Using BPEL as a workflow engine for local enterprise
applications

Nicolas Biri, Pascal Bauler, Fernand Feltz, Nicolas Médoc, Céline Thomase

Centre de Recherche Public — Gabriel Lippmann
rue du Brill 41,
4422 Belvaux
Luxembourg
{biri, bauler, feltz, medoc, thomase } @lippmann.lu

Abstract: This paper gives an overview on the integration of a BPEL workflow
engine into an enterprise application in order to decouple business processes and
application code. The technical complexity of this innovative approach is hidden
by means of Model Driven Software Development (MDSD) techniques and several
component frameworks. By referring to a research project realised in collaboration
of the Centre de Recherche Public — Garbiel Lippmann and the Luxembourg
National Family Benefits Fund (CNPF), with the overall goal to optimise the IT
environment of the CNPF, this paper shows how the proposed approach is
particularly adapted to agile and iterative development projects.

1 Introduction

The project presented in this paper is realised in collaboration with the Luxembourg
National Family Benefits Fund of Luxembourg (CNPF (Caisse Nationale des Prestations
Familiales)). This administration is in charge of the payment of family allowances for
people working in Luxembourg. During the last few years, the CNPF has started a
modernisation and optimisation process highly relying on information technologies.
There are mainly two reasons for this process: First of all, the modernisation is
mandatory to enable the handling of the growing workload and the complexity of the
underlying treatments, which mainly result from the increasing number of borderline
commuters and the extension of the European Union. A second reason for this
modernisation effort consists in offering adequate e-government solutions improving the
quality of service offered to the citizens and so increasing the interest of the population
in modern computer technologies. Due to the geographical situation of Luxembourg and
the high number of borderline commuters, complex cross-administration and cross-
country solutions have to be designed and data exchange protocols have to be specified,
in order to enable the access to the heterogeneous IT environments of the different
neighbouring countries. Strategic investment in modern IT solutions is justified, as the
workforce of the CNPF basically remained unchanged, although the number of
commuters significantly increased over the last decade. After some preliminary and

101

internal discussions, the Centre de Recherche Public — Gabriel Lippmann got involved in
the modernisation process [Ba06, HF06], to design innovative solutions. In this paper we
present a part of this modernisation project by mainly focusing onto the design of
enterprise solutions handling the computations of family allowances for commuters. We
show how modelling technologies combined with agile management concepts,
significantly help to successfully accomplish this project and to move into production.

Considering the short development phases and the numerous changes required in the IT
environment of the CNPF, we heavily rely on the SCRUM concepts [SBO1] to drive the
project. This approach is well adapted for projects with short deadlines running in an
evolving context. The key principle of this method inspired by the agile development
method, is to define priorities on the requirements and to establish short incremental
development cycles (called sprints), each of these containing a few goals to achieve
(called backlogs). Several operational and functional tests have to be passed before a
development cycle can be closed. Furthermore, a development cycle is usually ended by
a practical demonstration involving the partner and the end-user. In the particular context
of the CNPF we consider 2 types of demonstrations, either showing newly designed
business functionalities or discussing the progress in the specification protocol with the
neighbouring countries. This differentiation between operational and specification
results, is due to the need to collaborate with foreign development teams often relying on
the Waterfall model.

To take maximum advantage of the iterative development cycles introduced by the
SCRUM approach, the used technologies and development framework are selected
based on their compatibility with iterative development. This stresses the decision to
realise the application flow by means of executable workflows, in addition Model
Driven Architecture (MDA) and Model Driven Software Development (MDSD) are used
to generate technical and repeatable code segments and as a consequence, to improve the
overall development process.

From a technical point of view, a BPEL (Business Process Execution Language)
workflow engine is introduced to coordinate the core workflows and business processes
of the proposed solution. The common usage of BPEL engines consists in orchestrating
services (usually based on web-services) including handling of incoming messages,
message transformation and message routing. BPEL engines offer by default a message
centric approach, where the analysis of incoming messages determines further
treatments, either by initiating new processes or by passing progress information to
existing processes. Introducing appropriate MDSD frameworks, which hide technical
aspects of the overall solution, facilitates efficient usage of BPEL. The design decision
to build enterprise application architectures around a BPEL engine is justified as follows:

e The family allowances business domain is frequently adapted to political
decisions and legal changes, which results in regular changes of the underlying
business processes. By decoupling application code and application workflows,
maintenance and enhancement aspects can be optimised.

