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Abstract: One of the main endeavors in today’s Life Science remains the efficient
sequencing of long DNA molecules. Today, most de-novo sequencing of DNA is
still performed using electrophoresis-based Sanger Sequencing introduced in 1977,
in spite of certain restrictions of this method. Recently, we proposed a new method
for DNA sequencing using base-specific cleavage and mass spectrometry, that appears
to be a promising alternative to classical DNA sequencing approaches: Among its
benefits is the extremely fast data acquisition of mass spectrometry. This leads to the
combinatorial problem of Sequencing From Compomers (SFC), and to the definition
of sequencing graphs. Simulations indicate that this method may allow for de-novo
sequencing of DNA molecules with 200+ nt.

An open problem in the context of SFC is that it does not take into account false
negative peaks (missing peaks) that are common for real-world mass spectra. Here, we
present a natural generalization of SFC, the Weighted Sequencing from Compomers
(WSC) Problem, that allows us to cope with false negative peaks. We also show that
the family of graphs introduced to solve SFC, can be generalized to capture the new as-
pects of WSC. Finally, we present a branch-and-bound algorithm to find all sequences
that agree with the sample mass spectra with the exception of some missing peaks.

1 Introduction

Today, most de-novo sequencing of DNA without any a priori information regarding the
sample sequence under examination, is still performed based on the Sanger concept from
1977, see [SNC77]. Typically, gel or capillary electrophoresis is used to acquire the sample
data. Many other methods were proposed during the last decades [FCK02], but none was
able to compete with Sanger Sequencing regarding sequencing length, cost, and reliability.
It shall be understood that despite the dominance of Sanger Sequencing, this technique —
just like any other sequencing technique— has certain shortcomings, such as: base-calling
errors, heterozygous samples, or the time consuming data acquisition by electrophoresis,
to name just a few (see for instance [APC+00]).
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In [Bö03, Bö04] we propose a new approach to DNA de-novo sequencing not based on
the Sanger concept, using MALDI-TOF mass spectrometry to acquire the experimental
data. It has the advantages of fast data acquisition (about 4 seconds per sequence) and
reliability, among others. Furthermore, we introduce the Sequencing From Compomers
(SFC) Problem as an abstraction of the resulting data analysis issues. Simulations indicate
that this method may enable de-novo sequencing of DNA molecules with 200+ nt, so
sequencing lengths have the same order of magnitude as for Sanger Sequencing.
An open problem in the context of SFC is how to cope with false negative peaks in the
mass spectra: A false negative peak (or missing peak) is a peak that an in silico simulation
predicts to be present in a mass spectrum— assuming “error-free” biochemistry and mass
spectrometry— but that cannot be detected in the measuredmass spectrum. Unfortunately,
a single false negative peak is usually sufficient to prohibit reconstruction of the correct
DNA sequence by SFC.
In this paper, we extend the Sequencing From Compomer Problem to deal with false neg-
ative peaks in the sample mass spectrum: We introduce the Weighted Sequencing from
Compomers (WSC) Problem and weighted sequencing graphs, and show how the latter
can be used to solve WSC.

2 Experimental setup and data acquisition

Suppose that we are given an amplified, single stranded target DNA molecule (or sample
DNA) of length 100–500 nt.1 We cleave the sample sequence with a base-specific chemical
or biochemical cleavage reaction: Such reactions cleave at exactly those positions where
a specific base can be found. Several methods to achieve base-specific cleavage such as
RNAse A, have been described in the literature [RDPS+02, vBS+02]. We modify the
cleavage reaction by offering a mixture of cleavable versus non-cleavable “cut bases,”
such that not all cut bases but only a certain percentage will be cleaved. The resulting
mixture contains in principle all fragments that can be obtained from the sample DNA by
removing two cut bases, cf. Fig. 1 for an example. We call such cleavage reactions partial.
MALDI TOF mass spectrometry (MS for short) is then applied to the products of the
cleavage reaction, resulting in a sample spectrum that correlates mass and signal intensity
of sample particles [KH88]. The sample spectrum is analyzed to extract a list of signal
peaks with masses and intensities. We repeat the above procedure, as well as the following
analysis steps, using cleavage reactions specific to each of the four bases. For examples of
experimental mass spectrometry data of base specific cleavage, we refer the reader to the
literature, for instance [HSB+03].
If the sample sequence is known, then exact chemical results of the employed cleavage
reactions and, in particular, the masses of all resulting fragments are known in advance,
and the subsequent mass spectrometry measurement can be simulated in silico. Clearly,
this holds up to a certain extent only, see below.

