Selective LDAP Multi-Master Replication *

Thomas Bauereiss!, Stefan Gohmann?, Dieter Hutter', and Alexander Kliser?

! German Research Center for Artificial Intelligence, Bibliothekstr. 1, D-28359 Bremen,
Germany, {thomas.bauereiss|hutter}@dfki.de
2 Univention GmbH, Mary-Somerville-Strae 1, D-28359 Bremen, Germany,
{klaeser|gohmann}@univention.de

Abstract: LDAP directory services are widely used to store and manage information
about the assets of organisations and to ease the administration of IT infrastructure.
With the popularity of cloud computing many companies start to distribute their com-
putational needs in mixed-cloud infrastructures. However, distributing an LDAP direc-
tory including sensitive information to partially trusted cloud servers would constitute
a major security risk. In this paper, we describe an LDAP replication mechanism that
allows for a fine-grained selection of parts of an LDAP directory tree that are repli-
cated to another server using content-based filters, while maintaining the availability
and performance advantages of a full multi-master replication. We discuss sufficient
conditions on replication topology and admissible operations such that the replication
mechanism provides eventual consistency of selectively replicated data.

1 Introduction

Directory services with LDAP interface are widely used to store and manage information
about infrastructure and assets of organisations. Multi-master replication (MMR) mecha-
nisms are readily available for directory services, providing high availability and eventual
consistency of directory data on different servers via optimistic replication. However, ex-
isting MMR mechanisms provide only limited options for configuring a master to replicate
only selected parts of the LDAP directory tree. Besides full replication, typically only the
division of the LDAP directory into disjoint subtrees is supported. However, with the pop-
ularity of cloud computing many companies start to distribute their computational needs in
mixed-cloud infrastructures. Groupware, typically supporting the collaboration between
employees, are deployed in the cloud to realise a highest level of availability while data
and programs constituting the assets of a company should be kept on in-house installa-
tions. To ease administration there is a need for uniform mechanisms to administer the
in-house installations as well as the various installations in the cloud. A naive approach
would distribute a common LDAP directory to all the individual installations causing a
major security hole as this common LDAP directory contains also the information needed

*This work was supported by the German Federal Ministry of Economics and Technology under grant/project
SATCLOUD.

94

to access in-house installations and thus to access the assets of the company. Consequently,
the security of these assets would depend on the security of the LDAP directory stored in
the cloud.

Therefore, we aim to develop more flexible mechanisms for selective multi-master repli-
cation, giving organisations the ability to select which parts of the directory to replicate
to which (cloud) server, while maintaining the advantages of full MMR. In this paper, we
describe such a mechanism where each LDAP master has an associated view on the LDAP
directory defined in terms of a set of LDAP filter expressions. We discuss sufficient con-
ditions on replication topology and admissible operations such that the replication system
provides eventual consistency of replicated data.

The rest of this paper is structured as follows. In Section 2, we describe an example
application scenario for our replication mechanism. In Section 3 we give a formal model
of LDAP directories, operations and filters. We describe the replication mechanism in
Section 4 and define its consistency guarantees in Section 5. Section 6 describes related
work in the area of optimistic replication. Section 7 concludes the paper with a summary
and directions for future work.

2 Example scenario

As a typical application scenario for infrastructure and identity management based on
LDAP directories, consider a large organisation with several local branches in different
cities. There is a central LDAP master server at the organisation’s headquarters that hosts
the full LDAP directory tree, so that the top level management has an overview over the or-
ganisation. In addition, every local branch office has an LDAP master of its own that only
receives and maintains information about its own employees and its used infrastructure.

Such a scenario is typically implemented by modelling the local branches as organisational
units (OUs) and configuring the branch masters to replicate their respective OU informa-
tion. This is possible with existing implementations of LDAP directory servers, e.g. Active
Directory, provided that the directory is partitioned into disjoint subtrees.

