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Abstract: The search for local RNA secondary structures and the annotation of unusu-
ally stable folding regions in genomic sequences are two well motivated bioinformatic
problems. In this contribution we introduce RNALfoldz an efficient solution two
tackle both tasks. It is an extension of the RNALfold algorithm augmented by sup-
port vector regression for efficient calculation of a structure’s thermodynamic stability.
We demonstrate the applicability of this approach on the genome of E. coli and investi-
gate a potential strategy to determine z-score cutoffs given a predefined false discovery
rate.

1 Introduction

Over the past decade noncoding RNAs (ncRNAs) have risen from a shadowy existence to
one of the primary research topics in modern molecular biology. Today computational
RNA biology faces challenges in the ever growing amount of sequencing data. Effi-
cient computational tools are needed to turn these data into information. In this context,
the search for locally stable RNA secondary structures in large sequences is a well mo-
tivated bioinformatic problem that has drawn considerable attention in the community.
RNALfold [HPS04] has been the first in a series of tools that offered an efficient solution
to this task. Instead of a straight-forward, but costly sliding window approach a dynamic
programming recursion has been formulated that predicts all stable, local RNA structures
inO(N ×L2), where L is the maximum base-pair span and N the length of the sequence.
Since its publication, the RNALfold algorithm has inspired a lot of work in this field, see
e.g. Rnall by Wan et al. [WLX06] or RNAslider by Horesh et al. [HWL+09]. All
contributions so far in this field focused on improving the computational complexity of
the algorithm, but none of the approaches has ever been used to unravel results of biolog-
ical significance. In particular, de novo detection of functional RNA structures has been
addressed, but application on a genome-wide scale with a low false discovery rate seems
still out of reach. Even on the moderately sized genome of E. coli (4.6 Mb) one is drown-
ing in hundreds of thousands of local structures. Unlike in the well established field of
protein coding gene detection where one can exploit signals like codon usage, functional
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RNA secondary structures, in general, do not show strong characteristics that make them
easily distinguishable from random decoys. Successful approaches for ncRNA detection
operating solely on a single sequence [HHS08, JWW+07] are limited to specific RNA
classes, where some outstanding characteristics can be harnessed. There is no master plan
for the detection of functional RNA structures, but one would certainly want to limit the
RNALfold output to a reasonable amount. So far, only the minimum free energy (MFE)
of the locally stable secondary structures, which is intrinsically computed by the algorithm,
has been considered as potential discriminator to limit the number of secondary structures.
As demonstrated clearly by Freyhult and colleagues [FGM05] the MFE is roughly a func-
tion of the length of the sequence and the G+C content. Even normalizing the MFE by
length of the sequence does not serve as a good discriminator between shuffled or coding
sequences and functional RNA structures. A strategy that does work, however, is to com-
pare the native MFE E of the RNA molecule to the MFEs of a set of shuffled sequences of
same length and base composition [LM89]. This way we can evaluate the thermodynamic
stability of the secondary structure. A common statistical quantity in this context is the
z-score, which is calculated as follows

z =
E − µ

σ

where µ and σ are the average and the standard deviation of the energies of the set of
shuffled sequences. The more negative the z-score the more thermodynamically stable is
the structure. Efficient estimation of a sequence’s z-score has been a profound problem
already addressed in the very beginnings of computational RNA biology. A first strategy
to avoid explicit shuffling and folding was based on table look-ups of linear regression
coefficients [CLS+90]. Clote and colleagues [CFKK05] introduced the concept of the
asymptotic z-score, where the efficient calculation is also solved via table look-ups. The
current state-of-the art approach for fast and efficient estimation of the z-score is to use
support vector regression [WHS05].

The study by Clote and colleagues and a follow up to Chen et al. (1990) [LLM02] also
report on the effort to predict thermodynamically stable structures using a sliding window
approach. In this contribution we present RNALfoldz an algorithm that combines local
RNA secondary structure prediction and the efficient search for thermodynamically stable
structures. RNALfoldz is an extension of the RNALfold algorithm augmented by sup-
port vector regression for efficient calculation of a sequence’s z-score. We demonstrate the
applicability of this approach on the genome of E. coli and investigate a potential strategy
to determine z-score cutoffs given a predefined false discovery rate.