1We will talk about sample DNA even though a cleavage reaction might force us to transcribe the sample to
RNA.
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Figure 1: Partial cleavage using RNAse A with dCTP, rUTP, and dTTP. Gray fragments indicate that
corresponding peaks cannot be detected in the sample mass spectrum. See text for details.

Having said that, we can also solve the inverse problem: For every peak detected in the
sample mass spectrum, we can compute one or more base compositions (that is, DNA
molecules with unknown order but knownmultiplicity of bases) that could have created the
detected peak, taking into account the inaccuracy of the mass spectrometry read. There-
fore, we obtain a list of base compositions and their intensities, for every incorporated
cleavage method.
In real life, several limitations characteristic for mass spectrometry and partial cleavage
make the problem of de-novo sequencing from mass spectrometry data more challenging,
see [Bö03] for details. In particular, using partial cleavage results in an exponential decay
(in the number of uncleaved cut bases) of signal intensities in the mass spectrum, so peaks
from fragments containing many uncleaved cut bases will be difficult or impossible to
detect.
This leads us to the following unexpected situation: In the setting of the classical Partial
Digestion Problem, one uses restriction enzymes and incomplete cleavage in a way such
that long fragments that contain many uncleaved restriction sites are likely to be detected,
while inner fragments are more likely to be lost. In contrast, incorporating a mixture of
cleavable and uncleavable cut bases produces many copies of fragments containing no
uncleaved cut base and hence, intense peaks in the mass spectrum. But for fragments
containing one, two, or more uncleaved cut bases, peak intensities decrease rapidly.
Second, peak intensities vary strongly and are comparatively hard to predict. Potentially,
the intensity of a peak in a sample mass spectrum is so weak that this peak cannot be
detected in the “noise” of the mass spectrum. A sensitive peak detection algorithm can
reduce the number of missing peaks, but it cannot completely eliminate them in all cases.
We want to stress that there exists no overlap between our approach, and de-novo sequenc-
ing of peptides using Tandem Mass Spectrometry (MS/MS): There, the sample peptide is
unspecifically fragmented at any position, so that all prefixes and suffixes of the sample
string are present in the mass spectrum. Put simply, one has to assign every peak in the
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mass spectrum to either a prefix or a suffix of the unknown string, and this can be effi-
ciently done using Dynamic Programming [CKT+01].

3 Methods

Mostly we will follow the notation of [Bö03] and refer the reader there for a more detailed
discussion.

3.1 The compomer spectrum

Let s = s1 . . . sn be a string over the alphabetΣ where |s| = n denotes the length of s. We
denote the maximal number of non-overlapping occurrences of a string x in s by ordx(s).
For a string s ∈ Σ∗ and x ∈ Σ, we define the string spectrum S(s, x) of s, x by:

S(s, x) := {y ∈ Σ∗ : xyx is a substring of xsx} (1)

Thus, the string spectrum S(s, x) consists of those substrings of s that are bounded by x
or by the ends of s. In this context, we call s sample string and x cut character, while the
elements y ∈ S(s, x) will be called fragments of s (under x).
We use special characters 0, 1 to uniquely denote start and end of the sample string. For
an alphabet Σ we consider the set of all strings in Σ∗ with attached prefix 0 and suffix 1,
0Σ∗1 := {0s1 : s ∈ Σ∗}.
We use the following mathematical representation of base compositions: We define a nat-
ural compomer (or compomer for short) to be a map c : Σ → N, where N denotes the set
of natural numbers including 0. Let C+(Σ) be the set of all natural compomers over the
alphabet Σ. We denote the canonical partial order on C+(Σ) by ≼, that is, c ≼ c′ if and
only if c(σ) ≤ c′(σ) for all σ ∈ Σ. We write 0 for the empty compomer c ≡ 0.
For Σ = {A,C,G,T} we use the notation c = AiCjGkTl to represent the compomer
c(A) = i, . . . , c(T) = l, omitting those characters with index zero. The function comp :
Σ∗ → C+(Σ) maps a string s ∈ Σ∗ to the compomer of s by counting the number of
characters of each type in s. For example, set c := comp(ACCTA) then c(A) = 2,
c(C) = 2, c(G) = 0, and c(T) = 1 or, equivalently, c = A2C2T1. Compomers comp(·)
are also referred to as frequency vectors or Parikh-vectors.
Recall that due to the experimental setup, signals from fragments y with ordx(y) above a
certain threshold will be lost in the noise of the mass spectrum. Hence, for s ∈ Σ∗, x ∈ Σ,
and k ∈ N ∪ {∞} we define the k-string spectrum of s (under x) by:

