State-based Coverage Analysis and UML-driven
Equivalence Checking for C++ State Machines

Patrick Heckeler, Jorg Behrend,
Thomas Kropf, Jiirgen Ruf, Wolfgang Rosenstiel
University of Tiibingen
{heckeler, behrend, kropf, ruf, rosenstiel } @informatik.uni-tuebingen.de

Roland Weiss
Industrial Software Systems
ABB Corporate Research
roland.weiss @de.abb.com

Abstract: This paper presents a methodology using an instrumentation-based behav-
ioral checker to detect behavioral deviations of a C++ object implementing a finite state
machine (FSM) and the corresponding specification defined as a UML state chart. The
approach is able to link the source code with the appropriate states and provides a cov-
erage analysis to show which states have been covered by unit, system and integration
tests. Furthermore, the approach provides statistical information about the distribution
of covered lines of code among all included files and directories. As a proof of concept
the presented approach has been implemented in terms of a C++-library and has been
successfully applied to OPC UA, an industrial automation infrastructure software.

1 Introduction

In the area of safety-critical hardware-depended software (SCHDS) like automation and
engine controllers, avionics or medical devices, it is necessary to follow heavy-weight
development processes (HWP) in order to satisfy safety development standards like IEC
61508[Bel05]. This is necessary to achieve certain Safety Integrity Levels which are the
base for safety certifications. Among other things those standards define guidelines for
planning, developing and testing the whole system and its single components. Those
standardized procedures minimize safety critical bugs and errors in software but lead to
extremely high development costs. Today a major goal of industrial software develop-
ment units is to optimize and change their heavy-weight processes to reduce costs and
time-to-market to compete economically. As a first step for cost reduction, many software
development units have chosen C++ (for years C was the dominating language) as their
preferred programming language for safety-critical hardware-dependent systems. Reasons
for that are the inherent language flexibility, its potential for portability across a wide range
of micro controllers and other hardware and, in contrast to native C, the possibility to use
object-oriented language constructs for better code maintenance. A second step for opti-
mization is to push the development processes towards agile processes[Mar03] which are

49

much more flexible and less cost intensive than HWP. For the introduction of new devel-
opment processes in the area of safety-critical software it is yet indispensable to create
new approaches for verification and validation to be in accordance with guidelines of stan-
dards like IEC 61508 to get safety certificates. Because the above mentioned systems are
mostly event driven (waiting for a time tick, a signal of a sensor or a key press) this method
aims at validating the correctness of a FSM which is common practice to handle events
in software. The behavior of state machines can easily be described by UML state charts,
even on a high abstraction level (in contrast to a formal FSM). An additional benefit of
object-oriented languages is that a well-known design pattern exists to implement state
machines. Nevertheless, we are in need of a methodology to validate such a state machine
even at early stages. This is necessary because the state machine affects the whole soft-
ware architecture and is responsible to put the system in a safe state when an error occurs.
To conform to IEC 61508 it is necessary to test a system intensively with unit, system and
integration tests. Therefore, often test cases are generated automatically. To estimate test
quality, metrics like percentage of covered lines of code or percentage of executed state-
ments are used. But this metrics can lead to a major misjudgment: Even high coverage
values cannot promise that all critical areas of code have been tested (chapter 2.1 provides
an overview of common coverage techniques). The main goal of this work is to create
a methodology which presents more suitable metrics to estimate test quality: State-based
coverage. During coverage analysis a lot of profiling information is generated (distribu-
tion of source code among files and directories). The results are presented in chapter 4.
Furthermore, a behavioral check between UML state chart and C++ implementation is ex-
ecuted. An invalid transition taken during test execution can be revealed. Details about the
presented validation approach can be found in chapter 3.

2 Preliminary Work and State of the Art

In this chapter we present state of the art coverage analysis techniques. In addition we
comment patterns and language constructs to implement state machines using C++ and
we classify the most important C++ software defect classes which are relevant for the
design of SCHDS. Furthermore we discuss the Simulink/Stateflow' (SL/SF) approach and
point out weak points of agile software developement for safety-critical systems.

