
An Experience on Formal Analysis of a high-level graphical

SOA Design

Maurice H. ter Beek Franco Mazzanti Aldi Sulova

ISTI–CNR, Via G. Moruzzi 1, 56124 Pisa, Italy

{terbeek,mazzanti,sulova}@isti.cnr.it

Abstract:
In this paper, we present the experience gained with the participation in a case

study in which a novel high-level design language (UML4SOA) was used to produce
a service-oriented system design, to be model checked with respect to the intended
requirements and automatically translated into executable BPEL code.

This experience, beyond revealing several uncertainties in the language definition,
and several flaws in the designed model, has been useful to better understand the hid-
den risks of apparently intuitive graphical designs, when these are not backed up by a
precise and rigorous semantics.

The adoption of a rigorous or formal semantics for these notations, and the adop-
tion of formal verification methods allow the full exploration of designs which oth-
erwise risk to become simple to draw and update, but difficult to really understand
in all their hidden ramifications. Automatic formal model generation from high level
graphical designs is not only desirable but also pragmatically feasible e.g. using ap-
propriate model transformation techniques. This is particularly valuable in the context
of agile development approaches which are based on rapid and continuous updates of
the system designs.

1 Introduction

Service-Oriented Computing (SOC) has emerged during the last decade as an evolution-

ary new paradigm for distributed and object-oriented computing [Pa07, SH05]. Services

are autonomous, distributed, and platform-independent computational elements capable

of solving specific tasks, ranging from answers to simple requests to complex business

processes. Services need to be described, published, categorized, discovered, and then

dynamically and loosely coupled in novel ways (composed, orchestrated) so as to create

largely distributed, interoperable, and dynamic applications and business processes which

span organizational boundaries as well as computing platforms. Their underlying infra-

structures are called Service-Oriented Architectures (SOAs). Unlike any earlier computing

paradigm, SOC is destined to exert a continuous influence on modern day domains like e-

Commerce, e-Government, e-Health, and e-Learning.

We have actively participated in the IST-FET Integrated Project SENSORIA (Software

Engineering for Service-Oriented Overlay Computers), funded by the EU under the 6th

framework programme’s Global Computing initiative. SENSORIA has successfully de-

veloped a novel comprehensive approach to the engineering of service-oriented software

79



systems, in which foundational theories, techniques, and methods are fully integrated into

a pragmatic software engineering process. We refer to [WH10] and the references therein

for details on SENSORIA.

Within the context of SENSORIA the novel high-level graphical design language UML4SOA

[Fo10, UML] has been defined with the aim of facilitating service-oriented system designs.

The same notation has been used inside the project to specify the credit request scenario

from the SENSORIA’s Finance case study (see Sect. 2).

High-level graphical design notations are very intuitive and very efficient in describing the

current structure and status of an ongoing software project. Especially if they are asso-

ciated with automatic code generation / design verification features, they might play an

interesting role inside an agile software development process as they can help in reducing

the effort of evolution cycles, and they can help in maintaining the focus of the develop-

ment at a level which is also understandable by the client. This might help the cooperation

between the clients and the developers, promoting the rapid delivery of software and its

regular adaption to the evolving requirements, in the spirit of the agile approach to soft-

ware development [FH01, Mar02, SW07] .

The author’s role in this case study was centered around the formal analysis of the original

UML4SOA design. This goal required some kind of formalization of the UML4SOA

semantics and the translation of the system design into a formal model suitable to undergo

a model-checking phase. To this aim, we first translated the UML4SOA design of the

credit request scenario by hand into a formal operational UMC model [BM10]. This

provided us with many useful insights into an automatization of translating UML4SOA

diagrams into UML statecharts, which finally resulted in a prototype of a translator (based

on the standard Eclipse EMF format and its transformation capabilities). UMC [Be10,

GM10, Ma09, UMC] is an on-the-fly model checker that allows the efficient verification

of SocL formulae over a set of communicating UML state machines. The state machines

are defined using the UML statecharts notation which has a standard presentation and

semantics defined by the Object Management Group (OMG). SocL [GM10] is an event-

and state-based, branching-time, efficiently verifiable, parametric temporal logic that was

specifically designed to capture peculiar aspects of services.

Since the purpose of the case study was the just the experimentation with a novel design

notation and with novel model transformation and verification approaches, in our case the

software development process has been very informal and it did not have the rigorous

structure of any kind of industrial software development method (whether agile or not).

Our experience, beyond revealing several uncertainties in the language definition, and

several flaws in the designed model, has been useful to better understand the hidden risks of

apparently intuitive graphical design notations, when these are not backed up by a precise

and rigorous semantics; in this case, in fact, abstract designs risk to become simple to

draw and update, but difficult to really understand in all their hidden ramifications. The

adoption of a rigorous or formal semantics for these notations, and the adoption of formal

verification methods allow to overcome the problem. Automatic formal model generation

from high level graphical designs is not only desirable but also pragmatically feasible e.g.

using appropriate model transformation techniques, and this is particularly valuable in the

80



context of agile development approaches which are based on rapid and continuous updates

of the system designs.