Now consider the situation where two branches start a joint project and require a group-
ware server where the employees working on the project can organise appointments and
share documents. In order to avoid having to operate additional infrastructure, they decide
to set up the groupware server at a cloud provider. There are several possible approaches:

e Setup a groupware server in the cloud without connection to the enterprise’s identity
management. The disadvantage is that manual creation of accounts is required and
there is no password synchronisation.

e Set up an identity provider for single sign-on at a central enterprise server and con-
figure the groupware server to make use of it. However, only server software that
supports the chosen framework for single sign-on can be used in this case.

e Set up an LDAP directory server on the groupware machine and configure it to
replicate identity data for employees working on the project. Replicating the whole
LDAP directory of the enterprise or even of both branches is not acceptable for

95

performance and security reasons. Replicating only the data of employees in the
project using a content-based filter is only supported in read-only (slave) mode in
existing LDAP implementations. However, this implies a limited availability if the
connection between the groupware server in the cloud and the LDAP server in the
enterprise network is temporarily broken. If a user then wants to change his address
information, for example, or wants to define a text for an absence notification on
the groupware server, then this would fail. If write access is required during a login
process, for example due to a mandatory password change, then even the login fails.

In this paper, we describe a mechanism for selective multi-master replication that allows
one to specify which parts of an LDAP directory to replicate based on its content. For
example, the organisation described above could specify the employees that work on the
joint project and should get access to the groupware server by assigning a corresponding
value to the “project” attribute of their LDAP entries. The replication component on the
groupware server can then be configured to replicate those and only those LDAP entries.
Any application with LDAP support can then be configured to read and possibly write this
data. Modifications, for example the change of a password by a user, are replicated back
to those LDAP masters that can see that part of the LDAP directory tree, e.g. the central
LDAP master and the local master of the user’s branch. We envision that such a replication
mechanism can give organisations more flexibility and control over their replication setup
according to their organisational structure and security requirements.

3 Formalisation of LDAP structures
3.1 LDAP, Schemata and Filters

In the spirit of [WLO02] we rephrase the notions of LDAP schemata, directories (instances),
and filters in a formal way, in order to be able to reason about the consistency of replication
later on. We start with an LDAP schema specifying the ontology of an LDAP tree.

Definition 1. An LDAP schema L is a tuple (C, A, T, req, opt, type) where C is a set of
classes; A is a set of attributes for the classes with {oc, dn} C A, where oc and dn denote
the “object class” and “distinguished name” of entries, respectively; 7 is a set of types for
the attributes; type : A — 7 maps each attribute to its type; req : C — 2 maps each
class to its required attributes such that VC' € C. {oc,dn} C req(C); and opt : C — 24
maps each class to its optional attributes such that VC' € C. req(C) Nopt(C) = 0.

Definition 2. An LDAP L = (N, E|) is a forest where each node N € N is labelled by
its class Cy and a set Iy of pairs (a,v) where a € A and v is a value of type type(a).
Each edge in E| is labelled by a DN pair (a,v) such that each node N € N| is uniquely
determined by the sequence (ag, vp) - - . (@, vy,) of labels on the path from its root to itself.

Definition 3. An LDAP L complies to an LDAP schema £ = (C, A, T, req, opt, type), or
is an L-LDAP for short, iff for all N € N it holds that

(i) Va € req(Cy). v € type(a). (a,v) € In, and

96

(i) V(a,v) € In. a € reqUopt A v € type(a).

We use filters to define views on a particular LDAP. In particular, each filter consists of a
Boolean expression controlling which parts of the LDAP are visible in the corresponding
view. These Boolean expressions operate on the existence or value of selected attributes
entries and combine them with the help of Boolean junctions to complex expressions. The
following definition specifies the language for building such Boolean expressions.

Definition 4. Let £ = (C, A, T, req, opt, type) be an LDAP schema. The set Expr, of
L-LDAP expressions is the smallest set satisfying

(a = %) € Exprp ifa € A,
(aopt) € Expry, ifa € At etype(a) Aop € {=,<,>,<,>},
Fy RF, € Expr, if Fy,Fy € Expr, AR € {A,V,—}, and
—F € Expr, if F' € Exprg.