2.1 Coverage Analysis

Coverage tools[YLWO06] are commonly used to measure quality and completeness of test
runs based on unit, system and integration testsfMS04]. These tools are counting how
often code fragments (single lines of code, basic blocks or statements), branches and de-
cisions are executed. Also the calling of methods and functions can be measured. Most
coverage tools instrument the source code with so called probes which are injected into the

Simulink and Stateflow are trademarks of The MathWorks Inc.

50

executable to be examined. This additional code tracks whether lines of code, branches or
statements have been reached. Another possibility is to embed the executable into a moni-
tor system which tracks the execution information from outside. The information gathered
during a coverage analysis can be used to identify weak points in the source code: At
first dead source code can be identified. These parts have never been executed or reached.
Such code is just overhead and unnecessarily increases the size of source code files and
compiled executables. Furthermore, test quality can be estimated, no matter what kind
of test has been used. The more lines of code have been executed the better the unit test
was. Table 1 presents an overview of available coverage methods an their corresponding
metrics to describe test quality.

Coverage Method Metrics Complexity
: __ FExecutedLines
Line Coverage Q = = low
__ EzecutedStatements
Statement Coverage Q) = =S =" cments low
__ ReachedBranches .
Branch Coverage Q = " et 1S medium
__ TakenPathes :
Path Coverage Q= “HiiPathes high

Condition Coverage All conditions must be executed with true & false high

Table 1: Overview of coverage methods

For our methodology we are in need of a coverage tool which provides line coverage, a
command line interface (CLI) and the ability to dump coverage data during execution (this
is necessary to connect the source code with the single states). In Table 2 we present a fea-
ture overview of all C++ coverage tools taken into account: Bullseye[Bul09] is not able to
perform a real line coverage. It is limited to functional and decision coverage. In contrast
to Bullseye all other examined tools provide the feature of line coverage which is one of the
main criteria for our concept. Decision coverage is also supported by CodeTEST[Met09],
Dynamic[Sys09] and C++test[Par09] whereas functional coverage is only integrated in
Bullseye, Dynamic and Intels code coverage tool[Int09]. All listed coverage tools bring
along a file reporting feature. This means, that all coverage results are stored into files
and are not only presented in a GUI (Bullseye, CodeTEST and C++test also support GUI-
based reporting). Except Dynamic all coverage tools use a probe-based approach to mea-
sure coverage. These so called probes are small code fragments which are inserted into
the executable during compile time. When a probe is reached and executed it increases the
corresponding line or function counter. Dynamic does not instrument the code at compile
time. Instead it uses a dynamic approach where the code is instrumented on the fly during
execution time. File reporting is supported by all mentioned coverage tools. But the ability
to dump coverage data into a file during execution is supported only by the open source
tool Gcov[GNUO9] which is part of the GNU compiler collection. That is the reason why
we have chosen Gcov for our methodology.

51

Tool name Linecov- CLI File Dump during commercial open
erage exec. source

Bullseye v v v

CodeTEST Vv v v

Dynamic v v v v

Geov v v v v v

Intel v v v v

C++test v v v

Table 2: Criteria for coverage tools to be suited for the presented methodology

2.2 Simulink Stateflow

Simulink Stateflow (SL/SF)[Mat09] is currently the de-facto standard in the area of model-
based development. Simulink models consist of connected blocks which represent oper-
ations. Stateflow is able to describe the system behavior using parallel and hierarchical
state machines as well as flowcharts. SL/SF provides the possibility of rapid prototyp-
ing and easy testing. A key feature of this tool bundle is the simulation of the whole
model. A graphical debugger helps to reveal unexpected system behavior. Approaches
like [KAIT09] and [AKRSO08] optimize the symbolic analysis of traces and simulation
coverage. SL/SF is able to generate C code but a major drawback is the lack of C++
code generation: Object-oriented languages provide more modern constructs and patterns
to describe and dispatch finite state machines (see chapter 2.5) which often eases system
integration. Furthermore, the developer has the possibility to insert hand-written code into
SL/SF models which makes a subsequent validation or verification indispensable.