This paper is organized as follows. In Sect. 2, we sketch the credit request scenario from

SENSORIA’s Finance case study. In Sect. 3, we briefly introduce the UML4SOA profile

as developed in SENSORIA. Subsequently, we outline our translations from UML4SOA

diagrams to UMC statecharts in Sect. 4 and in Sect. 5 . In Sect. 6 we present the lessons we

learned from this formalization of UML4SOA designs into executable UMC code. Finally,

we draw some conclusions in Sect. 7.

2 Finance Case Study: The Credit Request Scenario

The credit request scenario from SENSORIA’s Finance case study was provided by one

of SENSORIA’s industrial partners, S&N [S&N], which is a leading IT company of the

financial services industry. The scenario is specified in UML 2.0 by using the profiles

SoaML [OMG], which defines a metamodel for designing the structural aspects of SOA,

and UML4SOA [Fo10, UML], which defines a high-level domain-specific modeling lan-

guage for behavioral service specifications (see Sect. 3).

The scenario’s main services are CreditRequest and—to a lesser degree—Rating. These

are complemented with web services CustomerManagement, SecurityAnalysis, Balance-

Analysis, and RatingCalculator that serve to interact with clients, save the information

they provide, calculate ratings, and the like. The CreditRequest service describes a bank

service that offers clients the possibility to ask for a loan and subsequently orchestrates

the steps needed to process this request, which may involve an evaluation by a clerk or a

supervisor before a contract proposal is sent to the client. The Credit Request service is

depicted in Fig. 1. The scopes Initialize and Finalize handle a client’s login and log off.

The loan workflow is represented in the scope Main, whose initial activity is to service

the request. The Creation scope starts with a call from the Portal. The data involved

is stored in the CreditManagement service and a confirmation is sent to the Portal. In

case of a fault, the compensation handler removes the request from the CreditManagement

service. The retrieval of the client’s balances and securities is handled by the Handle-

Balance&SecurityData scope and these are stored in the Balance and Security services.

Upon completion of the request, the Rating service calculates the rating of the client’s

request after being asked to do so through the RatingCalculation scope.

The Rating service calculates a rating, which implies whether the request can be accepted

automatically or a clerk or a supervisor needs to decide this. The Decision scope takes

care of this. Rating AAA automatically leads to an offer to the client. In any other case,

the Approval scope is used for a decision by an employee, based on which an offer or

a decline is generated, according to the Accept and Decline scopes. Rating BBB means

that the request has some risk, but can be decided by a clerk, while CCC indicates a much

more risky request that needs a supervisor to decide. The decision is sent to the Portal. An

offer is saved in the CreditManagement service and sent to the Portal, allowing the client

to see it and decide to accept or decline it through interaction with the Portal. In case of a

81



<<service activity>>

: Initialize

<<service activity>>

: Finalize

<<service activity>>

: Cancel

<<service activity>>

: MainFault

<<event>>

exception

<<service activity>>

: Creation

<<service activity>>

: HandleBalanceSecurity

<<service activity>>

: RatingCalculationy

<<service activity>>

: Decision

[updateDesired]

<<service activity>>

: Main

activity CreditRequest

Figure 1: Service Credit Request.

decline, the client is allowed to update the data and restart the request.

At any moment, the client may want to abort the request, in which case the request data

needs to be deleted. This requires the execution of compensation activities to semanti-

82



cally rollback the action of storing the request data performed by the involved services,

preventing services to keep information of aborted requests.

3 UML4SOA: A UML Profile for Service Behavior

The de facto industrial standard for specifying and documenting software systems, UML,

is not expressive enough for modeling structural and behavioral aspects of SOA. SOC

introduces key concepts (e.g. partner services, message passing among service requesters

and service providers, compensation of long-running transactions) that require specific

support in the modeling language to avoid diagrams to become overloaded with technical

constructs that reduce their readability.

There are two ways to extend UML to provide a domain-specific high-level design lan-

guage: One can either change the UML metamodel to create new UML metaclasses or

apply a user-defined UML profile to the model. In SENSORIA, the latter approach was cho-

sen, mainly because profiles are easy to use and constitute a lightweight extension. Hence

a UML 2.0 profile for modeling the behavioral aspects of SOA, called UML4SOA [Fo10],

was designed. UML4SOA complements the SoaML profile [OMG], which defines a meta-

model for designing the structural aspects of SOA. UML4SOA is a minimal extension

built on top of the Meta Object Family (MOF) metamodel (i.e. new modeling elements are

defined only for specific service-oriented features).