2 Methods

2.1 Fast estimation of the z-score using support vector regression

For the efficient estimation of the z-score we follow the strategy first introduced by Washietl
et al. [WHS05]. Instead of explicit generation and folding of shuffled sequences in order to
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determine the average free energy and the corresponding standard deviation support vector
regression (SVR) models are trained to estimate both values. As described in detail in the
previous work, we used a regularly spaced grid to sample sequences for the training set.
Synthetic sequences ranged from 50 to 400 nt in steps of 50 nt. The G+C content, A/(A+T)
ratio and C/(C+G) ratio were, however, extended to a broader spectrum, now ranging from
0.20 to 0.80 in steps of 0.05. A total of 17,576 sequences were used for training. For each
sequence of the training set 1,000 randomized sequences were generated using the Fisher-
Yates shuffle algorithm, and subsequently folded with RNAfold with dangling ends op-
tion -d2 [HFS+94]. SVR models for the average free energy and standard deviation were
trained using the LIBSVM package (www.csie.ntu.edu.tw/˜cjlin/libsvm).
While in the previous work input features and the dependent variables were normalized
to a mean of zero and a standard deviation of one, we apply here a different normalization
strategy that leads to a significantly lower number of support vectors for the final models.
For the regression of the average free energy model the dependent variable is normalized
by the length of the sequence, while for the standard deviation it is the square root of the
sequence length. The length still remains in the set of input features and is scaled from 0 to
1. Other features remain unchanged. We used a RBF kernel, and optimized values for the
SVM parameters were determined using standard protocols for this purpose. Final regres-
sion models were selected by balancing two criteria: (i) mean absolute error (MAE) on a
test set of 5,000 randomly drawn sequences of arbitrary length (50-400) from the human
genome, and (ii) complexity of the model (number of support vectors) , which translates to
following procedure: from the top 10% of regression models in terms of MAE we selected
the one that had the lowest number of support vectors. For the average free energy re-
gression we selected a model with a MAE of 0.453 and 1,088 support vectors, and for the
standard deviation regression a model with a MAE of 0.027 and 2,252 support vectors. To
validate our approach we finally compared z-scores derived from the SVR to traditionally
sampled z-scores on a set of 1,000 randomly drawn sequences from the human genome.
The correlation coefficient (R) is 0.9981 and the MAE is 0.072. This is in fair agreement
to results obtained when comparing two sets of sampled z-scores (R: 0.9986, MAE: 0.054,
number of shuffled sequences = 1,000).

2.2 Adaption of the RNALfold algorithm

RNALfold computes locally stable structures of long RNA molecules. It uses a Zuker
type secondary structure prediction algorithm [ZS81] and restricts the maximum base pair
span to L bases to keep the structures local. The sequence is processed from the 3’ (the
sequence length n) to the 5’ end. In order to keep the number of back trace operations low
and the output at moderate size, we want to avoid backtracing structures that differ only
by unpaired regions. Furthermore, only the longest helices possible are of interest. To
achieve this, a structure starting at base i is only traced back if the total energy F (i, n) is
smaller than that of its 3’ neighbor F (i + 1, n) while its 5’ neighbor has the same energy:
F (i−1, n) = F (i, n) < F (i+1, n). The local minimum structure is found by identifying
the pairing partner j of i so that C(i, j)+F (j +1, n) = F (i, n), i.e. the minimum energy
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from i to n is decomposed into the local minimum part i, j and the rest of the molecule.
Here, C(i, j) stands for the energy of a structural feature enclosed by the base pair i, j.
As a result of this, the output of RNALfold contains components, i.e. structures that are
enclosed by a base pair, only. Before we actually start the trace back, we evaluate two
new criteria: (1) the sequence of the structure traced back has to be within the training
parameters of the SVR, and (2) the z-score of the energy of this structure has to be lower
than a predefined bound. Criterion (1) is simply imposed by the training boundaries of
the SVMs. Boundaries have, however, been chosen carefully to cover a broad range of
today’s known spectrum of functional RNA structures. 99.79% of the sequences in the
Rfam v. 10 full data set match the base composition requirements of the SVR and 90% of
Rfam RNA families are in within the sequence length restrictions.

