An Approach of Semantic Cache for Mobile Devices to
Enhance the Performance of Applications

Marcos F. Caetano', Marco Antonio Ribeiro Dantas®

' Computer Science Department (CIC)
! University of Brasilia (UnB), 70910-900, Brasilia, Brazil
* Department of Informatics and Statistic (INE)
?Federal University of Santa Catarina (UFSC), 88040-900, Florianopolis, Brazil
! caetano@cic.unb.br
* mario@inf.ufsc.br

Abstract: Wireless mobile computing has become a differential aspect to a large
number of distributed applications. The main research goal related to this subject is
to provide to applications a similar level of services found in structured networks.
An example of interesting research topic is to improve the data replication scheme
that exists in a mobile device. The use of an elaborate method can represent an
improved strategy to enhance the performance and availability of applications to
wireless users. In this article we present a semantic cache model study, and its
implementation, as a differentiate policy for the local management of data
replication. The approach assumes that an answer for a query can be satisfied
totally by a local semantic segment, considering the gathering action of partial
segments or helping the connection to a server and then receiving the answer. We
tested the implementation of the model in a real environment, assuming three
classes of queries. The first class was characterized by those queries that could be
promptly answered locally. The second type of queries was answered after a local
gathering operation of semantic segments. In the last situation, queries were
answered after a send-receive operation to a server node in a structured network.
The empirical results indicate that the approach has improved successfully the
performance of the applications, avoiding unnecessary connections to a server
when an answer could be reached using one local cache segment, or gathering
information from the local semantic segments to compound the answer. In the case
of inexistence of any local semantic segment information to reply a query, the
implementation works transparently to connect to a server and then answer the
wireless user.

1 Introduction

The fast growing rate of new mobile computing technologies has brought many benefits
for wireless users. On the other hand, this fact promotes several research challenges to
provide software services in a similar level found in structured networks.

116



Investigation efforts such as [CM05, HMMO05, DM04] target to prove a performance
enhancement of applications based upon the location of devices, efficiency of
communication strategies between client and server, or the treatment of replicas and its
reconciliation.

In contrast to the former researches initiatives, our research work has the goal to enhance
the performance of mobile applications using a model of cache policy. The
implementation of this paradigm was based on semantic cache. The main objective of
this approach is to prove the right answer to queries using as much as possible the
information stored at the local device. In other words, we first search for a complete or
partial solution inside the mobile device. Therefore, the solution avoids unnecessary
wireless communications with a server node. In the case that an answer could not be
found correctly a communication is established to a specific node that will provide the
answer for the query.

This paper presents the model that we have adopted and its implementation, considering
real mobile devices in some case study configurations. Experimental results of the
approach indicate that the proposed paradigm implementation has successfully reached
the objective for a number of cases studies.

The article is organized as follows. In section 2 we present the fundamental theory
related to semantic caches in mobile devices. In addition, in this section we also show
some related work. The experimental environment employed for our case studies is
illustrated in section 3. Finally, in section 4 we draw some conclusions related to the
present research and point out some future work.

2 Semantic Cache

Semantic cache can be broadly defined as a collection of semantic segments [Sd96].
Each segment has a result of a query and its description, which was previously executed
[AJ96]. Utilising the existing description it is possible to execute operations and verify
whether a new query can be answered by this segment, or not.

Semantic cache has been used in centralised systems [CN94, Nr91], client-server
environment[Sd96, AJ96], OLAP systems [Pd98], heterogeneous systems [PJ97] and also
in mobile computing environments [KHA99, QM99].

When a query Q is submitted to a semantic cache approach, the entity responsible for the
management of the cache verifies if a semantic segment of the entity can answer the
query. This procedure is repeated for all queries, the semantic mechanism indicates if a
result can be reached or not. In the case of a partial answer exists, the initial query is
divided in two parts. The answered portion is associated to a segment and later is
processed. On the other hand, the part that was not answered is submitted again for the
next semantic segment.

117



The procedure is repeated until an answer is found to the second part inside the mobile
device, or there is no more semantic segments to process the query. In this case, the
second part of the divided query is submitted to a server node to be processed. It is
expected that in the end, all parts are gathered and initial query Q answered.

It is interesting to mention that the new data that came from the server node will form a
new semantic segment that can be used locally for future answers.

2.1 Cache Structure

Each semantic segment that forms a cache, it is defined by a tuple from five
subsets[Qr00]:

S = <Sg S4 Sp, Sc>
Where, the above parameters, related to the SQL language, have the meaning:

* Si — source relation that translates how the segment is form, thus it contains
names of the tables declared in the section from <table>;

e S, — it represents a set of attributes that are specified in the select
<atribl,atrib2, ....> section;

* Sp — a set of predicates that are specific for the where <predl,pred2,...>
section;

e Sc—itrepresents a set of answers from segment S.