A UML profile consists of a set of stereotypes and constraints (specified in OCL). A

stereotype is a limited kind of metaclass that cannot be used by itself, but only in con-

junction with one of the metaclasses it extends. A metaclass is a class whose instances

are classes. A metaclass defines the behavior of classes and their instances, much like a

class in object-oriented programming defines the behavior of certain objects. Each stereo-

type may extend one or more classes through extensions as part of a profile. All UML

modeling elements may be extended by stereotypes (e.g. states, transitions, activities, use

cases, components). Stereotypes of the UML4SOA profile can thus be used to enrich UML

models with service-oriented concepts, including structural and behavioral aspects of SOA

as well as non-functional notions. Constraints allow for a more precise semantics of the

newly introduced modeling elements.

The structure of a SOA can be visualized by UML structure diagrams, showing the in-

terplay between components, their ports, and their interfaces. UML4SOA introduces ser-

vices implemented as ports of components. Each service may contain a required and a

provided interface. In turn, interfaces contain one or more operations, which may con-

tain an arbitrary number of parameters. A service has a service description and a service

provider, and may have one or more service requesters. These concepts, and the rela-

tionships among them, are represented by a metamodel, which provides the basis for the

definition of UML4SOA. For each class of the metamodel, a stereotype is defined and

relationships are expressed by constraints.

A key aspect of service orientation is the ability to compose existing services, i.e. cre-

ating a description of the interaction of several (simpler) services, which is known as

83



orchestrating. An orchestration is a behavioral specification of a service component, or
#participant$ in SoaML. UML4SOA proposes the use of UML activity diagrams for mod-

eling service behavior, in particular for orchestrating (see, e.g., the orchestration in Fig. 1

and the UML4SOA diagrams in Sect. 6). A UML4SOA stereotype #serviceActivity$ can

be directly attached as the behavior of a #participant$. The focus is on service interac-

tions, long-running transactions, and their compensation and exception handling.

A scope is a structured activity that groups actions, which may have associated compen-

sation and exception handlers (see, e.g., Fig. 10). Scopes and the corresponding han-

dlers are linked by specific compensation and exception edges (UML4SOA stereotypes
#compensation$ and #event$).

Scopes include stereotyped actions like #send$, #receive$, #send&receive$, #reply$,
#compensate$, and #compensateAll$. The stereotype #send$ is used to model the

sending of messages; #receive$ models the reception of a message blocking until the

message is received; #send&receive$ is a shorthand for a sequential order of a send action

and a receive action, and #reply$ accepts a return value produced by a previous receive

action. Container for data to be send or received are modeled by #snd$ and #rcv$ pins,

while #lnk$ pins refer to the partner service in interactions. Long-running transactions,

like those provided by services, require the management of compensation. Therefore,

UML4SOA contains #compensate$ and #compensateAll$ actions. The former triggers

the execution of the compensation defined for a scope or activity, the latter for the current

scope. Compensation is called on all subscopes in the reverse order of their completion.

The graphical notation of the UML4SOA stereotyped elements is shown in Fig. 2.

<<service activity>>

Activity Name

<<send&receive>>

op_request

lnk

snd

rcv

<<receive>>

op_request

lnk

rcv

<<reply>>

op_request

lnk

snd

<<send>>

op_request

lnk

snd

<<service activity>>

: CalledActivity

<<service activity>>

Event Handler

<<service activity>>

Compensation Handler

<<event>>

<<compensation>>

<<compensate>>

Target Activity

<<compensateAll>>

Target Activity

Figure 2: UML4SOA: new graphical elements.

84



4 Translating UML4SOA Diagrams into UMC Statecharts

Appended to [BM10], we provided a UMC model of the credit request scenario described

in Sect. 2. This model was obtained by translating the specification provided by S&N.

In the specification discussed in Sect. 2, only the CreditRequest and Rating services are

described as UML4SOA activity diagrams, while the other components used by these

services (the Portal, Credit Management, Customer Management, Security Analysis, Bal-

ance Analysis, and Rating Calculator services) are described by UML4SOA protocol state

machines. Since UMC needs a closed model, we moreover modeled a single Client (inter-

acting with a single instance of the Portal) that can make up to two credit requests.

The translation of the main CreditRequest and Rating services was performed in a rather

general way, in order to be able to serve as a blueprint for an automatic translation tool from

UML4SOA specifications into UMC code (see Sect. 5). This explains the at times long-

winded organizational structure. The UMC encoding of the other components, originally

specified by protocol state machines, was done by hand.