In order to get the exact sequence composition that is needed for the SVR evaluations,
the 3’ end of the structure (j) has to be computed first. This is done by a first, short
backtracing step, where the decomposition F (i, n) = C(i, j) + F (j + 1, n) is used to
find j. Subsequently, the average free energy given the base composition of the sequence
s(i, j) is computed by calling the corresponding SVR model. The SVR model for the
standard deviation has approximately twice the number of support vectors as the average
free energy model. To minimize calls of this model, first the minimal standard deviation
for the particular sequence length is looked up. We can then, using the free energy of
C(i, j), calculate a lower bound of the z-score. Only if this lower bound is below the
minimal required z-score, the support vector regression for the standard deviation is called
to calculate the actual z-score. If the z-score then still meets the minimal z-score criterion,
the structure is fully traced back and printed out.

3 Results

The concept of fast and efficient estimation of the z-score by support vector regression
was first introduced by Washietl et al. [WHS05], and implemented in the noncoding RNA
gene finder RNAz. The speed up of this approach compared to explicit shuffling and fold-
ing, which is usually done on 1,000 replicas, is tremendous, at minimum a factor of 1,000.
Moreover, computing time is invariant to the length of the sequence, while RNA folding
is of complexity of O(N3). When considering the z-score as evaluation criterion in the
RNALfold algorithm, calculation of the z-score becomes a time consuming factor, as in
a worst case scenario it has to be done almost for every nucleotide of the sequence. It is
therefore a crucial concern to use support vector models that do not only have good accu-
racy, but also a moderate number of support vectors (SVs). In this work we extended the
z-score support vector regression to cover a broader range of the sequence spectrum, but
managed at the same time to build models that have significantly less SVs than the models
used by RNAz. This was accomplished by normalizing the dependent variables of the re-
gression, i. e. the average free energy and the standard deviation, by the sequence length.
The dependent variables do not strictly linearly correlate with the sequence length and so
we have to keep the sequence length as an input feature. Nevertheless, redundant points
are created in the training set, which eventually leads to a smaller space to be trained. For
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the average free energy model and the standard deviation model we were able to achieve
a 6.3 and a 2.7 fold reduction, respectively, in the number of SVs compared to the RNAz
equivalents.

3.1 Evaluation of RNALfoldz predicition accuracy

For the task of predicting local RNA secondary structures one would particularly be inter-
ested in following criteria: (i) to which extent can functional ncRNAs be discovered, (ii)
how well do the molecule’s predicted boundaries match to the real coordinates, and (iii) is
there any significant difference between native, biological sequences and random decoys.
To address these questions, we applied RNALfoldz to the genome of E. coli (Accession
number: CP000948). A maximum base-pair span L of 120 nt and a z-score cutoff of -2
was used. Setting the cutoff at -2 is for sure restrictive, but it should still cover a large
fraction of the ncRNA repertoire. Both strands were considered. A total of 202,126
structures have been obtained. In comparison, the regular RNALfold returned a total of
1,387,136 structures, 824, 000 of which have a length ≥ 50 nt. The RNALfoldz output
(a true subset of the RNALfold output) is only a forth of the regular RNALfold output.

The E. coli genome Genbank file lists 119 ncRNAs with a maximum length of 120 nt
in its current annotation. To investigate the extent annotated ncRNAs are covered in the
RNALfoldz output, we define for a RNALfold/RNALfoldz prediction to be counted
as hit a minimal coverage of 90% of the ncRNA sequence. Giving this setup a total of 106
and 89 ncRNAs can be found in the RNALfold and RNALfoldz output, respectively.
Detailed results for each RNA gene are shown in an online supplementary table. With a
z-score cutoff of -2, 17 ncRNAs that were found by RNALfold are not in output set of
RNALfoldz. The detection success is directly proportional to the reduction rate of the
RNALfold output. Modulating the z-score cutoff affects both quantities (Fig. 1). The
failure to detect the 13 ncRNAs that were missed by both RNALfold and RNALfoldz
results from the fact that the RNALfold algorithm predicts only self-contained RNA
structures. For example, the two ncRNA genes rprA and ryeE that have only low cover-
ing RNALfoldz hits, have indeed multi-component structures at the MFE level (abstract
shape notation [GVR04]: [][][][], [][][]). In these cases RNALfoldz will rather
produce multiple hits than one single hit covering the whole ncRNA. Overall, our findings
confirm that most E. coli small ncRNAs are indeed more thermodynamically stable than
expected by chance and that the RNALfoldz algorithm is able to detect these structures
efficiently.

