Reconstructing Development Artifacts

for Change Impact Analysis*

Kiana Rostami!, Michael Langhammer!, Axel Busch?
Joshua Gleitze?, Robert Heinrich!, Ralf Reussner!
Karlsruhe Institute of Technology (KIT),
rostami,langhammer, busch,heinrich,reussner }@kit.edu, %joshua.gleitze@student.kit.edu

Abstract

Software architectural models are widely used to rep-
resent the structure of software systems. Software
systems need to evolve continuously during their life
time, for instance, to adapt to new requirements. Dur-
ing the evolution various change requests have to be
implemented. However, analysing the architecture of
a system alone does not provide sufficient information
for an adequate estimation of the impact resulting
by such change requests. In addition, many other
development artifacts, such as test cases, have to be
considered. Creating models of these artifacts by hand
is time-consuming and error-prone. In this paper, we
present an approach that automatically extracts de-
velopment artifacts and annotates them to a software
architectural model.

1 Introduction

Modern component-based software development is
based on an explicit software architectural model. Such
a model enables analysis on quality attributes of the
software system, like performance or maintainability.
As maintenance takes the lion’s share in software’s
life cycle, it would be desirable to additionally have a
model allowing quality analysis for software systems in
change scenarios. Modeling a typical software architec-
ture, that comes with many classes and implicit design
decisions, by hand can be a very time-consuming and
tedious process. Several approaches exist to automate
the re-engineering process, automatically extracting
components and their relationships from existing soft-
ware. Based on an architectural model, maintainability
analysis usually results in a task list containing several
tasks needed to implement a change request [4]. For
the maintainability analysis, additional management
and technical artifacts (e.g. test cases) need to be
considered, as they can also be affected by a change
request. However, most existing re-engineering tools
are limited to analyse source code [1].

This paper presents the approach Source Code
Model eXtractor for Karlsruhe Architectural Main-
tainability Prediction (SoMoX4KAMP) to reconstruct

*This work was partially supported by the DFG (German
Research Foundation) under the Priority Programme SPP1593.

34

further management and technical artifacts during
the re-engineering process, omitting the effort of cre-
ating the artifacts by hand. We extend the reverse
engineering approach approach Source Code Model
eXtractor (SoMoX) [2] to consider test cases, con-
figuration files, and other technical descriptions that
are essential artifacts in modern software projects.
The maintainability approach Karlsruhe Architectural
Maintainability Prediction (KAMP) [4, 5] uses these
artifacts to derive more accurate task lists needed to
implement change requests.

2 Foundation

Our work is based on the Palladio Component Model
(PCM), KAMP, and SoMoX.

The PCM [3] is a component-based architectural
metamodel for software systems. It roughly consists of
components, interfaces, signatures, and the “provides”
and “requires” relations between components and in-
terfaces. Based on the architectural model, the PCM
can be used to conduct model-based analysis, such as
performance prediction.

If the PCM should be applied to existing projects
that do not have an explicit or no up-to-date archi-
tectural model, users face the problem of creating it.
To avoid the effort of building PCM model instances
from existing code manually, it is possible to use the
reverse engineering approach SoMoX [2]. It uses a com-
bination of different metrics to reverse engineer PCM
components and PCM interfaces from Java code. One
metric, for instance, is the package metric, which de-
termines if classes in one package should be considered
as one component.

KAMP [4, 5] is a scenario-based maintainability
approach that uses a formal software architectural
metamodel (i.e. PCM) to estimate change propagation.
Using a further metamodel for annotating the context
information, KAMP can also consider the technical
and organizational tasks caused by a change request.
Fig. 1 shows an excerpt of FieldOfActivity Annotation
metamodel used for the context information.

3 Approach

To accurately predict change propagation in a software
system, information about many artifacts is necessary.

Softwaretechnik-Trends 37:2, Mai 2017

| FieldOfActivity AnnotationRepository

T 1
Test Staff
Specification||Specification| """

I T
Development Build
ArtefactSpecification||Specificatio

|1\'IetaDataFile|. . | SourceFile "UnitTlestCasel . .|IntegratiorI1TestCase|

Figure 1: FieldOfActivityAnnotation (excerpt) [5]

Besides source code, test cases are for example typical
artifacts needed to be considered by software architects.
To include them in the prediction process, they need
to be modeled explicitly in an own model and linked
with the originate architectural model. To omit the
necessity of modeling the additional artifacts manually,
we created SoMoX4KAMP, which is able to reverse
engineer them automatically.