It is outside the purpose of this paper to try to present all details of the rationale and the

rules according to which the UML4SOA activity diagrams were translated into UML stat-

echarts. We just hint here that in general a UML4SOA activity diagram is mapped into a

corresponding UML statechart with a single state. Each progression step during the execu-

tion of a UML4SOA activity diagram is modeled by one (or sometimes more) transitions

in the statechart model, which implement the corresponding semantics. In general, the

UML statechart transitions modeling the execution of an activity node have the following

form, where tau represents an internal signal of the statechart:

s1 -> s1 -- actually no state change

{ tau [enabling conditions for incoming edges] /

resetting of enabling conditions;

execution of specific node activity;

setting of enabling conditions for outgoing edges;

self.tau;

}

As a specific example, we consider the #send$ node shown in Fig. 3. The corresponding

specific UMC transition rule modeling the execution of this node is as follows:

s1 -> s1

{ tau [N1_Finalize_DefaultInitialOUT = true] /

N1_Finalize_DefaultInitialOUT := false;

LNK_portalService.goodbye([self],

VAR_CreditRequest_customerData);

N2_Finalize_Send_goodbyeOUT := true;

self.tau;

}

Since UML4SOA is a high-level modeling language, some details of the specification

85



are voluntarily underspecified (oftentimes inherited from UML). This results in the need

for specific assumptions to accompany any implementation of a UML4SOA design in a

lower-level formalism, so as to make certain details of the model explicit.

UMC offers users the following specific possibilities to customize their system designs:

1. By default, messages that arrive at a time at which they cannot be accepted are

never discarded. This specific choice can be reversed by simply avoiding to declare

as “Deferred” the corresponding events.

2. By default, the order in which events are removed from an events queue associated

with a state machine is “FIFO” (First In First Out). This specific choice can be

reversed (even on a per-object basis) by simply changing the object queue policy to

“RANDOM” (i.e. any queued event is eligible for being dispatched, independently

of its position in the queue).

3. By default, all objects are assigned the same priority (thus modeling the maximal

degree of nondeterminism in their scheduling). This specific choice can be reversed

by simply assigning (also dynamically) to each entity its own priority, thereby mod-

eling more specific schemata.

<<send>>

goodbye

lnk

snd

portalService

custormerData: CustomerData

<<service activity>>
: Finalize

Figure 3: A #send$ node from scope Finalize.

5 Tool Support: From MagicDraw to Eclipse to UMC

In this section, we describe the techniques and frameworks we used to support an auto-

matic transformation from UML4SOA designs into UMC executable code. This trans-

formation is based on our translation experience described in the previous section and on

OMG’s Model Driven Architecture (MDA). MDA is a software development paradigm

that focuses the development process more on system design than on its implementation.

The main target of this approach is to create models in an efficient and domain-specific

way. This is realized by using domain-specific languages and generating the software

from these models.

86



In our context, MDA is used not only to provide a fully automatic approach for trans-

forming UML4SOA service-oriented orchestrations into an implemented system, but also

to support qualitative and quantitative verifications by third-party tools. For this purpose

we choose the Eclipse Modeling Framework (EMF) and Xpand. EMF is an open source

platform that has widely adopted the MDA paradigm and implements most of its core spec-

ifications, while Xpand is an EMF-related template language (supported by openArchitec-

tureWare [oAW]) based on domain-specific models for model-to-text transformations. The

reason for choosing EMF is threefold:

1. The UML 2.0 core metamodel is already implemented and distributed as part of

the Eclipse UML 2.0 plug-in. Hence, there is no need to define a new UML4SOA

metamodel, but we only need to consider the stereotypes defined in UML4SOA.

2. MagicDraw can export a UML4SOA design as an Eclipse UML 2.0 instance model.

3. A new graphical interface for UMC, which allows one to directly draw a UMC

model in terms of graphical nodes and edges, was already experimented in the con-

text of the Eclipse environment [Su09].

Figure 4 shows the steps performed to obtain UMC code from a UML4SOA system design.

Figure 4: From a UML4SOA system design to UMC executable code.

The Xpand workflow engine executes the transformation process by first invoking a DOM-

like parser to create an object graph in memory for our model, and then passing this graph

to the Xpand generator in order to get the UMC artifacts. A generator usually consists

of one Xpand template file controlling the output generation and a list of Xtend files (an-

other domain-specific language, part of Xpand) containing other user-defined independent

functions. An exemplary excerpt from an Xpand template file is given in Fig. 5.

The central concept of Xpand is the template declared using the DEFINE. . . ENDDEFINE

block, which contains the basic structure of the transformation process. A template has a

name (UML4SOA2UMC in our example) and is bound to a specific metatype (uml::Model

in our example). Inside the main template, a FILE. . . ENDFILE block creates a new file

87



Figure 5: Example of an Xpand template.

with the specified name. All code generated inside that block is written to the created

output file. Control constructs such as FOREACH and IF are provided as well.