2.3 Agile Methods and Heavy-Weight Plan-Driven Processes

Agile processes have gained tremendous acceptance in industrial software development
over the past years. A lot of research projects have examined the quality assurance abil-
ities (QAA) in agile processes to test their relevance for development of safety-critical
systems[HVZBO04]. It is hard to compare agile methods with plan-driven strategies[Boe02]
due to the big differences in costs and team size (agile methods have a smaller team
size and therefore lower costs and also usually deal with more restricted system com-
plexities). Therefore other approaches try to combine agile and plan-driven development
processes[BTO03] to take advantage of their strengths. We believe that it is possible to
evolve agile processes such that they will become suitable for industrial light-weight de-
velopment of safety-related systems. But it is necessary to provide the right tools for
cost-efficient early-stage validation of software components. Our presented methodology
(see chapter 3) contributes to that topic.

52

2.4 Software Defect Classes

Software defects can be categorized into several different classes. Table 3 presents an
overview of some possible software defects in C++ software[MISOS8] for safety-related
systems. In addition we show which errors can be avoided by using our FSM behavioral
checker (FBC).

Defect Class Solution Strategy
Mistakes in specification (state machine) Hugo/RT
Misunderstanding the specification or programming mistakes FBC
Misunderstanding the language; compiler errors; runtime errors Misra-C++, FBC

Table 3: Overview of software defect classes and solutions to avoid these errors

To detect, clasify and track software errors, a failure mode and effects analysis [PA02]
(FMEA) can be integrated into the development process. A few software defects occurring
in C++ programs can be avoided by sticking to the guidelines of MISRA-C++[MIS08].
But the defect classes mentioned in Table 3 need some other solution concepts.

e Mistakes in specification: These mistakes, e.g. a transition which points to a
wrong target state and therefore create deadlocks, could be avoided by using a model
checker like Hugo/RT to check state charts defined in UML.[BBK™04].

e Developer misunderstands the specification or makes mistakes: When the de-
veloper team misunderstands the specification, for example the team misinterprets
the modeled behavior or functionality of the state diagram, behavioral errors in the
implementation will occur. It is also possible that, despite correct understanding,
implementation mistakes concerning the general behavior of the software compo-
nent are made. To detect these bugs FBC can be used. FBC can detect deviations
between implementation and specification.

e Misunderstanding the language; compiler errors; runtime errors: The devel-
oper team may misunderstand the effects of some language constructs. There are a
number of areas of the C++ language that are prone to developer-introduced errors.
If the developers follow the Misra-C++ definitions, those errors can be avoided.
There are some areas in the C++ language that are not completely defined. The
behavior varies from one compiler to the other. Even the behavior can vary within
the same compiler, depending on the context. Misra reduces the C++ language to
a proven subset. Following these guidelines compiler errors can be reduced, but
Misra-C++ can not ensure a correct compilation process. In addition C++ programs
tends to be small and efficient but they have a lack of data-dependent runtime checks.
To deal with these defects our FBC can come into action.

53

2.5 State Machine Implementations

In this chapter we discuss four common ways to implement state machines in C++[SamOS].

1. A nested switch statement is perhaps the most simple FSM implementation. It
consists of enumerated transitions and states and only one state variable is neces-
sary. But it does not promote code reuse (here it breaks with agile processes) and it
can easily grow too large. It is also very error prone because there is no language
construct to control whether a valid transitions was taken or not.

2. A generic state-table event processor can be used to implement a FSM based on
a simple two-dimensional state table. This table lists events along the horizontal
and states along the vertical dimension. Therefore all states are listed in a regular
and easy to read data structure. Also we only need a simple dispatcher which maps
events to source and target states and checks if they are valid or not. Another advan-
tage is the dispatcher can be used for more than one software projects (This is more
conformant to agile methods than the nested switch statements).

3. The state design pattern is the object-oriented approach to implement a state ma-
chine. It relies heavily on polymorphism and partitions the single states in different
classes. Transitions are efficient because only a pointer must be reassigned. All
states are derived from an abstract super state class. The performance is better than
indexing in a state table. But the implementation is not generic and the code cannot
be reused for other state machines.

4. A single object instance of a class can be described by a FSM. Methods represent
the triggers and attributes represent the states. More than one state encoding variable
is possible.