Given the values of some attributes A as a set I of attribute-value pairs, an evaluation
function eval;: Expr, — bool is defined as usually.

In the following we present the formal definition of an LDAP filter. LDAP filters are the
main building blocks to define views on LDAPs and thus to determine those parts of an
LDAP to be replicated and maintained in a restricted master.

Definition 5. Let £ = (C, A, T, req, opt, type) be an LDAP schema. An L-filter is a tuple
(p, s, A, expr) such that p is a sequence of DN-pairs, s € {base, one, sub}, expr € Expr,,
all attributes occurring in expr are contained in A, and for all C' € C. req(C) C A. Given
an L£-LDAP L and a L-filter F' then a node N € N is in the focus of F iff

1. p = Path(NV) and s = base,
2. J(a,v). po (a,v) = Path(N) and s = one, or
3. 3p’. pop’ = Path(N) and s = sub.

Anode N € N is accessible wrt. F' iff it is in the focus of F' and evaly, (ezpr) = true.

The application F'(N) of a filter to a node N is A if IV is accessible and the empty set else.

Definition 6. An L-view is a set V of L-filters. A node N € N is in the focus of V iff it
is in the focus of some F' € V. It is accessible in V iff it is accessible wrt. some F' € V.
The view V() of anode N is the union of all applications of filters in VV to N.

Using LDAP filters to define the visibility of an LDAP in external masters means that
changing the attributes of an object may also change its visibility and thus its accessibility
in the cloud. This results in the problem to evaluate a filter in the cloud but having only
restricted access to attributes of an object. A simple approach is to require that attributes
used in filter expressions have to be a subset of the filter attributes. A more sophisticated
approach would be to simplify the filters with respect to the attributes that are not replicated
to the cloud. In general however, this results in filter rules that are individual to each object
of the replicated LDAP, which is not feasible in practice.

97

Definition 7. Let L be an £L-LDAP and V be an L-view. Then, V induces an L-LDAP
V(L) on L by

1. an isomorphism ¢: N/ — Ny(), where N = {N € N[N is accessible wrt. 7},

2. there is an edge (a,v) between ((N),((N’) € Ny, iff there is an edge (a,v)
between N, N’ € N, and

3. C¢vy = Cn and Iy = {(a.v)|(a.v) € In]| ais accessible in N wrt. V} hold.

3.2 Operations

In this section we are concerned with manipulating an LDAP or one of its views. The main
question is to find appropriate conditions that allow us to relate modifications of the view
on an LDAP to corresponding modifications on the LDAP itself. The main requirements
to this setting are 1. that the modification on the global LDAP is uniquely determined
by the modification on the view and 2. that each modification of the view that results in
a consistent state corresponds to a modification on the global view that also results in a
consistent state. In order to make this precise, we introduce the notion of admissibility of
operations.

Definition 8. A basic operation on an LDAP L is one of the following operations:

1. modify (also add or remove)' a possibly multi-valued attribute a in a node N € N
2. insert or delete a node in L, or
3. rename a node N in L.

Definition 9. Let L be an £L-LDAP and V be a L-view. A basic operation op is admissible
on V(L) iff V(op(L)) = op(V(L)) holds. A basic operation op with op(L) # L is visible
in V(L) iff V(op(L)) # V(L) holds, and invisible on V(L) otherwise.

For simplicity, we assume that complex operations are broken up into a set of basic op-
erations, such that each basic operation is either completely visible (i.e. admissible) or
completely hidden in a view defined by a view V. In particular, modifications of multiple
attributes of an entry are broken up into operations modifying a single attribute each. The
filtering of an operation then reduces to a binary decision whether the operation is visible
in a view or not, and we avoid having to alter the content of operations when filtering. This
will be useful when we define operation-based selective replication in Section 4.