As a specific example of the transformation from UML4SOA to UMC we consider a

UML4SOA #send$ node. The corresponding Xpand template code is shown in Fig. 6.

This transformation mimicks the manual translation described in the previous section.

Figure 6: Example transformation of a UML4SOA #send$ node.

6 Lessons Learned from the UMC Formalization Experience

A first immediate advantage of the UMC formalization of the credit request scenario from

SENSORIA’s Finance case study is the possibility to manually explore the graph of all

possible system evolutions, verifying through inspection the correctness of the design and

the roots of possible anomalies.

88



In our case, the statespace was not particularly large (39, 530 states) and even if a small

exploration of the initial steps were sufficient to identify some problematic aspects of the

design, it is still too large to allow a complete manual inspection.

Model checking SocL formulae proved to be a powerful method for identifying unexpected

violations of “supposed-to-be-true” properties, and the detailed explanations provided by

UMC (in terms of counterexample/witness paths through the graph of all possible system

evolutions) allowed a quick understanding of how such violations might occur. It is outside

the purpose of this paper to show the details of the logic (SocL [GM10]) used to analyze

our system model of the UML4SOA system design of the credit request scenario. Two

exemplary verified properties, here just expressed in plain natural language, are as follows:

1. “It is always true that if the system accepts a new CreditRequest, then it will either

respond to the Client or it will receive a cancel request.”

2. “If a negative response to a CreditRequest is sent back to the Client, then the rating

evaluation was not AAA.”

In the following subsections, we will illustrate in more detail some of the traps and pitfalls

that we found in the original system design in UML4SOA as well as inside the UML4SOA

definition, and we will show what we believe to be the real underlying issues reflected

by them. We will do so abstracting a little from the specific details of the case study,

presenting instead small self-contained examples which are not overwhelmed by actually

not relevant details.

6.1 Hidden implementation-dependent assumptions inside “high-level” “platform-

independent” designs

Suppose we have a Client / Server architecture where the Client performs a login request

followed (if successful) by an operation request, while the Server waits for the login re-

quest and, if the supplied login data is OK, waits for an operation request to be handled.

Using UML4SOA, this simple design can be represented by the diagram shown in Fig. 7

and Fig. 8.

If we adopt a “flat” design for the description of the Server side of this activity (see Fig. 8,

left diagram) the semantics is quite clear. However, if we use some additional structured

activities inside the Server (see Fig. 8, right diagram) in order to explicitly model the

existence of some login and operation mode phases, some semantic subtleties may arise.

This is very similar to what happens in our case study, e.g., w.r.t. the Initialize and Main

scopes inside the CreditRequest service.

In the first case (a flat design), once the login response is sent by the Server, the subse-

quent receive activity can immediately be enabled, while in the second case the two events

(completing the send and enabling the receive) are no longer coinciding, since inbetween

there is the step of completing the Login Phase and entering the Operation Phase. In

principle it might happen that the Server receives an operation request before the Opera-

tion Phase is entered (and before the receiving of the request is enabled). This makes the

89



<<send&receive>>

login_request

lnk

snd

rcv

server

login_data

response

<<send&receive>>

operation_request

lnk

snd

rcv

server

operation_data

operation_result

[response=ok]

[else]

activity Client

Figure 7: UML4SOA diagrams for the Client.

semantics of the design very implementation dependent as it depends on what is supposed

to happen when a message arrives at a system component when the component is not yet

ready to accept it (e.g. the request might be queued on the Server until it can be accepted

or it might be discarded), and if such a situation should indeed be considered possible.

The problem is that the designer is probably making some implicit underlying assumption.

One of these assumptions might be that the time needed by the (remote) Client to receive

the login response and produce a new operation request, is much higher than the time

needed by the Server to perform all its internal steps from the time at which the response

is provided to the time at which the subsequent receive becomes enabled. This kind of as-

sumption might be reasonable, but should be appropriately reflected by the system design,

e.g. by stating explicitly that the expected behavior of the Server component is to run as

an indivisible activity until it reaches a subsequent communication action.

An alternative assumption, on the contrary, might rely instead on the fact that incoming

operation request messages are implicitly supposed not to be discarded, but to be always

queued until possibly eventually accepted.