We further investigated how precisely the RNALfoldz predictions map to the coordinates
of the annotated ncRNAs. This is a legitimate issue, but one has to keep in mind that
functional RNAs adopt their structure at the transcription level, while in this experiment
we used the genomic sequence to detect these structures. So it might easily happen that
the RNA is predicted in a bigger structural context than its actual size. The underlying
dynamic programming algorithm is the same for RNALfold and RNALfoldz, and hence
results discussed here do hold for both versions. In this work we define noise as the fraction
of the RNALfoldz hit that does not overlap with the annotated ncRNA. In total, 34 out of
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Figure 1: Non-coding RNA detection success vs. reduction of the RNALfold output. Given a z-
score cutoff of 0 only one structure prediction is missed in the RNALfoldz output. With a z-score
cutoff of -2 (circle) we see a four-fold reduction of the output, while at the same time covering 84%
of the correct RNALfold ncRNA predictions.

the 89 predictions have less than 10% noise. Averaged over all hits ( ≥ 90% coverage) we
see noise of 18%. Using a classic sliding window approach with a length of 120 nt, one
would expect more than 33% noise for a window containing a tRNA sequence (average
length of tRNAs in E. coli: 78 nt). In the RNALfoldz output we find that 29 out of 73
tRNA predictions have less than 10% noise.

Finally, we address the significance of the predictions when compared to randomized con-
trols. Therefore, we performed the same experiment on randomized sequences generated
by (i) mononucleotide shuffling, (ii) simulation with an order-0 Markov model (mononu-
cleotide frequencies) , and (iii) simulation with an order-1 Markov model (dinucleotide
frequencies). Shuffling and simulations were done with shuffle from Sean Eddy’s
squid library using default parameters. A detailed comparison of the results of these four
experiments is shown in Fig. 2. In general, we observe a tendency to more stable structures
in the native sequence than in any randomized sequence. Structures with a z-score ≤ -8
are profoundly enriched in the native sequence, which might point to biological relevance
of these structures. These are, however, extremes and most ncRNAs will have z-score
values in a much higher range.

The value -2 for the z-score cutoff in this experiment was chosen arbitrarily. Moving to an
even lower value than -2 will reduce the false discovery rate, but at the same time limit the
number of ncRNAs that show such high thermodynamic stability. Using the RNALfoldz
output from the experiment with randomized sequences (order-1 Markov model), we can
calculate an empirical precision or positive predictive value (PPV), which is simply the
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Figure 2: Comparison of the distribution of stable secondary structures from the native E. coli
genome and randomized controls. The native E. coli sequence has a strong tendency to more stable
local secondary structures. RNALfoldz predictions with a z-score below -8 are exclusively found
in the native sequence.

proportion of true positives against all positive results. Assuming that thermodynamic sta-
bility is inherently linked to biologically function, we declare any RNALfoldz prediction
with a z-score below a certain threshold from the native sequence and the randomized se-
quence as true positive and as false positive, respectively. Using then a PPV of 0.75, which
corresponds to 25% estimated false positives, and, hence, a deduced z-score cutoff of -
3.86 we can find 25 of the 106 annotated ncRNAs that are detectable with the RNALfold
algorithm, while reducing the RNALfoldz to 21,715 predictions (3% of the RNALfold
output). We further investigated if we can determine more specific z-score cutoffs when
the RNALfoldz output is partitioned into different structural classes. This is motivated by
the reasonable assumption that, for example, a short stable hairpin is more likely formed
by chance than a stable, structurally more complex, multi-branched molecule. Hence, one
would set different z-score cutoffs for different structural classes. To investigate this claim
we map the MFE structures to the corresponding abstract RNA shape at the highest ab-
straction level. At this abstraction level only the helix nesting pattern is considered. As
an example, the well-known cloverleaf structure of tRNA molecules is then simply repre-
sented as [[][][]]. The six major structural classes are shown in Tab. 1. We further
partition structures according to their length into two classes short (≤ 85 nt) and long.