Sk(s, x) := {y ∈ S(s, x) : ordx(y) ≤ k} (2)

The integer k is called the order of the string spectrum. The k-compomer spectrum
Ck(s, x) of s consists of the compomers of all fragments in the k-string spectrum Sk(s, x):

Ck(s, x) := comp
(

Sk(s, x)
)

=
{

comp(y) : y ∈ S(s, x), ordx(y) ≤ k
}

(3)
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In [Bö03] we define the Sequencing From Compomers (SFC) Problem to find all strings
s ∈ S that satisfy Ck(s, x) ⊆ Cx for all x ∈ Σ. Here, Cx denotes the set of compomers cor-
responding to the measured mass spectrum with cleaved base x. The inclusion condition
reflects the presence of additional peaks in the mass spectrum, as well as misinterpreted
peaks due to measurement inaccuracies of the mass spectrometry data [Bö03]. Clearly,
this formulation does not capture the problem of false negative peaks: The set of “mea-
sured” compomers Cx ⊆ C+(Σ) might be missing a compomer that corresponds to a false
negative peak or, formally: the set Ck(s, x) \ Cx is non-empty. Then the correct sample
string is not a solution of this instance of SFC.

3.2 Weighted compomers

Let us concentrate on a fixed sample mass spectrum corresponding to cleaved base x:
We want to penalize our method for assuming peaks that cannot be found in the sample
mass spectrum. To this end, we define a characteristic compomer weight (CCW) as a
function wx : C+(Σ)→ R≥0. In its simplest incorporation, we set wx(c) := 0 if the peak
corresponding to compomer c can be found in the sample mass spectrum, and wx(c) := 1
otherwise: With this wx we can count missing peaks. Note that wx is the characteristic
function of the set Cx ⊆ C+(Σ) of observed compomers [Bö03]. This wx is called trivial
characteristic compomer weight in the following.
In general, wx may also consider the “chances” that some peak is missing in any such
measured mass spectrum, as well as peak intensities and peak masses in the sample mass
spectrum.
A straightforward way to define a “false negative peak penalty” for a sample string can-
didate s, is to sum up the weights wx(c) of all compomers c ∈ Ck(s, x). For the trivial
CCW, this is exactly the cardinality of Ck(s, x) \ Cx and, hence, we count missing peaks.
Unfortunately, this does not capture the multiplicity of compomers in the compomer spec-
trum Ck(s, x): One string smight “generate” some compomer c ∈ Ck(s, x)\Cx from only
one fragment y with comp(y) = c, while another generates this compomer from multiple
fragments. As intensities in a mass spectrum are additive, the second case is less likely to
happen by chance than the first.
To this end, we define the multiplicity of some compomer c ∈ C+(Σ) with respect to
s ∈ Σ∗ and x ∈ Σ by

mults,x(c) :=
∣

∣

∣

{

(a, y, b) ∈ (Σ∗)3 : c = comp(y) and xsx = axyxb
}

∣

∣

∣
(4)

Informally, mults,x(c) counts the multiplicity of fragments y in S(s, x) such that c =
comp(y) holds. So,mults,x(c) ≥ |{y ∈ S(s, x) : comp(y) = c}| must hold.
This enables us to define a sensible “false negative peak penalty” wk,x:

wk,x(s) :=
∑

c∈Ck(s,x)

mults,x(c) · wx(c) (5)
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We use (5) to establish a weighted version of SFC that takes into account false negative
peaks. We do not need the compomer sets Cx for this, because their “information” is
included in the characteristic compomer weights.

Weighted Sequencing fromCompomers (WSC) Problem. Let k ∈ N∪{∞} be the fixed
spectrum order. For all x ∈ Σ, let wx : C+(Σ) → R≥0 be the characteristic compomer
weight for cut character x. Finally, let S ⊆ 0Σ∗1 be the set of sample string candidates.
Now, find all strings s ∈ S minimizing

ϕ(s) :=
∑

x∈Σ

wk,x(s) (6)

where wk,x is defined in (5).