If we do not make any assumption and simply generate a UMC formal model correspond-

ing to the “structured” Server design we can easily detect the presence of deadlocks in the

system, e.g. by checking the property that a successful login request is always eventually

followed by a response to the operation request. In this way, we can become aware of

the existence of some problem in the design. Once the modeling difficulty is understood,

we can fix the missing underlying assumptions by explicitly stating one (or both) of the

90



<<receive>>
lnk

operation_request

rcv

<<receive>>

login_request

lnk

rcv

<<reply>>

login_request

lnk

snd

<<service activity>>

: Validation

Client

login_data

Client

response

[response=ok]

[else]

<<reply>>

operation_request

lnk

snd

<<service activity>>

: Handling

Client

response

Client

login_data

activity Server
<<service activity>>

: Login_Phase

<<receive>>
lnk

operation_request

rcv

<<receive>>

login_request

lnk

rcv

<<reply>>

login_request

lnk

snd

<<service activity>>

: Validation

Client

login_data

Client

response

[response=ok]

[else]

<<reply>>

operation_request

lnk

snd

<<service activity>>

: Handling

Client

response

Client

login_data

activity Server

<<service activity>>

: Operation_Phase

Figure 8: UML4SOA diagrams for the Server (both a flat and a structured design).

possible correct modeling strategies, and these strategies can be efficiently encoded in our

UMC model. The case of desired greater granularity of the required Server behavior can

be supported in UMC by exploiting the dynamic priorities feature (i.e. raising the priority

of a system component for a short period of time in order to execute a sequence of internal

steps as a unique indivisible activity). The case of incoming messages not supposed to be

discarded even if arriving at a time in which a component is not yet able to handle them,

on the other hand, is supported by UMC by allowing to define the corresponding events

as “deferred” (in the UML statecharts sense) to achieve the behavior of queued messages.

Once any (or both) of these solutions is adopted we can verify that the system behavior

becomes again, as intuitively expected, equivalent to that of the flat model of the Server.

91



These problems can be exacerbated by a third kind of hidden assumption, shown in Fig. 9.

<<send>>

operation_request

lnk

snd

<<service activity>>

: Confirmation

<<send>>

cancel

lnk

snd

<<receive>>

operation response

lnk

rcv

Server

data

[confirmed] [else]

activity Client

Server

Server

resp

<<send>>

confirm

lnk

snd

Server

<<receive>>

operation request

lnk

rcv

<<service activity>>

: Operation Phase

<<receive>>

cancel

lnk

rcv

<<service activity>>

: Handling

activity Server

Client

data

Client

<<receive>>

confirm

lnk

rcv

Client

<<send>>

operation response

lnk

snd

Client

resp

Figure 9: UML4SOA diagrams for the Client and the Server — second variant.

In the variant depicted in Fig. 9, the Client is supposed to ask the Server for a certain oper-

ation, with the possibility to later cancel or confirm this operation. Similarly, the Server is

initially supposed to wait for an operation request, after which an event Operation Phase

is entered and, depending on the Client’s decision, the appropriate activity is performed.

The design of Fig. 9 seems correct at a first glance, but what happens if the operation

request message is delayed by the network and happens to be delivered after the confirm

or cancel message? Again, this is a strictly implementation-dependent situation (due to

UML allowing so-called semantic variation points) and if the implementation is based on

the assumption that wrongly timed messages are discarded, then the system deadlocks.

Also in this case we have an apparently correct “platform-independent” “high-level” de-

sign which, on the contrary, just hides specific implementation-dependent assumptions.

When building a UMC model, the appropriate choice of modeling a communication net-

work that can or cannot deliver the messages in a different order from the one in which

they are sent, can be easily made by specifying a specific queueing policy (RANDOM

versus FIFO) for the events arriving to the system components.

92



6.2 Uncertain semantics of UM4SOA features

Informally describing a language feature is one thing, formally reasoning on all the possi-

ble consequences of a language choice is quite another thing. This could be the summary

of this subsection. This time the sample culprit is the design of the compensation mecha-

nism of UML4SOA.

UML4SOA allows one to associate to a service activity region a #compensation$ edge

leading to another compensation service activity, to be executed whenever the effects

of a successful completion of the original service activity have to be undone in some

way. This compensation activity is requested by the execution of a #compensate$ or
#compensateAll$ action. The main problem here is that compensation handling is a con-

cept that is tightly coupled to that of an “atomic transaction” (i.e. an activity with an “all

or nothing” semantics), but UML4SOA service activities are not required to have such a

transactional semantics.

In the credit request scenario, there are several cases in which non-transactional activities

are associated to compensation handlers, with the consequence that some expected system

property do not hold. This typical example is shown (in a form equivalent to what happens

e.g. inside the Creation activity of the case study) in Fig. 10.

<<receive>>

operation_request

lnk

rcv

Client

data

<<send&receive>>

handling_request

lnk

snd

rcv

RemoteService

data

result

<<reply>>

operation_request

lnk

snd

<<send&receive>>

undo_request

lnk

snd

rcv

RemoteService

data

result
Client

result

<<service activity>>

: Operation_Handling

<<service activity>>

: Compensation_Phase

activity Operation_Phase

<<compensation>>

Figure 10: UML4SOA compensation.