102

e Furthermore, decoupling of application workflows and code is especially
adapted to agile and incremental development projects. The IT teams can start
with simplified workflow skeletons, which are systematically enhanced and
adapted during the various development cycles of the project.

Below, these aspects are discussed in more detail. Section 2 presents the project context
with an overview of the proposed solution. In section 3, the orchestration solutions and
more precisely the BPEL specificities are exposed. The advantages and issues resulting
from the use of BPEL as a workflow engine in an incremental development process, and
its integration into our solution, are explained. This section also discusses some
technical aspects required to avoid de-synchronisation between BPEL workflows and the
application code. Section 4 explains how MDA technologies (Model Driven
Architecture) facilitate this synchronisation and how this technology fits with the agile
approach. Section 5 concludes this paper.

2 Project overview

2.1 Project working plan

The general project goal is to automate the computation of the family allowances for the
people working in Luxembourg. We distinguish the family allowances for Luxembourg
citizens on one side and for commuters on the other side. The complexity of the family
allowances results from a European decision saying that family allowances are
exportable. So each person working in Luxembourg, independently of his or her
residence country, is granted the Luxembourg family allowances. Furthermore the
citizens get the allowances from where they are the highest, either from the residence
country or from the working location. As in Luxembourg the allowances are higher than
in the neighbouring countries, the practical situation is somewhat simplified. As a
consequence, each family with incomes resulting exclusively from activities in
Luxembourg is treated as resident in Luxembourg. The situation is more complex for
families with incomes resulting from activities in different countries. The current
procedure consists in having the residence country pay the family allowances on a
monthly basis. The difference between the local and the Luxembourg’s allowances are
calculated twice a year and are directly paid to the citizen. As this process is error prone
and tedious, a first project goal is to replace this process in order to pay the allowances
on a monthly basis and to delegate eventual clearing operations to the back-end IT
systems. This improvement however requires an excellent collaboration between the
Family Allowances Funds of the neighbouring countries. Special political agreements
have to be established before facing technical burdens related to the heterogeneous IT
environments. These technical issues are discussed in detail in the following paragraph.

103

Due to the high increase of the number of commuters in Luxembourg, the CNPF noticed
in 2001 that they were no longer able to handle all the files manually. At that time,
roughly half of the commuters came from France. That justified the decision to tackle
the French commuters in priority and to start discussions with French allowances offices.
An interesting factor was that the French Family Benefits Fund is organised in a semi-
centralised way, with every region relying on an independent family fund, however all
IT services being provided globally by the French National Benefit Fund (CNAF).

After some delays, the CRP-GL got involved to work on an innovative approach to sort
out these issues and to work out a project plan to tackle the commuter problem. To find
an answer to this tricky situation, a two phases plan was defined. The first phase had to
quickly realise a production ready system, able to handle the French border commuters.
The proposed solution imported family allowances data from the French local benefit
funds of Metz and Nancy and computed on a semestrial basis the difference between
French and Luxembourgish allowances. Development started beginning 2005 and this
semi-automated solution went into production in August 2005. It was extended to
Belgian and German commuters in 2006. This phase, which can be considered as a
preliminary work, is not being discussed in detail in this paper. The second project phase
consists in developing an extendable IT system able to offer fully automated handling of
the French commuters. This solution must perform the monthly computation of the
family allowances and synchronise data between Luxembourg and French Family Funds.
The results of this second project phase are currently in a pre-production phase at the
CNPF and production is scheduled for October 2007. This modular system is supposed
to be extended in order to handle all Luxembourgish commuters within a 2 years
timeframe.