It is clear that SFC can be seen as a special case of WSC: For an instance of SFC, we use
the corresponding trivial CCWs wx for x ∈ Σ. Then, a string s ∈ S is a solution of SFC
if and only if it is a solution of WSC with zero weight. So, the WSC decision problem is
at least as hard as SFC, which is NP-hard [Bö04].

3.3 The de Bruijn graph

A directed graph consists of a set V of vertices and a set E ⊆ V 2 = V × V of edges. An
edge (v, v) for v ∈ V is called a loop. We limit our attention to finite directed graphs with
finite vertex sets. A walk inG is a finite sequence p = (p0, p1, . . . , pn) of elements from V
with (pi−1, pi) ∈ E for all i = 1, . . . , n, and |p| := n denotes the length of p. An edge
weighting of a directed graph with edge set E is a function w̃ : E → R; in the following,
we concentrate on edge weightings such that w̃(e) ≥ 0 holds for all edges e ∈ E.
For an alphabet Σ and an spectrum order k ≥ 1, the de Bruijn graph Bk(Σ) is a directed
graph with vertex set Vk := Σk and edge set

Ek :=
{

(u, v) ∈ V 2
k : uj+1 = vj for all j = 1, . . . , k − 1

}

where u = (u1, . . . , uk) and v = (v1, . . . , vk). We use the vector notation v =
(v1, . . . , vk) instead of the string notation v = v1 . . . vk for the sake of lucidity. We denote
an edge

(

(e1, . . . , ek), (e2, . . . , ek+1)
)

of Bk(Σ) by (e1, . . . , ek+1) for short.
For a cut character x ∈ Σ, a compomer alphabet over (Σ, x) is a subset

Σx ⊆ {c ∈ C+(Σ) : c(x) = 0} ∪ {∗} (7)

where ∗ ∈ Σx denotes a special source character we require to be an element of every
compomer alphabet. Note that we can add compomer characters c, c′ ∈ Σx: For the
source character ∗ ∈ Σx, we formally define c + ∗ = ∗+ c = ∗ for every compomer c.
The edges of the de Bruijn graphBk

(

Σx \ {∗}
)

are (k + 1)-tuples of compomers over the
alphabet Σ. We use the notation

e[i,j] := ei + comp(x) + ei+1 + comp(x) + · · · + ej−1 + comp(x) + ej (8)
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for 1 ≤ i ≤ j ≤ k + 1 to denote the compomer corresponding to parts of an edge
e = (e1, . . . , ek+1) of Bk(Σx), if the reference to the cut character x is clear. Now,
e[i,j] = ∗ holds if and only if there exists an index i′ ∈ [i, j] such that ei′ = ∗. Otherwise,
we have e[i,j](x) = j − i.
For sample string s ∈ Σ∗ and cut character x ∈ Σ, we call strings s0, . . . , sl ∈ Σ∗

satisfying s = s0xs1xs2x . . . xsl and ordx(sj) = 0 for all j = 0, . . . , l an x-partitioning
of s. Clearly, there exists exactly one x-partitioning of s.
Let Σ be an alphabet, x ∈ Σ a cut character, and Σx a compomer alphabet over (Σ, x).
A string s ∈ Σ∗ is called compatible with a walk p = p0 . . . p|p| in the de Bruijn graph
Bk(Σx) if the x-partitioning s0, . . . , sl ∈ Σ∗ of s satisfies l = |p| and

pj =
(

cj−k+1, cj−k+2, . . . , cj

)

for j = 0, . . . , l , (9)

where cj := comp(sj) for j = 0, . . . , l, and c−j := ∗ for all integers j > 0. We
have modified the definition of compatibility from [Bö03] to take into account the source
character ∗.