In Fig. 10, the compensation activity consists of requesting, with the undo request ser-

93



vice call, the “undo” of the handling request service call executed inside the Opera-

tion Handling activity. This logically means that “orphan” (i.e. not associated to suc-

cessful credit requests) handling request instances should not be present in the system.

However, if a compensation request is executed after the handling request service call is

issued but before the Operation Handling activity is completed, then no compensation is

activated and an orphan handling request instance still exists.

In this case, at least two kind of problems are raised and evinced by the formal modeling:

1. The semantics of compensation should probably be tied with an atomic transaction

mechanism, a fact that is not sufficiently well described by the current UML4SOA

definition of service activities and compensations.

2. The designer of this fragment of activity might have implicitly assumed that the ex-

ecution of the Operation Handling activity cannot be interrupted from the outside.

Since it contains no error-path, it is supposed to always complete successfully. Un-

fortunately, the overall system design allows two parallel threads to asynchronously

interfere with one another, and at first the impact of this possibility was not well

understood in the case study. In the credit request scenario, the asynchronous inter-

fering activity is the one originated by a cancel operation triggered by the Client.

Another subtle and potentially problematic aspect of the UML4SOA semantics of com-

pensation, is related to the order in which the subactivities of a given activity have to be

compensated. While UML4SOA requires that subactivities need to compensated in pre-

cisely the reverse order w.r.t. their completion order, this is not exactly what is required

by the BPEL semantics (which is more lazy and allows violation of completion ordering

for not causally related subactivities). In our case study, this difference is absolutely irrel-

evant, but in principle more complex designs could be imagined in which the difference

does become observable.

If we suppose that software development approach relies on an automatic translation from

UML4SOA into BPEL, directly mapping UML4SOA compensations into BPEL compen-

sations, then for more complex designs it might happen that an apparently working system

from a certain point onwards starts to show unexpected anomalies. This might happen,

e.g., when the adopted BPEL execution engine passes from one version to another, or

from one vendor to another. In this case, formal methods might be of help by rigorously

defining the assumptions and the meaning of the high-level designs. However, they can do

little w.r.t. to the verification of compatibility issues of BPEL execution engines, and even

less w.r.t. the inconsistencies raised by the evolutions in time of the BPEL specification

itself.

During the formalization of the credit request scenario from SENSORIA’s Finance case

study, several other aspects have raised discussions and clarification requests among the

different partners involved in the project. The semantics of UML4SOA protocol state ma-

chines that are used to model the unspecified components of the system, e.g., was found

not well specified, nor was the semantics of service instance creation and service con-

nection establishment. For all these aspects, the formal modeling effort offered a good

opportunity to clarify and disambiguate the intended meaning of the language features, a

94



process which is probably still not complete.

6.3 Hidden complexity of scarcely structured designs

For several decades now, the danger of using “goto” as a control flow command has been

widely recognized in the field of software engineering. This is due to the difficulty of

analysis and understanding that its use introduces in the algorithms. It is therefore hard to

understand why nowadays, when designing “high-level” “platform-independent” design

languages, we resort to recycling the goto construct just because with a graphic design

notation, nodes and edges are the easiest graphical elements to design. The result can

quickly become a “spaghetti design” (as shown in the leftmost diagram of Fig. 11), with

the consequence that the true behavior of the system becomes obscure and difficult to

understand in all its ramifications.

Figure 11: Weren’t gotos considered harmful?

Moreover, in almost all programming languages great care has been given to the introduc-

tion of concurrent features (task, threads, co-routines) with the design goal of well iden-

tifying the concurrently evolving activities and, above all, keeping the flow of concurrent

elements independent as much as possible. We repeat that it is therefore hard to understand

that “high-level” design languages resort to the use of low-level graphical elements, like

“fork” and “join”, to handle concurrency, thus potentially allowing an even nastier form of

spaghetti design (as shown in the rightmost diagram of Fig. 11). The situation is even made

potentially more dangerous by exploiting elements like “activity final” nodes (killing all

concurrent subactivities inside a parallel activity) or by raising exceptions, which might

have the consequence that an error in one concurrent subactivity asynchronously termi-

nates other concurrent activities in an unclear, implicit, or uncontrolled way.

Fortunately, in our case study we did not have to face such an abuse of unstructured con-

structs. However, we cannot avoid to remark that one of the design flaws present in the

95



service orchestration (as shown in the previous subsection) was in fact caused by a bad

interference between two concurrent activities. The overall situation actually occurring in

our case study is like that shown in Fig. 12, in which the Operation Phase is unexpect-

edly aborted because of an exception raised inside the Cancel activity, asynchronously

triggered as a concurrent flow by an external event.

<<service activity>>

: Operation_Phase

<<receive>>

cancel_request

lnk

rcv

Client

data

<<raiseException>>

Abort

<<event>>

<<exception>> <<compensateAll>>

recovery

<<compensation>>

<<service activity>>

: Cancel

Figure 12: UML4SOA compensation — second variant.