2.2 Solution description

As mentioned above, this chapter puts the focus onto the second project phase. The
proposed solution had to show operational results within 12 months, while it had to
remain extendable to handle on a mid-term basis the family allowances for all neighbour
countries. Another key aspect of the proposed solution was to offer extensive
verification and validation mechanisms, in order to avoid incorrect or double payment of
the family allowances.

The error detection is particularly tricky as the French and Luxembourgish Family
Allowances Funds are involved. An extensive exchange protocol, composed of 3 sub-
components, had to be specified and implemented to automatically handle those error
conditions:

e The first part details how master data concerning the citizens involved in the
cross-border processes are exchanged between the French and Luxembourg
Family Benefits Fund. This section of the protocol specification also defines
the active process for a given citizen, with eventual suspensions of the
payments for a given month.

104

e The second part consists in a detailed error handling protocol. When
abnormal situations are detected, the family funds are informed and the
payments are suspended. Dedicated message exchanges have been defined to
deliver status updates to the peer country in order to avoid incorrect
payments. Due to the international character of these processes, it is indeed
hard to get badly paid money back, especially if the involved citizens no
longer live in the involved countries.

e The last part of this communication protocol handles normal/regular data
exchanges between the French and Luxembourgish benefits funds. The
exchanged data inform the peer country of the paid allowances and define
the appropriate feedback.

During this project, a close collaboration between the French and Luxembourgish IT
teams is mandatory in order to overcome organisational constraints. In addition, the
communication protocol has to take the differences between the French and the
Luxembourgish IT systems into account and to guarantee compatibility with both
environments. Luxembourg has the advantage of being able to start with a new IT
system with limited historical data and no technical constraints. The French environment
is mainframe based and in production since several years. All new developments have to
be carefully thought through, realised and tested. By no means new developments may
negatively impact the running processes and the daily operations. The different design
methodologies adopted by the two development teams also has consequences onto the
working plan and the project schedule. The Luxembourg team uses agile development
approaches based on the Scrum concept, whereas the French team uses the classical
waterfall approach. As a consequence, the data exchange protocol has to be specified
and implemented following a waterfall approach. As a consequence this sub-task has to
be decoupled from the back-end system design.

This second project phase started in September 2005 and, since March 2007, is
progressively moving into production stage.

Below we concentrate on the Luxembourgish part of the cross-border project, by
exposing the design decision, the business processes and data manipulations at the
CNPF. The core application is built around the validation workflow, which consists of
several controls depending on the particular situation of the involved citizens and the
corresponding allowances. The main workflow collects the appropriate data, coordinates
the validation process and computes the appropriate results.

105

3 Integrating BPEL in a local application

3.1 Motivation

The first definition of the business processes are realised by means of EPC (Event-
Driven Process Chain) ARIS diagrams in close collaboration with the CNPF business
analysts. The EPC diagrams are handed over to the project team and are manually
translated into BPEL workflows. We use a BPEL engine to handle workflow execution,
as it is an orchestration language for web-services, initially designed by IBM and then
standardised by OASIS. The language provides a way to describe the behaviour of
business processes enabling transactions with remote services and ensuring interactions
between them. The basic tasks of BPEL are service calls, message reception, message
filtering, conditional routing and a compensation mechanism to recover from external
failures. The processes are executed inside a BPEL engine, which offers management
functionalities like the creation and the termination of processes according to a basic
lifecycle mechanism.

Using a workflow engine to execute the underlying business processes provides an easy
way to separate the behaviour of a process from the rest of the business logic. Thanks to
this property, we can easily adapt a process to new requirements. Changing a test or
adding a service access to a process can easily be done as the workflow is clearly
separated from the rest of the code. Furthermore, most of the BPEL process editors
provide a graphical representation of the BPEL process. Even if these representations are
not normalized, they are informative enough to be used during discussions with non-IT
people at the CNPF.

The environment of the CNPF and the nature of the processes lead our choice towards
the BPEL solution. The use of BPEL is especially adapted when orchestrating fully
automated workflows without human intervention, running in a distributed IT
environment [Si05]. In our particular project context however, the prime goal of BPEL is
to coordinate local services and to ensure execution of business processes. As a
consequence several adjustments are mandatory to adapt the BPEL engine to our special
needs.