The modification of an attribute a of a node N is admissible on V(L) if a € V(IN). The
deletion of N is admissible on V(L) if N is accessible wrt. some F' € V. The insertion
of a node in the V(L) corresponds to the insertion of N in L with the exception that we
allow the further insertion of default attributes, so called Iy for N not accessible to V(L).
In all other attributes N and (V) coincide. The insertion is admissible (wrt. a preset Iy)
if NV is in the focus of some F' € V and Va € Ay \ DOM (Iy). a € V(N) and there is no

I'We assume that an attribute does not exist in a node if it has no associated value. Hence, insertion and
removal can be regarded as special cases of adding or removing values of an attribute. Also, the replacement of
attributes as defined by the LDAP standard can be modelled by removing all attribute values known at the time
of submission of the operation, and adding the new values.

98

other node N’ in V(L) with the same path as N. The renaming of a node N to a path p’ is
admissible if the insertion of N with its attributes is admissible at path p’.

3.3 LDAP conflicts

Many LDAP operations are commutative, e.g. the modification of different attributes of
a node or the insertion of nodes at different paths. In some cases, however, the concur-
rent submission of operations in a multi-master LDAP system can lead to conflicts. If
we assume that operations refer to nodes using a unique identifier, then two concurrent
operations are in conflict in the following cases:

e both are modifications of an attribute v of the same node N, and there is a value v
that is added by one operation and deleted by the other;

e both are insertions or renamings of nodes at the same path; or

e one is a deletion of a node N and the other refers to IV, but is not a deletion.

For these conflicts, we aim to perform immediate automatic resolution in some determin-
istic way so that the repositories are always in a state that is consistent with schema and
application constraints, while at the same time recording conflict so that the conflicts can
be properly resolved manually.

In order to detect conflicts, we first have to determine concurrency of updates. For this
purpose, LDAP masters propagate basic operations enriched with additional metadata.
We denote such an enriched update as (‘update’, op,m,t, H) where op is an operation
submitted at master m at (local) time ¢, and H is the set of all updates known to m at
the time op was submitted.> An update a = (‘update’, op, m,t, H) happened before an
update b = (‘update’,op’,m’ ', H'), denoted a — b, iff a € H’. Two updates are
concurrent, denoted a < b, iff a A bA b /4 a.

Conflicts are detected by checking if concurrent updates make conflicting changes to an
entry. The typical conflict resolution strategy for the modification of attributes is the “Last
Writer Wins” strategy, where operations are ordered using timestamps and the newest
operation simply overwrites older, conflicting operations. For naming conflicts, we rename
the nodes that are moved or created by operations that are dominated by a conflicting
operation according to a deterministic naming scheme. For conflicts where a deleted node
is concurrently modified, we can either copy the node to a lost-and-found area of the
directory tree, or simply ignore the modification.

Overall, a consequence of deterministic conflict resolution is that all concurrent updates
commute. In [SPBZI11] it has been shown that strong convergence for full replication
easily follows from the commutativity of operations. With selective replication, however,
a master might know only a subset of updates, so if only one of two conflicting updates is
visible to a master, it cannot perform conflict resolution on its own. In the case of LDAP
replication, this affects naming conflicts, as illustrated by the following example.

Example 1. Consider, for example, the insertion of a node N with path (ou, sales),

2In the actual implementation, we use a compact representation for this set, such as version vectors [SS05].

99

(en, john) and attribute (project, A) into an LDAP V(L) with
V = {{(ou, sales), sub, {ou, cn, project} , (project = A))}

If L already contains a node with the same path and attribute (project, B), then the inser-
tion of IV causes a conflict that cannot be seen by a master with restricted view V(L).

This means that a master with restricted view cannot, in general, exclude the possibility of
inter-view conflicts for node insertions or renamings. One approach to solve this problem
is to provide restricted masters with additional information about hidden nodes that are in
the focus of one of its filters, e.g. by replicating a dummy node for each hidden node to
the restricted master.