3 The Methodology

Our methodology faces two major challenges. At first we want to adjust the abstraction
level of specification and implementation for coverage analysis data: Both become state-
based. The second aspect is to detect behavioral deviations between specification and the
corresponding object instance during runtime. As a side-product many profiling informa-
tion occur. In this chapter we present our methodology and its corresponding implementa-
tion in terms of a C++ library. At first we explain the main stages of our approach (chapter
3.1). Afterwards we go into detail (chapter 3.2) by presenting the industrial automation
infrastructure software which is used later on in chapter 4 for an empirical study.

54

31

Main Stages

Our methodology is divided into four main stages (see Figure 1): Input, instrumentation,
runtime and coverage stage.
Gcov Dump Corrected
Errors Dump Results
UML State C+
Diagram Code 01: OPCClient::OPCClient() 01: OPCClient::OPCClient()
01: { 01: {
= |01: init_keyboard(); = [01: init keyboard();
. © o1 this->g_Uas = NULL; © [01: this->g_UaS = NULL;
Main Input g 00: this->g_Callb = NULL; g 00: this->g_Callb = NULL;
5 |o00: uaPlatformzinit(); S |o0: UaPlatform::init();
(=] 00: OPCClient::state = 1; QO | 00: OPCClient::state = 1;
Code 00: this->inst.tick(); 00: this->inst.tick();
Instrumen- 00 00:)
tation lState lstate
" Change Change
Instrumentation 9 9
V 02: OPCClient::OPCClient() 01: OPCClient::OPCClient()
02: o1:
Extract States Transition Executable Execution o [02: init keyboard(); o [01: init_keyboard();
; 02: this->g_UaS = NULL; 0L this->g_UaS = NULL;
and Transitions | | Table (Unit Test | fCoverage Analysis & [0 thesgcois ~hos| | 2 [0k e naca — Nt
included) and £ |oo: uapiatform:init0; £ oo: uarlatform:init();
\/\ \/\ Behavioral Check A [o00: opcclient::state = 1; A [00: oPCClient::state = 1;
00: this->inst.tick(); 00: this->inst.tick();
R 00: } 00:
Runtime
State State
Change Change
Coverage Data Post- Raw Coverage Data 03: OPCClient::OPCClient() 01: OPCClient::OPCClient()
associated with Processing Coverage Data Dump 03: { o1 {
states & cycles Coverage Data ™ |03 init_keyboard(); ™ | 01: init_keyboard();
© |03 this->g_Uas = NULL; © [01: this->g_Uas = NULL;
__— L 2 [0z missgcaib =nuius| | 2 [0 tis->o callo = NuLL:
£ [o1: aplatform:init(): £ |ov: vaplatforminito);
o 00: OPCClient::state = 1; 0O | 00: OPCClient::state = 1;
Coverage 00: this->inst.tick(); 00: this->inst.tick();
00: } 00: }
U/ manual task doeata [automatic task

Figure 2: Post-processing of the cover-

Figure 1: Flowchart of the methodology age data

1. Input stage: Our methodology checks a state chart against its corresponding C++
implementation and associates the states with the corresponding source code. It is
necessary to provide a Class under Test (CUT) and a UML state chart represented
in XMI” (see Figure 1, Main Input).

. Instrumentation stage: To apply our methodology to a C++ class it is important
that the states of the FSM are encoded by one or more class members (attributes).
Without this explicit encoding of states it is not possible to track the behavior of
the object instance. Right now, our approach is based on a manual source code
instrumentation. That means, we have to register all state encoding variables for
monitoring and we have to integrate a timing reference in terms of a tick()-method
to trigger the FSM (see Figure 1, Instrumentation).

. Runtime stage: During runtime our library reads in the XMI file and creates a
transition table. Based on this table our methodology is able to check whether a
correct transition is taken or not. The CUT has to be linked against the library (see
Figure 1, Runtime).

Coverage stage: During execution the behavior is checked (are only valid transi-
tions taken?) and coverage data is dumped and stored in temporary files. Afterwards
the coverage data is post-processed and connected with the corresponding states of
the FSM (see Figure 1, Coverage).