3.4 Weighted sequencing graphs

We generalize the concept of directed sequencing graphs [Bö03] to take into account com-
pomer weights of false negative peaks. For a cut character x, a characteristic compomer
weightwx : C+(Σ)→ R, and a compomer alphabetΣx ⊆ {c ∈ C+(Σ) : c(x) = 0}∪{∗},
we define the weighted sequencing graph Gk(x, Σx; wx) of order k ≥ 1 as follows: This
is an edge-weighted directed graph, consisting of the de Bruijn graphBk(Σx) = (Vk, Ek)
of order k, together with an edge weighting w̃x : Ek → R defined by

w̃x(e1, . . . , ek+1) :=
k+1
∑

i=1

wx

(

e[i,k+1]

)

(10)

where we assume wx(∗) = 0 here and in the following.
Given a walk p = (p0, . . . , pl) in a directed graph G with edge weighting w̃x, we define
the weight of p as the sum of weights of its edges: w̃x(p) :=

∑l
j=1 w̃x

(

(pj−1, pj)
)

.
The following theorem is the main result of this paper, and it allows us to tackle WSC by
“walking” weighted sequencing graphs. We omit the proof for the sake of brevity.

Theorem 1. Let s ∈ Σ∗ be a string, x ∈ Σ a cut character, and wx : C+(Σ) → R a
characteristic compomer weight. Suppose we are given a walk p in the weighted sequenc-
ing graph Gk(x, Σx; wx) where Σx is a compomer alphabet over (Σ, x). If s and p are
compatible, then

wk(s, x) = w̃x(p) (11)

holds, where wk(s, x) is defined in (5) and w̃x denotes the edge weighting of
Gk(x, Σx; wx).
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4 Algorithm

The algorithm presented in this section generalizes that of [Bö03]. We suppose that we
know a compomer alphabet Σx such that C0(s, x) ⊆ Σx holds for the correct sample
string s. We are given characteristic compomer weights wx : C+(Σ) → R≥0 for x ∈ Σ
that were generated from sample mass spectra. We want to solve theWeighted Sequencing
from Compomers Problem in the form that we search for all strings s ∈ S such that ϕ(s)
is minimal. We concentrate on the case that the set of string candidates S ⊆ 0Σ∗1 contains
all strings of length in a given interval, which is especially relevant for applications: that
is, lmin ≤ |s| ≤ lmax holds for all s ∈ S.
To solve WSC, we present a depth-first search that backtracks through sequence space,
moving along the edges of the sequencing graphs in parallel. In this way, we implicitly
build walks in the weighted sequencing graphs of order k that are compatible with the
constructed strings. By Theorem 1, every such string s has the same weight ϕ(s) as the
sum of weights of the compatible walks. This allows us to do a branch-and-bound check
by stopping the recursion as soon as the resulting string has weight above the threshold,
because all edge weights are non-negative.
First, we have to build the sequencing graphs Gx := Gk(x, Σx; wx) for x ∈ Σ. This
means that for every edge e of the de Bruijn graphBk(Σx), we have to calculate and store
the edge weight w̃x(e). A fast method of generating Gk(x, Σx; wx) is to iteratively build
the graphs Gκ(x, Σx; wx) for κ = 1, . . . , k. This can be done in O

(

|Σx|
k+1) time for

|Σx| ≥ 2.

For the depth-first search, we make use of the following notations: s is the current string
that will be a prefix of all string candidates constructed in subsequent recursion steps.
ψ ∈ R≥0 denotes the weight of the current prefix string s, and ψmin ∈ R≥0 ∪ {∞}
denotes the weight of the best solution found so far. Clearly, ψmin ≥ ϕmin always holds.
As we want to construct only strings s satisfying ϕ(s) ≤ ϕmin, we can stop the recursion
as soon as ψ is too large. Let hx denote the weight change that is added to ψ if we append
the character x ∈ Σ ∪ {1} to s. For x ≠ 1, hx equals the weight of some edge in Gx.
Next, h̃x ≥ hx denotes the induced weight change if we append the character x ∈ Σ:
Appending x will force edge transitions in Gσ for σ ≠ x in subsequent recursion steps.
Finally, vx denotes the active vertex in Gx.
Now, we start the recursion with s← 0, ψ ← 0, and ψmin ←∞. We initialize the current
vertices vx ← (∗, . . . , ∗) for all x ∈ Σ.
The recursion step takes as input: the current prefix string s, its weight ψ, the best solution
weight ψmin, and the current active vertices vx for x ∈ Σ. Let sx be the unique string
satisfying ordx(sx) = 0 such that either xsx is a suffix of s, or sx = s if ordx(s) = 0. Set
cx := comp(sx).