M Sr Sa Sp Sc St
S; Employee {Id,Name, Age} Age > 30 2 T,
S, Employee {Id,Name, Phone} Age <20 5 T,

Table 1: An example of a semantic cache structure
Table 1 illustrates a structure model example that implements a cache segment.
Segments S; and S, where created from the following queries:

e @1 select1d, Name, Age from Employee where Age > 30;
* Q2 select1d, Name, Phone from Employee where Age < 20;

Sc represents a pointer that indicates the number of the page that contains the result of
the semantic segment. On the other hand, S is the representation of the time stamp that
keeps the information time when the segment was created.

118



2.1 Query Partition

When a query is submitted to the local cache, a number of procedures will be realised
targeting to solve this query. All the segments that form the cache can have a portion that
together can answer the question. Therefore, a semantic segment S can contribute
entirely, partially or not contribute at all to solve one question Q. Important to observe
that even for the case that a small fraction of the question can be answered using a
semantic segment this fact represents less wireless communication. In addition, if we
avoid unnecessary communication we are also helping to provide to the mobile device a
battery save feature.

However, in the case of partial answer the procedure will necessarily execute the
division of the O question into two queries:

*  Probe —part of the query Q that can be answer by the semantic segment;
*  Remainder — the present semantic segment could not answer this portion of the

query Q.

5 = seleet Age, Name from Employee where Age > 24

11 = select Age, Name from Employver where Age = 30
(32 = geleet Age, Nome from Employee where Age = 17
03 = select Age, Phone from Emploves where Age = 33
4 = select Age, Phone from Emploves where Age = 17

05 = select Phoane, Addreess from Employes where Age = 20

Figure 1: Examples of queries submitted to a semantic segment S.

Figure 2 has a graphical illustration of five possible cases that a query can be classified.
Each case can be understood using the examples shown in figure 1. Query Q; submitted
to the S segment represents case 1, Q, translates the case 2 and so forth. In [Qr00, QMO03]
it is possible to find a more formal description of these concepts.

The five cases presented in figure 1 can be understood as:

*  Totally Contained: this represents the first case, when a query Q; is submitted
to segment S. It is possible to verify Op = Sp and O, C S, . In other words,
query Q; selects the same attributes of S (4ge,Name) and the predicate Age >
38 is a subset that entirely exists inside the predicate Age > 24 from segment S.
As a result, the answer for the query Q; is completely inserted in S segment;

119



*  Horizontally Partitioned: When a query O, is submitted to the segment S, it is
possible to verify that Q. €& S, and Qp A S; satisfies the question. This fact
can be understood because O, selects the same attributes set from S, and the
predicate Age > 17 finds inside the segment results where values are greater
than 24. In this case, the predicates from the query Q, are divided into two
parts:

- Q2=Q, AS,: a Q:subset that requires existing values inside
S, i.e. values greater than 24;

- 7,= Qp A Sp: a O, subset that requires values that do not
exist inside S,i.e. value between 18 and 24.

(7]
[ra]
P

{

Figure 2: Possible partition semantic segment for query Q.

The Q’:query, called probe query, it will be entirely processed inside the segment S. In
contrast, Q”, the query known as remainder query, will be redirected to other segment.
In the case that no existing segment from the local cache could answer this query, it will
sent to a server to be processed. Figure 3, presents the entire algorithm definition of the
query trimming. In this section, we simplified the notation targeting to help the
understanding of the idea.

*  Vertically Partitioned: When query Q; is submitted to the segment S it is
possible to verify that O => Spe O, € S, . Thus, the predicates from the
query Q; are completely answered by the predicates from segment S. On
the other hand, the attributes selected from Q, (4ge, Phone) do not entirely
exist inside the segment attributes S (4ge, Name). Therefore, the attributes

120



of the query Q; will be divided into two parts:
- A, =(04 N S)UK,: compound by a subset of attributes that
exists inside segment S (4ge);

- A4, = (04 N—= S)UKy,; this part translates the attributes
subset that does not exist inside the segment S (Phone).

The two subsets 4; and 4, will respectively form the probe and remainder queries. As
we discussed in previous cases, the probe query will be executed locally. In contrast, the
remainder query will be submitted to the other semantic segments. In the case that no
local segment could match the query, it will be necessary a communication to a server to
provide a answer. In the end, the subset will be gathered to solve the query Q;. The
concatenation of the subsets is done using the primary key from table Employee. Every
query has the primary key of the manipulated table as an attribute. This attribute is
defined as included key segment [QMO03].