A more general solution is to inform the restricted master about the result of conflict res-
olution by replicating an explicit conflict resolution operation. When a master receives
an update from another master with restricted view V), and it detects that the update is in
conflict with another update that is not admissible for V), then it generates a conflict res-
olution update that contains an operation op’ with the effect of the resolution that can be
propagated back to the restricted master.

Consider again the conflict in Example 1. Assuming we resolve naming conflicts by re-
naming all but one affected nodes to unique and deterministic names, the conflict resolu-
tion operation is in this case the renaming of the relative DN part of N to (cn, john+m+
t), where m is the identifier of the restricted master and ¢ is the timestamp of the insertion
operation of N, and + is a special concatenation symbol that can only be introduced by
LDAP masters, not by users submitting operations. Hence, the new name of N is unique
and deterministic. The renaming update is then propagated to all masters where NV is visi-
ble. Masters with insufficient view to resolve the conflict themselves will apply the update
and reach a state consistent with full masters, while for masters that have already resolved
the conflict themselves, the update will have no further effect, because renaming a node to
a name it already has is redundant.

4 Replication mechanism

We now describe in more detail an operation-based replication mechanism that incorpo-
rates our considerations from above. First, we introduce some notation for the state of
a selective multi-master LDAP system. We denote the state of an L-LDAP master m
as a tuple (L, H, Q) comprising an L-LDAP L, a sequence H of updates that have been
applied already, called the history of the master, and a sequence Q of updates that have
been received by other masters, but not yet applied, called the queue. We assume that
the updates in the queue are additionally annotated with the master from which they were
received. The state of a master evolves as it processes updates submitted by users or re-
ceived by other masters. We denote the state of m at step k (i.e. after the k-th update) as
m(k) = (L(k), H(k), Q(k)), where m(0) = (B, 0, (), i.e. masters are initially empty.

A selective multi-master system then consists of a set of masters that communicate with
each other at possibly irregular intervals. In existing full-replication LDAP systems, even-

100

tual delivery of operations is ensured by creating a replication topology in the form of a
connected graph, i.e. there is a communication path between any two master servers. In
the case of selective replication, we have to additionally take into account the views of the
master servers. We have to avoid the loss of information that would occur when all paths
between two masters m and m’ go through masters m’ with a view that is smaller than
both the views of m and m/. In order to guarantee that there is always at least one path
without information loss, we require that the topology contains a spanning tree such that
views always monotonically increase along a path towards the root:

Definition 10. A selective multi-master system M = (M, (V) G) consists of

meM >

e aset M of LDAP masters, with at least one full master m,.,,; € M,

e afamily (V) menm of L-views V,, for every master m, with J,,, s Vin € Vroot

e areplication topology represented as a connected, directed graph G = (M, E) such
that V(m, m’) € E. V,;, C V,,» holds and for all master m € M there is a path from
m t0 Myoot -

We assume that every master m will always eventually propagate relevant updates to every
adjacent master m/, i.e. we assume liveness of communication. The propagated updates
will then eventually appear in the queue of m/ in the correct order, i.e. we assume causal
delivery. An update is relevant for V), either if it is admissible for V,,- at the time of
submission, or if it becomes admissible for V), afterwards, because the affected node
and attributes have been moved into the view by another operation in the meantime. For
example, if a node N is in the focus of a filter F' € V,,,» with attribute set A, and an
operation changes attributes of NV such that the filter expression of F' becomes true, then
all updates affecting attributes of N in A retroactively become relevant for V,,,,. Formally,
we define the subsequence of updates in a history H., (k) that are relevant for a view V as

V(Hum(k)) = [u € Hu (k) ladmissible(u, V (L, (ku)))V
k' < kau € Hyn(K') A admissible(u, V(L (K')))]

where m,, is the master where u was submitted and k,, the step of m,, at which it was
submitted. Such a history filtering is monotonic in the sense that u € V(H,,,(k’)) implies
u € V(Hn(k)) for all k > K/, i.e. the history filtering only grows with increasing k.
We consider two history filterings equivalent, denoted V(H) = V(H'), if both contain the
same set of updates, but concurrent updates possibly occur in a different order.