SoMoX4KAMP is executed together with SoMoX
and uses the results of SoMoX. It additionally uses
information from source code files as well as further
files and meta data information. The output of So-
MoX4KAMP is an instance of KAMP’s FieldOfActiv-
ityAnnotation metamodel (as illustrated in Fig. 2).
We currently implemented the reverse engineering for
build specifications, test specifications, and staff mem-
bers, which we will elaborate in the following.

Instance Task List
Development _
f PCM
Artifacts 2
Code > SoMoX Instance of KAMP
— extends '1‘ FieldOf- A

Additional | A Activity- Change
Artifacts | SOMOXAKAMP > Annotation Request

Figure 2: Overview of the holistic approach

3.1 Build Specification

Build specifications define how a specific software sys-
tem can be build, for instance, using an automatic
build system. They are usually stored in a technology
specific representation. By convention, a build specifi-
cation file describes build rules only for files that are
in or in a subfolder of the folder the build specification
file is in. SOMoX4KAMP detects build specifications
by their name (e.g. pom.xml, *.gradle, Makefile,
etc.) and uses this convention as a heuristic to find all
files affected by them. It then adds each specification
as a BuildSpecification to the resulting FieldOfActiv-
ityAnnotation model and assigns it to all components
having at least one file affected by it.

3.2 Test Specification

Test specifications are artifacts used to test software.
In our approach, we only looked at tests written in
Java. This includes unit, integration and system tests,
but also helper classes. To find test specifications,
SoMoX4KAMP first needs to detect source code files
that contain test cases. To do so, it iterates over all
source files and consults so called TestDetectors, which

Softwaretechnik-Trends 37:2, Mai 2017

analyse whether a given source code file contains a
test, using different heuristics. For instance, a file that
is part of a component is never a test specification. A
file referencing the JUnit test framework or placed in
a test folder according to Maven’s Standard Directory
layout is a test specification.

Once detected, SOMoX4KAMP statically analyses
each test specification source file to search for the com-
ponents tested by it. It iterates over all method calls
made in the tests and follows them transitively until
they reach a component. The specification is then
added as a TestSpecification to the resulting FieldO-
fActivityAnnotation model and assigned to the com-
ponents found by the search.

3.3 Staff Members

For implementing future change requests it is im-
portant to document the developers of a compo-
nent [5]. Staff members are currently added to the
resulting FieldOfActivityAnnotation model instance by
analysing comments in Java source code and looking
at information from version control systems (VCS).
SoMoX4KAMP finds Javadoc’s @author tags in all
comments in Java source files. If no @author tags can
be found in a file but the file is checked into a VCS,
editing information from the VCS (like git’s blame)
is used to determine the file’s editors. The authors or
editors found for a file are then added as Developers of
the reverse engineered component the file is a part of.

4 Conclusions

We presented SoOMoX4KAMP, extending an architec-
tural model reconstruction approach to automatically
extract development artifacts (e.g. test cases) for a
maintainability analysis approach. Using other devel-
opment artifacts than code can, by this, improve the
estimation of the effort caused by a change request.

References

[1] S. Ducasse and D. Pollet. “Software architecture
reconstruction: A process-oriented taxonomy”. In:
Software Engineering, IEEE Transactions on 35.4
(2009), pp. 573-591.

[2] K. Krogmann. “Reconstruction of Software Com-
ponent Architectures and Behaviour Models using
Static and Dynamic Analysis”. PhD thesis. KIT,
2010.

[3] R. H. Reussner et al. Modeling and Simulating
Software Architectures — The Palladio Approach.
MIT Press, 2016. 408 pp.

[4] K. Rostami et al. “Architecture-based Assessment
and Planning of Change Requests”. In: QoSA.
ACM, 2015, pp. 21-30.

[5] J. Stammel. “Architekturbasierte Bewertung und
Planung von Anderungsanfragen”. PhD thesis.
KIT, 2015.

35