Fig. 3 shows structure class specific precision values in dependency of the z-score, for
those three classes that show the most deviation from the population precision. Using
now class-specific z-score values when filtering the RNALfoldz output we can raise our
prediction count from 25 to 38 ncRNAs, while keeping the expected false-positive rate
fixed at 25%. The total number of RNALfoldz predictions increases slightly to 23,225.
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Table 1: Major structural classes in the E. coli genome
frequency abstract length figure class specific z-score

shape class code cutoff (PPV 0.75)

27% [[][]] long -3.60
26% [[][]] short SC2 -4.14
21% [] short SC3 -4.16
7% [[][[][]]] long -3.80
7% [[[][]][]] long -3.74
4% [] long SC6 -3.35
8% rest -3.35

All
SC2

SC6
SC3

Figure 3: Precision values of different structural classes by the z-score. The solid line represents the
whole RNALfoldz output.

3.2 Timing

The overall complexity O(N × L2) of the core algorithm does not change, the z-score
calculation just adds a constant factor. We benchmarked both implementations on an Intel
Quad Core2 CPU with 2.40 GHz. Detailed results are shown in Tab. 2.

At a maximal base-pair span of 120 nt RNALfold is able to scan at a speed of approx.
250 kb/min. At the same settings and with a minimal z-score cutoff of -2 scanning speed
drops to 153 kb/min for RNALfoldz. The performance clearly depends on the number
of times the support vector regression has to be called. When moving to a lower z-score
cutoff of -4 the scanning speed increases to 207 kb/min.
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Table 2: Timing results [sec] for RNALfold and RNALfoldz.
L RNALfold RNALfoldz

z-score ≤ -2 z-score ≤ -3 z-score ≤ -4
120 1,123 1,842 1,477 1,359
240 2,629 3,922 3,321 3,105

4 Discussion

In this work we have presented an extension of the RNALfold algorithm to predict ther-
modynamically stable, local RNA secondary structures. Using fast support vector regres-
sion models to calculate the z-score this approach comes with only a minor overhead in
execution time compared to the former version, while yielding at the same time a much
lower number of relevant structures. We have demonstrated that already with a z-score
cutoff of -2, approx. 80% of the annotated E. coli small ncRNAs can be found in the
RNALfoldz output. Comparison to randomized genome sequences showed that the na-
tive E. coli genome sequence has a strong bias to more stable secondary structures. This
shift is, however, not significant enough to qualify RNALfoldz as a stand-alone RNA
gene finder with an acceptable false discovery rate. We see the role of RNALfoldz
mainly as a first filtering step in a cascade of computational ncRNA detection steps. In
particular, the intersection of data from high throughput sequencing, promoter and tran-
scription termination signals (see e.g. [SNS+10]) or G+C content on AT rich genomes
with RNALfoldz hits could be of value.

In this contribution, we assume that thermodynamic stability is inherently coupled to bi-
ological function. This is certainly true to some extent, but there are also a lot of RNA
classes where stability is not a major issue for function, e.g. C/D box snoRNAs or ncR-
NAs that form interaction with other RNAs. It is therefore highly unlikely that these RNA
classes will show up in the RNALfoldz output. In this context, RNALfoldz can, how-
ever, be used to define a set of highly stable loci which can then be excluded from further
analysis.

It has been noted early on that thermodynamic stability alone is not a sufficient discrim-
inator to distinguish ncRNAs from random sequences [RE00]. This is the main reason
why most ncRNA gene finders rely solely on signals from evolutionary conservation of
RNA secondary structures, or use thermodynamic stability only as an additional feature.
These methods are clearly limited by the comparative genomics data available. Investiga-
tion of species that are distantly related to any species sequenced so far, or species specific
RNA genes are, hence, out of scope for these methods. The RNALfoldz algorithm pre-
sented in this work will not be a magic tool suddenly shedding light on these dark areas.
The search for extraordinarily stable structures, however, can help to give first clues to
putatively functional RNA secondary structure elements, where other methods fail.
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