3.2 Benefits of BPEL combined with agile development

This section shows how, in an iterative development environment, BPEL workflows can
facilitate the definition of business processes. We want to emphasize, that a BPEL based
business process definition approach, is particularly adapted to small and incremental
development cycles. The defined business processes have to be generic and flexible
enough to follow the actual status of the underlying development of business
functionalities. In practice, business processes have to be extended on a regular basis in
order to integrate new business functions realised by the development teams.

106

OC®H®

- H@

<&

Block
@ = O

Step 1 Step 2

Launch
following
workflow

Relaunch
flle

Initiate Initiate
Wait/Receive a
message
Assign Assign
Assign a variable
Service call
Control Treat
Condition
Wait
Receive
Assign

Figure 1. Example process: the first steps

The first modelling task consists in defining an ARIS EPC skeleton of the underlying
business process. This initial BPEL process contains some place holders in form of wait
actions, which are progressively replaced over the various production cycles. The next
modelling steps consist in refining these processes. We distinguish between two kinds of
refinements:

e Refinements, which integrate newly implemented tasks and business functions

e Refinements which modify the initial process by adding new structural
elements in order to represent significant workflow changes

A typical example of these types of refinements of the BPEL workflow is given in
Figures 1 and 2. For a better readability, we use a graphical representation of the BPEL
processes. In Figure 1, we have the first version of the process, where potential external
calls are replaced by wait tasks. In the second step we use two new features: the control
task and a choice for the last step of the process. In the last step presented in Figure 2,
we introduce a loop on the different files controlling the received data and an error
handling. The left part of the “loop box” corresponds to normal behaviour; the right part
corresponds to the error handling.

This example shows that BPEL processes are well adapted to iterative enhancements
through short development cycles. The systematic refinement of the processes has two
advantages: the process can easily be adapted to only access available services and
though have testable workflows, and the multiple cycles of development give us many
opportunities to correct possible errors introduced in previous modelling phases.

107

3.3 Integration issues

As the BPEL engine is used in an unusual way to orchestrate local services inside an
enterprise application, we have to adapt the underlying architecture as well as the
behaviour of the BPEL engine to fit these special needs. The architectural changes and
adaptations are discussed in this section together with some best practices identified
during the modelling process of the BPEL workflows.

The BPEL standard heavily relies on web-services. All communication with the BPEL
engine relies on this technology, which introduces a certain performance overhead.
Extensive performance tests however showed that this overhead is marginal compared to
the underlying computations and as a consequence, the proposed solution mainly has to
try to optimise the number of required web-service calls.

Initiate

Assign

Assign

Treat
Error
treatment
request
Assign

Wait/Receive a
message

Assign a variable

Service call

Condition

Wait

Assign

Error handling

Loop

RO ®H

Receive

Launch
following Relaunch
workflow file

Block
File
Step 3
Figure 2. Example process: the final step

Using a BPEL engine at the core of the enterprise application requires the development
of appropriate communication interfaces between the workflow engine and the other
parts of the project. We consider three types of communication:

e Communication of Data from the application to the BPEL engine: the
application server sends messages to the BPEL processes deployed as web
services on the BPEL server. These messages can either start a new process
or respond to an active process waiting for a specific event.

108

Message flow from the BPEL engine to the application: the BPEL server
accesses business functionalities deployed as web services on the application
server. We use a facade pattern [Ga97] to realise the interface between the
web services and the real implementation of these functionalities.

Communication inside the BPEL engine: the main process dispatches
incoming messages to the appropriate BPEL sub processes. This is done
using the correlation feature offered by the BPEL language. Each sub
process is accessed as a web service by the main process.

The main difficulty in this collaborative context is to ensure coherency between the
processes related to the various actors in the communication. As the BPEL solution is
process oriented, it is message centric. This means that the behaviour of the processes
depends on the received messages and is not state-transition oriented. Consequently we
have to integrate a mechanism introducing this notion of state inside the processes. This
is done by means of a coordination component in charge of the synchronisation of the
application state and the BPEL workflow state. The proposed coordination component
can be divided into 4 parts:

1.