2The most common use of XMI is as an XML-based interchange format for UML models

55

3.2 Details based on Industrial Automation Infrastructure Software

In this chapter we present the details of our approach by means of an industrial automation
infrastructure software[MLD09] (IAIS). OPC UA consists of a client-server implementa-
tion (the focus in our experiments is on the client) which is used to access field data from
field devices. In this example the client is used to monitor temperature data from an engine
controller. The client connects to the server and is then able to receive data of the engine
controller either with single reads or based on a subscription service which will deliver
data in regular intervals. Furthermore, the client is able to browse the attributes provided
by the engine controller and can also write data to the server. It consists of seven states
which can be seen in Figure 3. Each state in the pseudo state (we want to keep the figure
clear) can be reached by calling one of the following methods: browse(), read(), write() or
subscribe(). The transitions are labeled with precise method names, including the return
type, of the client class. Each call of one of these methods triggers the FSM to switch to
the correct target state. The state encoding relies on the variable int state, written before a
tick is executed. Of course the state encoding can rely on more than one variable. But to
keep the example clear, we have chosen only one. The lines 2 and 9 in Figure 4 show the
additional code caused by the necessary manual instrumentation. Figure 6 shows a small
test scenario to stimulate our client without an error: All transitions are triggered in correct
order. In contrast to this Figure 5 shows a test case which leads to an error: The transition
int OPCClient::shutdown() is called before the transition OPCClient::disconnect() was
executed. For our experiments we have embedded the client into the well-known Cppunit
framework[Ope09]. Figure 3 shows the graphical representation of the error case (the
dashed transition).

Connected | gmanwnsionf Processing (Pseudo state)

+ On Entry / >
int state = 2 pseudo transition # | B rowse int OPCClient::browse()
int int .
oPCClient:: opCClient:: + On Entry / int OPCClient::read() + On Entry /
connect() ‘ disconnect() int state = 3 int state = 4
.) int OPCClient::
Disconnected g g read() s A | i
< =1 T~ 9~ g
+On Entry / it OPCClient:: 08 0% intopCClient: Tt OPCClient:: 03 g%
int state = 1 disconnect() g ° g B subscribe() browse() g9 g 2
S5 [} o oS
int OPCClient:: g \E At OPCClient™ = g
shutdown() write() b " b
3 Subscribe
Shutdown invalid transiti int OPCClient::subscribe()
7 Invalid transition + On Entry / + On Entry /
+ On Entry / int state = 5 [~ int OPCClient::write() int state = 6
int state = 7

Figure 3: UML State machine representing the client behavior including invalid transitions (dashed
arrows). Self transitions are valid for all states in the pseudo state. They have been omitted due to
the lack of space.

To apply our validation approach to the client we have modeled the UML state diagram
as seen in Figure 3 using Enterprise Architect (EA) in version 7.5[Spa09]. After that the
FSM has been exported into a XMI file which must be stored in a directory together with
all instrumented C++ source code files. An example of an instrumented file can be seen in
Figure 4. In the default constructor the state encoding variable state must be registered for
monitoring and the tick()-method must be called after each write access of this variable.

56

GO U R W —

o

9
10
11

These ticks are used as a time reference for the FSM. Now the source code is ready to be
compiled. After a successful compilation the CUT can be executed. During execution, the
coverage data is dumped into a directory specified during the installation process of our
library3. After a complete run the post-processing script is automatically triggered. This
script processes all coverage data and presents a report as an HTML document. The flow
sheet in Figure 1 provides an overview of the whole process. Following, we describe the
single steps of the process in detail.

OPCClient:: OPCClient () { 1| #include "OPCClient.hpp” 1| #include “OPCClient.hpp”
this—=>inst.regMonitorVar(”state”, 2 2
Tint”, 3| int main() 3| int main()
&this—>state); 4 4
OPCClient:: state = "17; 5 OPCClient client; 5 OPCClient client;
} 6 client.connect ()3 6 client.connect();
int OPCClient::browse () { 7 client.browse (); 7 client.browse ();
// browse the OPC Server 8 client.read (); 8 client.disconnect();
OPCClient:: state = 3; 9 client.shutdown (); 9 client.shutdown ():
this—>inst . tick (BOOST-CURRENT.FUNCTION); 10| return 0: 10| return 0;
¥ 1} 1|y
Figure 4: Instrumented class Door: Figure 5: Unit test causing Figure 6: Unit test causing
Default constructor and the an error: An invalid no errors: Only valid
close()-method transition is taken transitions are taken

UML State Diagram: Modeled with EA the UML state diagram must follow some
special design guidelines. Each transition must be labeled with the exact (return
type, parameters) method name which triggers the corresponding transition. Each
state must include one or more state variables representing the state encoding. These
variables have to be modeled as an entry action. At the end the state diagram has to
be exported into an XMI file.