• If |s| + 1 ≥ lmin then calculate h1. If ψ + h1 ≤ ψmin then output s1 with weight
(ψ + h1), and set ψmin ← ψ + h1.

• If |s| < lmax, then calculate hx and h̃x for all x ∈ Σ. For every character x satisfying
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ψ + h̃x ≤ ψmin do a recursion step: Replace s by sx; replace ψ by ψ + hx; and in
Gx, replace the active vertex vx = (v1, v2, . . . , vk) by (v2, . . . , vk, cx).

• Return to previous level of recursion.

Note that hx, h̃x, and in particular, h1 can be computed as sums of edge weights in the
sequencing graphs, we omit the details. As a post-processing step of the algorithm, we
can sort out all string candidates s with weight ϕ(s) > ψmin. We omit the proof of the
following theorem for the sake of brevity.

Theorem 2. For all x ∈ Σ, let wx be characteristic compomer weights satisfyingwx(c) ≥
0 for all compomers c. Let Σx be a compomer alphabet over (Σ, x). For a fixed spectrum
order k and S as defined above, the algorithm of this section will return all strings s ∈ S
and their weights ϕ(s) that are solutions of WSC and satisfy C0(s, x) ⊆ Σx.

Our algorithm is a runtime heuristic and, as such, has exponential worst-case runtime.
Also, there may be exponentially many solutions to WSC. But usually, we can find the
correct answer much faster than the worst case analysis suggests. For n := max{|s| :
s ∈ S} we need O(n) memory in the recursion part of the algorithm. The critical factor is
obviously storing the sequencing graphs and in general prohibits the use of orders k > 2.
A simple implementation of the complete process of de-novo sequencing from mass spec-
trometry data is now as follows: Firstly, we generate detected compomer sets Cx for all
x ∈ Σ as described in [Bö03]. These sets are used to define the trivial characteristic com-
pomer weights wx that, in turn, allow us to build weighted sequencing graphsGx. We use
our algorithm to generate all sample string candidates s that are solutions to WSC satisfy-
ing C0(s, x) ⊆ Σx. Clearly, we can further evaluate the generated sample string candidates
by, say, an appropriate likelihood measure, taking into account MS data from all cleavage
reactions.
We want to stress that a heuristic used to analyze the MS data which cannot guarantee to
find the correct sample string, is not acceptable in the setting of DNA de-novo sequencing.
So, there is no way to circumvent the computational complexity of WSC.

5 Discussion

We have introduced the Weighted Sequencing from Compomers Problem that stems from
the analysis of mass spectrometry data from partial cleavage experiments. WSC extends
the Sequencing From Compomers Problem introduced in [Bö03] by taking into account
false negative peaks in the sample mass spectra. Although WSC is computationally dif-
ficult in general, we have introduced an approach to perform de-novo sequencing from
such data. The introduced method uses weighted de Bruijn graphs to construct all DNA
sequences that are “compatible” with the observed mass spectra.
We have tested the performance of our approach on simulated mass spectrometry data from
random and biological sequences (data not shown). Simulation results indicate that the
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presented approach is capable of reconstructing the correct sequence in many cases if the
ratio of false negative peaks is small, and ambiguities are often limited to a small number
of bases. So, this approach may enable de-novo sequencing from mass spectrometry data,
even when false negative peaks must be taken into account. Application of the method to
“real-world” mass spectrometry data is in progress.
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[HSB+03] Hartmer, R., Storm, N., Böcker, S., Rodi, C. P., Hillenkamp, F., Jurinke, C., and van
den Boom, D.: RNAse T1 mediated base-specific cleavage and MALDI-TOF MS for
high-throughput comparative sequence analysis. Nucleic Acids Res. 31(9):e47. 2003.

[KH88] Karas, M. and Hillenkamp, F.: Laser desorption ionization of proteins with molecular
masses exceeding 10,000 Daltons. Anal. Chem. 60:2299–2301. 1988.

[RDPS+02] Rodi, C. P., Darnhofer-Patel, B., Stanssens, P., Zabeau, M., and van den Boom, D.:
A strategy for the rapid discovery of disease markers using the MassARRAY system.
BioTechniques. 32:S62–S69. 2002.

[SNC77] Sanger, F., Nicklen, S., and Coulson, A. R.: DNA sequencing with chain-terminating
inhibitors. Proc. Natl. Acad. Sci. USA. 74(12):5463–5467. 1977.
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