A State Machine framework deployed on the application server. This
framework is used by the enterprise application to trace the expected state of
the BPEL process.

The coordination component offers query possibilities on the BPEL engine,
checking if the process states inside the application code and the workflow
engine are identical.

Automated handling of error conditions also relies on the coordination
component to restore consistent status at the application and the workflow
level. This error handling may result in rollback operations.

An event correlation module makes sure that incoming messages only
influence the concerned processes. For instance, a main BPEL process
catches all the incoming messages and dispatches them to the sub processes.
A special identifier determines the process instance concerned by a given
message. A sub process catches an incoming message only if it is actually
waiting for this particular type of message. This offers an additional degree of
protection and increases the reliability of the overall solution.

109

4 Model Driven Software Development and agile method

Model Driven Software Development (MDSD) is a core technology of the proposed
project. It helps to encapsulate most of the underlying technical aspects of the enterprise
application and to focus development efforts onto the business part. The UML based
platform independent model (PIM), describing the technical aspects of the project, is
enhanced by several stereotypes to obtain a platform specific model (PSM). This PSM is
used as input for the generator framework to produce platform specific code. In addition
to the generation of the persistency layer by means of Enterprise Java Beans (EJB),
several models define orchestration context behaviour. In this part, we present how
MDSD is used in our incremental and collaborative conception process and we give
some more information about the orchestration specific models.

4.1 MDSD development cycle

The proposed MDSD approach relies on several scientific papers explaining how the
agile development paradigm can be applied to MDA [Me04] or to MDSD [St06]. The
proposed project validates the use of the theoretical approach by a development team in
a practical environment.

Analyse \ Analyse \
Application Application
Version 1 Version 1'

Conceptioy Conceptig

Meta-1ModeI . Meta-gModeI

Software upgrade due to a meta-model upgrade

‘Analyse
Application
Version 1
Conceptig

Analyse
Application

Version 2

>

N ~

Meta-Model

Conceptio

Meta-model upgrade due to a software upgrade

Figure 3. Correlated upgrade of the meta-model and of the application

110

Conceptually we distinguish the meta-model defining the general architecture and the
application specific model. Both meta-model and application model evolve
independently, have however mutually influencing side effects. Each development cycle
relies on previous iterations, but may also require some adaptations at model, meta-
model or code generation side. These changes may be caused by new functional
requirements, which result in enhancements of the underlying meta-model or by
architectural improvements within the meta-model. As a consequence, each development
cycle can be seen as a new test for the robustness of the code and the generic aspect of
the proposed models. Another advantage of the proposed approach is a quicker and more
robust development. Our practical experiences are in line with the theoretical results on
the common usage of MDSD technologies in an agile development environment.

Decoupling meta-model evolutions from the agile development cycles has positive side
effects on the overall architecture and on the resulting enterprise applications. Figure 3
schematically shows the relationship between the application development and the meta-
model evolution.

MDSD techniques significantly reduce the development effort when applied to repetitive
or technical tasks, are however of little advantage when representing business logic or
application specific code where manual coding is more efficient.

Another MDSD specific problem encountered during the above-mentioned project is that
existing modelling tools offer only very limited multi-user support. Model sharing, or
model versioning features are not ready for productive use and merging UML models is
prone to error. As a workaround, we use a planning document to indicate who in the
development team has ownership of the various models. This workaround introduces
some overhead which is however fully acceptable in this particular project.

4.2 The State Machine model

In the overall MDSD approach we also introduce state machine support built around the
state pattern proposed in [Ga97]. According to its definition, this pattern is applicable in
the following context:

e The behaviour of an object depends on its state and it must change its
behaviour at run-time depending on that state.

e Operations have large, multipart conditional statements that depend on the
object’s state. The State pattern puts each branch of the conditional structure
in a separate class.

In our particular context, this definition exactly corresponds to the definition of the
workflows state management. Each workflow contains two classes to handle its state
transition: a state class that provides the core operation for state transition and a context
class with the information that has led to the current state.