There are two types of local state transitions for a master. FEither the state transition is
caused by an operation that has been submitted by a user, or it takes an update coming
from another master out of its queue and applies it to its LDAP. In the second case, it might
also be necessary to generate conflict resolution updates for masters with insufficient view.
The effects of the two kinds of state transitions are as follows:

1. If a user submits an operation op at m at step k and op is admissible for V,,, (L, (k)),
then L,,,(k 4+ 1) = op(Ly,,(k)) and (‘update’, op, m,t, H . (k)) is appended to the
history, where ¢ is a current local timestamp.

2. Otherwise, the master dequeues the first update v = (‘update’, op, m’,t', H) from
its queue. If u is already known to m, i.e. u € H,, (k), or if u is a conflict resolution

101

update for a conflict that has already been resolved locally, or if w is not admissible
for the view of the master from which it has been received, then the update is ig-
nored and the state remains unchanged for k + 1. Otherwise, the update is appended
to the history and applied to the LDAP, i.e. L,,,(k + 1) = op(L,,(k)). If op causes
a conflict, the master then determines whether it is necessary to generate a conflict
resolution update: If there is a master m’ with V,,,» C V), and the conflict resolu-
tion is visible but op is not admissible on V,,,/ (L., (k)), then m generates a conflict
resolution update r for u and appends it to its history.

We have now defined both the communication behaviour as well as the local state tran-
sitions of masters in a selective multi-master system. In the next section, we discuss the
consistency guarantees that such a system provides.

S Eventual consistency with respect to views

In [SPBZ11], strong eventual consistency (SEC) for full replication is defined in terms of
eventual delivery, strong convergence, and termination of operations. In this section, we
adapt the definitions of these notions for the case of selective replication. Eventual delivery
then means that an update that is submitted at a master m eventually reaches a master m/’ if
and only if it is relevant for V,,,,. The constraints on the replication topology of a selective
multi-master system, combined with liveness, are sufficient to ensure eventual delivery.

Theorem 1. A selective multi-master system M provides eventual delivery with respect to
views, i.e. if an operation op is submitted at a master m at step k, then the corresponding
update u = ('update’, op, m,t, H,, (k)) eventually reaches a master m’ if and only if it is
relevant for V,,:

K, Ko > k. Ve > Ko, kot > Koo (0 € Vs (Hon () 1w € Hur (k)

Proof. This easily follows from the replication topology, liveness of communication, cor-
rect history filtering during communication, and monotonicity of history filtering. O

For strong convergence with respect to views, we require that equivalent knowledge of two
masters with respect to a common subview implies equivalent states when filtered for that
view:

Definition 11. A selective multi master system provides strong convergence with respect
to views if for all masters m and m’ and for every view V) that is a subview of V,,, and V,:

VK2 (VMo (K)) = V(Hont (K))) = V(L (k) = V(Lo (7))
In order to show that our replication mechanism provides strong convergence, we first
show a lemma establishing that for each individual master, applying the updates it knows

that are relevant for a view to an empty LDAP results in a state equivalent to the master’s
actual state filtered for that view.

102

Lemma 1. Let m(k) be the state of a master in a selective multi-master system, ¥V C Vy,
a view, and Ly, (k) the LDAP that results from successively applying the operations in
V(Hm(k)) to an empty LDAP. Then V(L,,,(k)) = V(Ly ., (k))) holds.

Proof. By induction on k. The base case k = 0 trivially holds, as m(0) is initialised with
empty LDAP and history. In the induction step, we perform a case distinction on the type
of local state transition from k to k + 1.