7 Conclusions

High-level graphical design notations are very intuitive and very efficient in describing

the current structure and status of an ongoing software project. Especially if they are as-

sociated with automatic code generation / design verification features, they might play

an interesting role inside an agile software development process as they can help in re-

ducing the effort of evolution cycles, and they can help in maintaining the focus of the

development at a level which is also understandable by the client. This might facilitate

the cooperation between the clients and the developers, promoting the rapid delivery of

software and its regular adaption to the evolving requirements, in the spirit of the agile

approach to software development.

In this paper we show, however, that they may also be a source of problems, most of which

the use of formal methods can avoid. We illustrate our claim by generalizing examples

that we encountered in a case study. The three types of problems we focus on are hid-

den implementation-dependent assumptions inside “high-level” “platform-independent”

designs, uncertain semantics of features of “high-level” design languages, and hidden

complexity of scarcely structured designs.

It is our firm belief that high-level graphical design notations always need to be backed

up by a precise and rigorous semantics, i.e. by formal methods, especially when they are

96



planned to be used inside agile software processes. The adoption of a rigorous or formal

semantics for these notations, and the adoption of formal verification methods allow to

explore and understand in all their hidden ramifications the high level designs. Automatic

formal model generation from high level graphical designs is not only desirable but also

pragmatically feasible e.g. using advanced model transformation techniques, and this is

particularly valuable in the context of agile development approaches which are supposed

to exploit the rapid and continuous updates of the system under development.

Acknowledgements

We thank all our partners in SENSORIA for detailed discussions of the Finance case study,

but in particular Jannis Elgner from S&N, Philip Mayer and Martin Wirsing from LMU,

Lucia Acciai, Federico Banti, Francesco Tiezzi and Rosario Pugliese from DSIUF, and

Stefania Gnesi from ISTI.

References

[Be10] M.H. ter Beek, A. Fantechi, S. Gnesi and F. Mazzanti, A state/event-based model-checking
approach for the analysis of abstract system properties. To appear in Science of Computer
Programming, 2010.

[BM10] M.H. ter Beek and F. Mazzanti, Modelling and Analysing the Finance Case Study in UMC.
Technical Report 2010-TR-007, ISTI–CNR, 2010.

[FH01] M. Fowler andJ. Highsmith, The Agile Manifesto. Software Development, Augist 2001.
(see also http://www.agilemanifesto.org)

[Fo10] H. Foster, L. Gönczy, N. Koch, P. Mayer, C. Montangero and D. Varró, UML Extensions
for Service-Oriented Systems. In [WH10], 2010.

[GM10] S. Gnesi and F. Mazzanti, An Abstract, on the Fly Framework for the Verification of Ser-
vice Oriented Systems. In [WH10], 2010.

[Ma09] F. Mazzanti, Designing UML models with UMC. Technical Report 2009-TR-43, ISTI–
CNR, 2009.

[Mar02] R.C. Martin, Agile Software Development: Principles, Patterns, and Practices, Prentice
Hall PTR Upper Saddle River, NJ USA, 2002

[OMG] Object Management Group, Service oriented architecture modelling Language (SoaML):
Specification for the UML Profile and Metamodel for Services (UPMS), April 2009.
http://www.omg.org/cgi-bin/doc?ptc/09-04-01/

[oAW] openArchitectureWare. http://www.eclipse.org/workinggroups/oaw/

[Pa07] M.P. Papazoglou, P. Traverso, S. Dustdar and F. Leymann, Service-Oriented Computing:
State of the Art and Research Challenges. IEEE Computer 40, 11 (2007), 38–45.

97



[SH05] M.P. Singh and M.N. Huhns, Service-Oriented Computing: Semantics, Processes, Agents.
Wiley, 2005.

[Su09] A. Sulova, Model Driven Software Development con Eclipse, StatechartUMC. In Proceed-
ings of the 4th Italian workshop on Eclipse technologies (Eclipse-IT 2009), Bergamo, Italy
(A. Gargantini, Ed.), Eclipse Italian Community, 2009, 113–114. An extended version
appeared as Technical Report 2009-TR-050, ISTI–CNR, 2009. In Italian.

[S&N] S&N AG. http://www.s-und-n.de/

[SW07] J. Shore and S. Warden, The art of agile development. OReilly, 2007.

[UMC] UML Model Checker. http://fmt.isti.cnr.it/umc/

[UML] UML4SOA. http://www.uml4soa.eu/

[WH10] M. Wirsing and M. Hölzl (Eds.), Rigorous Software Engineering for Service-Oriented
Systems: Results of the SENSORIA project on Software Engineering for Service-Oriented
Computing, Springer, 2010. To appear. See also http://www.sensoria-ist.eu/

98