Extract States and Transitions: An XML parser reads in the XMI file and extracts
all information of the modeled FSM.

Transition Table: Based on the information obtained from the XMI file, the FBC
creates a transition table. This table represents the core data of the behavioral
checker. After triggering the state machine, our library checks if the transition as
well as target and source state are valid.

C++ Code: The C++ Code is the implementation of the FSM which we want to
check (the CUT).

Code Instrumentation: The state encoding variables have to be registered and the
tick()-method has to be injected after each write access of these variables (see Figure
4 line 2).

Executable: The CUT and its corresponding unit test have to be compiled with
special compiler flags. We have chosen Gcov as our coverage tool. To make it work
it is important to use the -fprofile-arcs -ftest-coverage flags supported by the g++

3We cannot use command line parameters because we have to avoid collisions with command line parameter

needed by the CUT.

57

compiler. These flags control the code instrumentation for our coverage analysis
based on Gcov. The manual code instrumentation mentioned above is only needed
for the behavior check.

e Execution: The compiled source code can now be executed. Our library checks
whether the whole course is correct or not (deviation detection).

e Coverage Data Dump: After each tick, the line coverage data is dumped into sep-
arate directories and is associated with the single states.

e Raw Coverage Data: The coverage data is distributed among subdirectories repre-
senting the sates.

e Post-Processing Coverage Data: After a complete execution of the CUT the library
has to recalculate the coverage values. This correction is needed because Geov adds
up all line numbers of each dump (Gcov was not designed for dumping data during
runtime). This leads to incorrect coverage values. Figure 2 shows two state changes
and the line counter variance (the first column in the Figure). The second part of the
Figure shows the recalculated line coverage values.

e Coverage Data associated with States and Cycles: At the end we receive an de-
tailed graphical overview of all coverage results in HTML (the HTML generation is
based on genhtml, a simple conversion tool provided with Gcov).

4 Results

We have successfully applied our methodology to the TAIS client presented in chapter 3.2.
In this chapter we discuss the achieved results of a test run which has reached 9 states of
the FSM. At first we have measured the runtime to show the scalability and overhead of
our approach. Figure 7 shows the execution time of four test runs with 3, 5, 9 and 15 taken
transitions and reached states (each valid taken transition triggers a data dump). We can
see a constant growth relative to the number of reached states. Therefore our approach
scales linear. Due to the heavy file I/O-operations caused by the coverage data correction
the major part of computational time is spent for the post-processing of this data (see
Figure 8. Each included source file is stored in a separate Gcov HTML file (generated
with genhtml). In our test run with 9 reached states and therefore 9 taken transitions we
have to parse 46 files per state. In addition to that we also have to correct the overview
files produced by genhtml: One per included directory, in total 11 (see Table 4) and one
for the whole overview. All in all our library had to post-process 453 files.

In our next two experiments we have provoked errors to test the behavioral checking fea-
ture of our library. In the first test run the OPCClient::shutdown()-method was called
before the client has been disconnected from he server. In the second run we have called
the OPCClient::connect()-method while one of the sub-states of the pseudo state has been
active. Both errors have been detected correctly and the corresponding error traces have

58

450 — - 100
Runtime including post-processing ——
Runtime without post-processing -

ez Post-processing time
e Runtime

400

350

300 Including post-processing

250

200

Distribution of runtime in %
o
S

Runtime in seconds

150

100

50 0
without post-processing | 4
ol . %’ 3 %,
o 2 4 6 8 10 12 14 16 L
Number of reached States and taken transitions (data dumps) Data dumps
Figure 7: Runtime of 4, 5, 9 and 15 Figure 8: Runtime ratio of simulation time and
reached states: Constant growth post-processing time

been created. These traces include the execution order of all states until the error occurs.
These traces are important for reproducing errors during the development process.