111

AbsEntityBean

_state ConcreteStateA i
«Context» «interface, State»
A
EntityContextBean " 9 InterfaceC
getState() —
1 +stateTransition1()
+setState() stateTransition2()
+getState() +stateTransition1() + il
-+setState() +stateTransition2() «\merface?
+stateTransition1 () IStateMachine
+stateTransition2() -state +getState()
+stateTransition3() c +setState()
+stateTransition4() «interface, State»
" 1 Y InterfaceConcreteStateB
+getState() +stateTransition3()
+setState() +stateTransition4()
+stateTransition3()
+stateTransition4()

Figure 4. A State framework instance

The development team can limit itself to defining the major states (ConcreteStateA,
ConcreateStateB) regrouping all states of a given state machine, as well as the
appropriate transitions (stateTransitionl..4). This UML model shown in Figure 4 is used
as input and applied to the underlying meta-model. The code generator framework
establishes the link with the abstract state machine, giving a generic behaviour to the
workflows and with the persistence layer offering data persistence by means of
Enterprise Java Beans (EJB). If the default behaviour is not appropriate, the developer
may use inheritance mechanisms to overwrite the default.

5 Conclusion

This paper shows the benefits and difficulties encountered when integrating a BPEL
engine into enterprise applications and when relying on BPEL processes to manage
business workflows. The use of such a solution in an agile development process
improves the flexibility of the proposed solution. It enables systematic enhancements of
the business processes by adding new components to the workflow while maintaining a
loose coupling between the enterprise application and the workflow engine. The
resulting application shows significant better adaptability to changes. A key challenge of
the proposed solution is to guarantee synchronisation between the application code and
the workflow engine, by combining a message centric behaviour with a state-transition
behaviour. This synchronisation component extensively uses various Model Driven
Software Development techniques to offer an appropriate framework for integrating the
enterprise application and the BPEL engine.

112

The overall experience of using a BPEL workflow engine in the particular context of
Luxembourg National Benefits Fund is positive. The modernisation of the IT
environment of the CNPF is ongoing while showing success stories, validating the
underlying design decisions. Some additional conceptual complexity is added in the first
project phases, which is compensated by a better adaptability of the overall solution.
Further improvements concentrate on performance tuning in order to reduce the
overhead introduced by the web-service approach of the BPEL.

Bibliography

[Ba06] Bauler P., Feltz F., Biri N., Pinheiro P., Implementing a Service-Oriented Architecture
for Small and Medium Organisations, EMISA’06, Germany, 2006.

[Co05] Contenti M., Mecella M., Termini A., Baldoni R., « A Distributed Architecture for
Supporting e-Government Cooperative Processes », E-Government: Towards Electronic
Democracy, Lecture Notes in Computer Science, vol. 3416, Springer, p. 181-192, 2005.

[Ga97] Gamma E., Helm R., Johnson R., Vlissides J., Design Patterns — Elements of Reusable
Object-Oriented Software, Addison-Wesley, 1997.

[HFO6] Hitzelberger P., Feltz F., An Interoperable Communication Platform for a Public
Agency. 5th international EGOV conference, Krakow, Poland, 2006..

[Me02] Martin R.C.: Agile Software Development: Principles, Patterns, and Practices. Prentice
Hall, 2002.

[Me04] Mellor S.J.: Agile MDA, A white paper. http://omg.org/mda/mda_files/AgileMDA.pdf ,
2004.

[Sc95] Schwaber K., SCRUM Development process, OOPSLA'95S Workshop on Design
Patterns for Concurrent, Parallel, and Distributed Object-Oriented Systems

[SBO1] Schwaber K., Beedle M., Agile Software Development with Scrum, Prentice Hall PTR
Upper Saddle River, NJ, USA, 2001.

[Si0S] Silver B, Agile To The Bone, Intelligent Enterprise,
http://www.intelligententerprise.com/showArticle.jhtml?articleID=57702677, 2005.

[St06] Stahl T., Volter M., Bettin J., Haase A., Helsen S., Model Driven Software Development

— Techonology, Engeneering, Management, Wiley, 2006.

113