1. Assume a user submits an operation op at step k. If op is invisible on V(L,,, (k)), then
the filtered history and state remain unchanged, and the conclusion follows from
the induction hypothesis. If op is admissible on V(L,,(k)), then V(H,,(k + 1))
results from appending an update containing op at the end of the history, and the
conclusion follows from admissibility of op and the induction hypothesis. If op
changes attribute values such that a set A of formerly invisible attributes of the
affected node N are now visible according to the filters in V), then op is admissible on
V(L (k+1)), and V(Hn(k + 1)) results from V(H,, (k)) by appending an update
containing op and possibly interleaving a sequence U of updates that have been
made admissible by op. The updates in U are exactly those that affect the attributes
A of N and that are not yet contained in V(#,,, (k)). They are independent from and
effectively commute with all operations in the filtered history from the previous step
that affect other nodes and attributes, and they happen after or concurrently with
updates affecting attributes A of N in V(H,,(k)) due to causal delivery. Hence,
applying U and op to Ly, (1)) leads to a state where the values of the attributes
A of N are consistent with L,,,(k + 1), while the consistency of other nodes and
attributes visible in V follows from the induction hypothesis.

2. Assume an update u received from another master is dequeued from Q,, (k) and
applied at step k+ 1. If the update is admissible or invisible on V(L,, (k)) or changes
visibility, then the conclusion follows by the same arguments as in the case of local
submission. In addition, however, it is now possible that « is in conflict with an
update v/ in H,, (k). If the conflict resolution is visible, but « is not admissible
on V(L,,,(k)), then m also generates a conflict resolution update that is admissible
on V(L (k)) such that V(L,,(k + 1)) includes the visible effects of the conflict
resolution, and the conclusion again follows as above. O

Theorem 2. If concurrent operations commute, then a selective multi-master LDAP sys-
tem M provides strong convergence.

Proof. This is a direct consequence of Lemma 1: For any m, m’, k, and k', if V(H,,,(k)) =
V(Hp (k') for V with V €V, and V C Vs, then Ly gy, (1)) = Lyn,,, (k7)) by com-
mutativity of concurrent operations. Hence V(L,,(k)) = V(L,,» (k")) by Lemma 1. O

Overall, our replication mechanism in combination with the restrictions on replication
topology and admissibility of operations provides both eventual delivery and strong con-
vergence with respect to views. Since we assume termination of operations, we can say
that it indeed provides strong convergence in the sense of [SPBZ11], adapted for selective
replication.

103

6 Related work

There is a large body of related work on replication, both in theory and practice, in vari-
ous settings and with different performance and consistency guarantees. An overview can
be found in [CBPS10]. Multi-master replication is an instance of optimistic replication
[SS05], where any replica can accept modification operations without waiting for consen-
sus with other replicas. Modifications are propagated from time to time, detecting and
resolving any conflicts due to concurrent conflicting modifications. Existing implementa-
tions of LDAP directory servers typically support selective replication, but only in slave
mode or with limited options for defining which parts of the directory to replicate. To the
best of our knowledge, there is no existing support for selective LDAP multi-master repli-
cation that allows to define the visible parts of the directory using content-based filters.

In [SBKHO5], an abstract formalism for consistency in replicated systems is presented.
Partial replication is discussed based on the assumption that the replicated data is par-
titioned into a set of disjoint databases, with every master replicating a subset of these
databases and every database having a primary master. In this paper, we discuss the con-
crete case of selective LDAP replication and the possible dependencies and conflicts be-
tween views. Our definition of eventual consistency includes a notion of eventual delivery
with respect to views, and therefore goes beyond the Mergeability property of [SBKHOS5].

In [RRTT09] a replication platform is presented where devices can select the items they
replicate (out of a set of independent items) using content-based filters, similar to our
LDAP filter expressions. Also, the Eventual Filter Consistency property of Cimbiosys is
similar to our Eventual delivery with respect to views. However, the paper does not discuss
dependencies between items or conflicts between updates.