Directory Name Disconnect (1) Disconnect (2)
/usr/include/c++/4.3 3.03 % 0.0 %
fusr/include/c++/4.3/backward 28.57 % 0.0 %
/usr/include/c++/4.3/bits 20.73 % 0.0 %
/usr/include/c++/4.3/ext 4.35 % 0.0 %
/usr/include/c++/4.3/i486-linux-gnu/bits 0.0 % 0.0 %
/usr/local/include/cppunit 3.13 % 15.63 %
/usr/local/include/cppunit/extensions 92.00 % 0.0 %
examples/OPCClient/unittest 5.9 % 5.65 %
examples/utilities/linux 33.33% 0.0 %
include/uabase 7.14 % 45.24 %
include/uaclient 0.0 % 13.73 %

Table 4: Covered lines of code per directory in percent of the first and second hit of the state discon-
nected: The profile of the hits differ significantly.

Because the OPCClient implementation includes a huge number of source code files we
cannot present the whole source code connected with its corresponding states. As an
example we present an extraction of the file OPCClient.cpp including the main part of
the client implementation. The code fragment can be seen in Figure 10. It presents the
source code connected with the disconnect state when it is run through for the second
time. Line 138 is marked as not covered. The reason for this is, that the tick()-method
must be called before the return statement is executed. In chapter 5 we propose a method
to avoid instrumentation and therefore lead to a correct coverage result by connecting also
the return statement with the corresponding state.

In Figure 9 we present an overview of executed source code lines per state. Furthermore
this figure shows, that all states has been covered. With metrics () = % we
provide a formula to estimate test quality. In our test run we have achieved a state coverage

59

30

Executed LOC in %

States in (valid) execution order

Figure 9: Executed code per state in percent

115| 1: int OPCClient:: disconnect() {

116| 1: printf (”** Disconnect from Server\n”);

117| 1: if (this—>g_pUaSession == NULL) {

118| O: printf (”«x Error: Server not connected\n”);

119| 0O: return 1;

120] : }

121

122] 1: ServiceSettings serviceSettings;

123] this —g _pUaSession—>disconnect (

124 serviceSettings , // Use default settings
125] 1: OpcUa_True); // Delete subscriptions
126] :

127| 1: delete this—>g_pUaSession;
128 1: this—g_pUaSession = NULL;

129

130| 1: this —g_VariableNodelds.clear ();

131] 1: this—>g_WriteVariableNodelds.clear ();
132] 1: this —g_ObjectNodelds.clear ();

133] 1: this —g_MethodNodelds. clear ();

134

135| 1: OPCClient:: state = 1;

136| 1: this—inst . tick (BOOST_.CURRENT_FUNCTION) ;
137
138| O: return 0;
139 : }

Figure 10: The disconnect()-method in OPCClient.cpp reached the second time (state disconnected)

of 100 %. We have shown that our test case has executed all safety relevant states. This
will avoid the misjudgment of test quality based on common metrics presented in chapter
2.1.

60

5 Conclusion and Future Work

In this paper we have presented a methodology to connect states of a UML state chart,
specifying the behavior of a C++ class, with the corresponding lines of code of all in-
volved source files. This adjusts the abstraction level of specification and implementation
(both are state-based now) and makes it much easier to estimate quality of test scenarios.
Furthermore, our library is able to detect behavioral deviations between CUT and the state
chart. Moreover we have successfully applied our library to an industrial automation in-
frastructure software. We have shown that the approach scales very well and that it has
the potential to be a vital component to push HWP towards agile software development
processes.

To simplify the use of our library we want to introduce a monitor mechanism, based on
the GNU Debugger[SPS02] and Valgrind[NS07], which is able to observe trigger method
calls and write accesses for state encoding variables. This will avoid the task of manual
source code instrumentation. As a second extension we want to integrate a mechanism to
execute all invalid (not available) transitions to perform stress tests.

6 Acknowledgments

We would like to thank ABB Corporate Research for co-funding our research and provid-
ing an industrial software to test our approach.

References

[AKRSO8] Rajeev Alur, Aditya Kanade, S. Ramesh, and K. C. Shashidhar. Symbolic analysis
for improving simulation coverage of Simulink/Stateflow models. In EMSOFT ’08:
Proceedings of the 8th ACM international conference on Embedded software, pages
89-98, New York, NY, USA, 2008. ACM.

