aid code
developers, and what elements should be part of an ideal representation [SBMH17].

• A method known to help developers assess a warning is the presentation of a witness,
i.e., a real execution trace triggering the programming error [Le14]. But how can one
generate witnesses also for incomplete code, and what are the program interfaces in
such a case?

3 Required Research

In past work, we have investigated diferent means of adapting static analysis to the
developersŠ needs [Ng17], and diferent ways of presenting the analysis results in an intuitive,
user-friendly manner [Ng]. Through user studies, we have demonstrated that integrating
developer information into the analysis and presenting results in a more transparent way
helps developers Ąx errors signiĄcantly faster and provide them with a better overall
experience of static analysis. While those Ąrst results are promising, there is still a lot to
research to be conducted, especially in the areas of visualizations and responsiveness.

The envisioned line of research should aim at producing novel and improved means to present
static analysis warnings to developers, ideally allowing them to assess a problematic situation
quickly and correctly in all cases. To address the above problems, one must bring together
expertise from the areas of static and dynamic program analysis and human-computer
interaction. User studies would need to be an essential part of a work plan to address the
problems mentioned above.

206 Eric Bodden, Lisa Nguyen Quang Do



4 Possible solution outline

Concretely we propose to address the challenges outlined above by moving from a bare
code-analysis technology to a developer-assistant system that will collaborate interactively
with the developer to reach a joint understanding of the vulnerability situation at hand. As
one of its design principles, such an assistant could include elements of gamiĄcation. For
instance, the assistant could present to the developer potential vulnerabilities in a prioritized
way, showing Ąrst those that are directly relevant to the developer, e.g. because they are
close to the code they are currently editing, and who are also known to be easy to Ąx, taking
into account the bug-Ąxing knowledge the particular developer is known to have acquired
over the past. Then, when known to master well vulnerabilities at one level, the assistant
could move the developer to the next level, displaying vulnerabilities e.g. of a diferent kind,
or which are deemed slightly harder to judge. With knowledge of the developerŠs workĆow
and team setup, the assistant could even make use of the knowledge of the developerŠs team
colleagues, e.g. by automatically including them into the judgment of vulnerabilities that
the developer at hand is known not yet to be able to handle. This would allow the assistant
to help one both derive the correct judgement (vulnerability or not) but would also aid the
transfer of bug-Ąxing knowledge within the team.

As a second important element, however, we see dedicated new views and corresponding
interactions that such an assistant should allow developers to make use of. In the past, we
have seen a positive analysis developer response to a prototype that we built and which
displays side by side the analyzed code with statements highlighted that contribute to a
vulnerability, the implementation of the analysis but also a graph representation showing
how the analysis executes over the given program part [Ng]. The user interface also allows
novel interactions, e.g. setting special breakpoints that halt not the analyzed program but
the static analysis when it processes the statement of the analyzed program that carries the
breakpoint. In user experiments, we were able to show that such an approach eases the
developers of static analyses in debugging the analyses that they write. The same views will
likely be too complex to understand for developers who have no experience in static analysis.
Yet, at the same time, we do believe that novel views are needed to explain developers why a
static analysis arrives at a particular judgement, i.e., why it thinks that a certain vulnerability
actually exists. Such novel views could also, for instance, display information about code
locations at which the program analysis is uncertain, or might even ask dedicated, simple
questions to the developer to help judge a vulnerability situation [DDA12], e.g.: ŞIs this
untrusted input known to be sanitized elsewhere?Ť Those views, would then enable the
developer to judge the vulnerability situation with much greater conĄdence, and in turn
boost their ability to correctly judge future situations.

Explainable Static Analysis 207



References

[Be10] Bessey, Al; Block, Ken; Chelf, Ben; Chou, Andy; Fulton, Bryan; Hallem, Seth; Henri-
Gros, Charles; Kamsky, Asya; McPeak, Scott; Engler, Dawson: A Few Billion Lines of
Code Later: Using Static Analysis to Find Bugs in the Real World. Commun. ACM,
53(2):66Ű75, February 2010.

[CB16] Christakis, Maria; Bird, Christian: What Developers Want and Need from Program
Analysis: An Empirical Study. In: Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering. ASE 2016, ACM, New York, NY,
USA, pp. 332Ű343, 2016.

[DDA12] Dillig, Isil; Dillig, Thomas; Aiken, Alex: Automated Error Diagnosis Using Abductive
Inference. SIGPLAN Not., 47(6):181Ű192, June 2012.

[Jo13] Johnson, Brittany; Song, Yoonki; Murphy-Hill, Emerson R.; Bowdidge, Robert W.:
Why donŠt software developers use static analysis tools to Ąnd bugs? In: International
Conference on Software Engineering (ICSE). pp. 672Ű681, 2013.

[Le14] Lerch, Johannes; Hermann, Ben; Bodden, Eric; Mezini, Mira: FlowTwist: Eicient
Context-sensitive Inside-out Taint Analysis for Large Codebases. In: Proceedings of the
22Nd ACM SIGSOFT International Symposium on Foundations of Software Engineering.
FSE 2014, ACM, New York, NY, USA, pp. 98Ű108, 2014.

[Ng] Nguyen Quang Do, Lisa; Krüger, Stefan; Hill, Patrick; Ali, Karim; Bodden, Eric: Visu-
Flow. https://blogs.uni-paderborn.de/sse/tools/visuflow-debugging-static-
analysis/.

[Ng17] Nguyen Quang Do, Lisa; Ali, Karim; Livshits, Benjamin; Bodden, Eric; Smith, Justin;
Murphy-Hill, Emerson: Just-in-time Static Analysis. In: Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and Analysis. ISSTA 2017,
ACM, New York, NY, USA, pp. 307Ű317, 2017.

[SBMH17] Smith, J.; Brown, C.; Murphy-Hill, E.: Flower: Navigating Program Flow in the IDE.
In: Proceedings of the IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCCŠ17). October 2017.

[Sy] Synopsys: Coverity. http://www.coverity.com/.

[Wi15] Witschey, Jim; Zielinska, Olga; Welk, Allaire; Murphy-Hill, Emerson; Mayhorn, Chris;
Zimmermann, Thomas: Quantifying DevelopersŠ Adoption of Security Tools. In:
Foundations of Software Engineering (FSE). pp. 260Ű271, 2015.

[XWM14] Xiao, Shundan; Witschey, Jim; Murphy-Hill, Emerson R.: Social inĆuences on secure de-
velopment tool adoption: why security tools spread. In: Computer Supported Cooperative
Work & Social Computing (CSCW). pp. 1095Ű1106, 2014.

208 Eric Bodden, Lisa Nguyen Quang Do

https://blogs.uni-paderborn.de/sse/tools/visuflow-debugging-static-analysis/
https://blogs.uni-paderborn.de/sse/tools/visuflow-debugging-static-analysis/
http://www.coverity.com/