An interesting recent development are “Conflict-free Replicated Datatypes” (CRDTs)
[SPBZ11]. These are data types that satisfy certain sufficient conditions for a given def-
inition of eventual consistency. For example, in the case of operation-based replication,
the main condition is that all concurrent operations commute, i.e. there are no conflicts.
The authors of [SPBZ11] give several examples of non-trivial CRDTs for data structures
such as sets, where conflicts are avoided by designing operations for commutativity with
the help of additional metadata. In a sense, our work is both a generalisation of the no-
tion of eventual consistency of [SPBZ11] to the case of partial replication, as well as a
specialisation to LDAP directories as the data type.

7 Conclusions

In this paper, we presented a mechanism for selective replication of LDAP directory trees
together with sufficient conditions to guarantee eventual consistency of replicated data.
We are currently working on a prototype implementation of a replication component us-
ing the mechanism described in this paper. It is layered on top of a local LDAP server at
each master in the replication topology, and is responsible for the communication between
masters, enforcing the constraints described above. This includes checking the admissi-

104

bility of operations submitted by users, propagating correctly filtered operation histories
to connected masters, and ensuring that the replication topology satisfies the conditions of
Definition 10. The implementation effort also includes work on practical aspects that we
were not able to discuss here due to space constraints, e.g. a garbage collection mechanism
that allows masters to purge old updates from their histories.

We will evaluate our prototype by integrating it with the Univention Corporate Server
(UCS), which is a Debian-based GNU/Linux distribution that allows administrators to
manage infrastructure, services and user accounts using tools based on an underlying
LDAP directory. We plan to release our prototype as open-source software so that it can
be evaluated and applied by others.

Opportunities for further research include the formal verification of correctness and se-
curity properties of our replication mechanism with the help of a theorem prover such as
Isabelle/HOL [NPWO2] in the spirit of works such as [IROMO06]. Research in this di-
rection might also lead to a more general theory for selective optimistic replication with
eventual consistency for datatypes other than LDAP directory trees.

References

[CBPS10] Bernadette Charron-Bost, Fernando Pedone, and André Schiper, editors. Replication -
Theory and Practice, volume 5959 of LNCS. Springer, 2010.

[IROMO6] Abdessamad Imine, Michaél Rusinowitch, Gérald Oster, and Pascal Molli. Formal de-
sign and verification of operational transformation algorithms for copies convergence.
Theoretical Computer Science, 351(2):167-183, February 2006.

[NPWO02] Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Isabelle/HOL: a proof assis-
tant for higher-order logic, volume 2283 of LNCS. Springer, 2002.

[RRT*09] Venugopalan Ramasubramanian, Thomas L. Rodeheffer, Douglas B. Terry, Meg
Walraed-Sullivan, Ted Wobber, Catherine C. Marshall, and Amin Vahdat. Cimbiosys: a
platform for content-based partial replication. In Proceedings of the 6th USENIX sym-
posium on Networked systems design and implementation, NSDI'09, page 261-276,
Berkeley, CA, USA, 2009. USENIX Association.

[SBKHOS5] Marc Shapiro, Karthikeyan Bhargavan, Nishith Krishna, and Teruo Higashino. A
Constraint-Based Formalism for Consistency in Replicated Systems. In Principles of
Distributed Systems, volume 3544 of LNCS, page 900. Springer, 2005.

[SPBZ11] Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marek Zawirski. Conflict-Free
Replicated Data Types. In Stabilization, Safety, and Security of Distributed Systems,
volume 6976 of LNCS, pages 386—400. Springer, 2011.

[SS05] Yasushi Saito and Marc Shapiro. Optimistic replication. ACM Comput. Surv.,
37(1):42-81, March 2005.

[WL02] Fang Wei and Georg Lausen. A Formal Analysis of the Lightweight Directory Access

Protocol. In Conceptual Modeling for New Information Systems Technologies, volume
2465 of LNCS, pages 306-319. Springer, 2002.

105