[BBK*04] Michael Balser, Simon Baumler, Alexander Knapp, Wolfgang Reif, and Andreas
Thums. Interactive Verification of UML State Machines. In ICFEM, pages 434-448,
2004.

[BelO5] Ron Bell. Introduction to IEC 61508. In Tony Cant, editor, Tenth Australian Workshop
on Safety-Related Programmable Systems (SCS 2005), volume 55 of CRPIT, pages 3—
12, Sydney, Australia, 2005. ACS.

[Boe02] Barry Boehm. Get Ready for Agile Methods, with Care. Computer, 35:64-69, 2002.

[BTO3] Barry Boehm and Richard Turner. Using Risk to Balance Agile and Plan-Driven Meth-
ods. Computer, 36(6):57-66, 2003.

[Bul09] Bullseye. Bullseye Coverage, 11 2009. http://www.bullseye.com/.
[GNUO09] GNU. Geov Coverage, 11 2009. http://gcc.gnu.org/onlinedocs/gec/Geov.html.

61

[HVZB04] Ming Huo, June Verner, Liming Zhu, and Muhammad Ali Babar. Software Quality

[Int09]

[KAIT09]

[Mar03]

[Mat09]
[Met09]

[MIS08]

[MLDO09]

[MS04]

[NSO7]

[Ope09]

[PAO2]

[Par(9]

[SamO8]

[Spa09]

[SPS02]

[Sys09]

[YLWO6]

and Agile Methods. volume 1, pages 520-525, Los Alamitos, CA, USA, 2004. IEEE
Computer Society.

Intel. Intel Code Coverage Tool, 11 2009.
http://www.intel.com/cd/software/products/asmo-na/eng/219633.htm.

Aditya Kanade, Rajeev Alur, Franjo Ivanci¢, S. Ramesh, Sriram Sankaranarayanan, and
K. C. Shashidhar. Generating and Analyzing Symbolic Traces of Simulink/Stateflow
Models. In CAV ’09: Proceedings of the 21st International Conference on Computer
Aided Verification, pages 430-445, Berlin, Heidelberg, 2009. Springer-Verlag.

Robert Cecil Martin. Agile Software Development: Principles, Patterns, and Practices.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2003.

MathWorks Inc. http://www.mathworks.com/products/stateflow/, 07 2009.

Metrowerks. CodeTEST, 11 2009. http://www.metrowerks.com/MW/Develop/ AMC/
CodeTEST/default.htm.

MISRA. MISRA-C++:2008 Guidelines for the use of the C++ language in critical
systems. Motor Industry Research Association, Nuneaton CV10 0TU, UK, 2008.

Wolfgang Mahnke, Stefan-Helmut Leitner, and Matthias Damm. OPC Unified Archi-
tecture. Springer Publishing Company, Incorporated, 2009.

Glenford J. Myers and Corey Sandler. The Art of Software Testing. John Wiley & Sons,
2004.

Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight dy-
namic binary instrumentation. SIGPLAN Not., 42(6):89-100, 2007.

Open Source Community. CPPUnit, 11 2009. http://sourceforge.net/projects/cppunit/.

Haapanen Pentti and Helminen Atte. Failure Mode and Effects Analysis of software-
based automation systems. In VIT Industrial Systems, STUK-YTO-TR 190, page 190,
2002.

Parasoft. C++TEST, 11 2009. http://www.parasoft.com/.

Miro Samek. Practical UML Statecharts in C/C++, Second Edition: Event-Driven
Programming for Embedded Systems. Newnes, Newton, MA, USA, 2008.

Sparx Systems. Sparx Systems - Enterprise Architect, 11 2009.
http://www.sparxsystems.de/.

Richard M. Stallman, Roland Pesch, and Stan Shebs. Debugging with GDB: The GNU
Source-Level Debugger. Free Software Foundation, 9 edition, 1 2002.

Dynamic Memory Systems. Dynamic Code Coverage, 11 2009. http://dynamic-
memory.com/.

Qian Yang, J. Jenny Li, and David Weiss. A survey of coverage based testing tools. In
AST ’06: Proceedings of the 2006 international workshop on Automation of software
test, pages 99-103, New York, NY, USA, 2006. ACM.

62