Hybrid Partitioned: This approach can be considered the most complex,
when it is compared to the previous cases. The reason for the complexity is
the necessary utilisation of both horizontal and vertical partitions,
respectively. When a query Q, is submitted to the segment S, it is possible
to observe that:
- O, AS,can find a suitable answer. The predicate Age > 17
finds inside the segment only values greater than 24.
Therefore, values from the threshold 18 and 24 are not found,

- 0,¢S, represents attributes selected from O, (4ge, Phone)

that are not completely inserted inside the segment S (Age,
Name);

—  Probe query: a subset that represents values that exists in the
segment S, i.e. PQ=m (QaMN Sa)N Kao Qr A Spr(Qr).
In other words, the attribute Age and the values of Age > 24
are obtained in the segment.

Not Contained: The query Qs can not be answered by segment S, i.e.
Op A Sp is not satisfactory. Thus, the probe query is empty and the
remainder query represents the query Qs This query will be processed by
the next semantic segment until it can be solved. In the case that no answer
is possible to be found from any segment, then the query is submitted to a
server node.

121



The previous five described cases are organised in an algorithm structure presented in
figure 3. The algorithm Query Trimming [QMO03] receives as an entrance a semantic
segment S and a query Q. As a result, the algorithm provides a structure that contains: a
type identifier (that specifies which kind of partition was selected) and sub-queries
(probe, remainder and amending query). An amending query is characterised by a query
sent to a server node. In other words, this query represents the operation to find a
segment that it is not present in memory of the mobile device.

II'IQH 5"I o s ot hald]
j‘.' ‘u‘; -Eil' “‘-'A.' cq; 5,k ”lﬂ. L] ':-I._:ll

& i
A 0 -0 S UK, [case 3 = Vertically Partiticoned

NG, = 3 pa = wA S gl = wA Q0K
IH”" - h':'l g = agg - MLELL; retum
SHease T - Totaly Condained 1 .

PO, =5 b gy = MUALL: IFiC, ~5, i satisfiablel|

ELSE ag « i ur() |Q,I. case 4 - Hybriely Pastitianed
i ¥ : ;

pg = will UK o0 (5 ) l:l-l:lI i (5 :L .

arl = qrd = NULL: setumn; '“‘1. L@ IR L B R LB

| [ [1Fd ||p‘|,:.-|l:_'l'_ 540,

IFiC) ~5 iis satisfiable) aq = HULL: return:
foase 7 - Horiranially Patitionag |
IFI'l'.'I,,_,t SAI ag = MULL; 1 .

ELSE ag=mf o) »5 (0] case 5 - Mot Contained

rgl = Ok pg = ag = rq?d = KULL: returm;
P = ol K QLS ) .

II:II- ||Q‘_ H_‘“ﬂ,‘ 5,("1.:'.
rgd = MULL; refurm;

-

Figure 3: Algorithm Query Trimming.

In the following query structure we provide an example, where query Q’ submits a
search to segment S. A answer can not be found only using the local information
available in the cache:

select Age, Name from Employee where Age > 30 and Salary > 300

It is possible to verify that the condition related to the employees, i.e. with Age > 30 and
Salary > 300, can both be solve by the segment S, if the attributes exist in the local
segment. However, if an attribute does not exist it will be impossible to solve the query.
This example fits exactly in the case, because the local segment does not have the Salary
attribute. Then, an amending query is created. This query submits to the server node a
query to send to the mobile device the Salary attribute. When this attributes arrives at the
local segment the query is processed and the result returned to the wireless user.

122



3 Configuration and Experimental Results

The environment considered in this article, it is a real configuration form by mobile
devices that can have access to a structure local area network. We decided to utilise a
real configuration, because we implemented the software portion of the server, the client
and the communication module. Therefore, utilising this configuration it could provide a
more realist assessment of some intrinsic problems found in wireless environments.

The design and development of the semantic cache model, presented in the theory in
section 2, represents the main part of our contribution. As figure 4 shows, we image an
environment that was formed by three elements: a database manager, a server and a
client wireless node.

The database manager used in this research project was the Mckoi SQL [Md06]. We
decided to use this database, because it is an open source package and provides all the
functions necessary to the development of the proposed software environment.

{ Thent Server

Soav o

§ spml
ol ache il © igiw IE Qe |

Dy Pl T o Dewdrnlenk
e | A — Linnes
] ] . .
Hatial i
t Coamection —— t
HMisdlen I.quh DB cemectinn

]
i
{ senet i 1] Clies M
Commeotion i
- 4 Fhaia
Chwery BesuliSol :
[hatagram Juery L B 3
Firsdt™el
scrag A Jabile b
¥ e Prmneary sy

Lirheshceibon W
iy Select
LREry Anvwer

Figure 4: Proposed Environment.

The server node module was characterised for waiting and treating client connections
and requests. This element was implemented having three software components:

*  Server Connection: this element waits for the calls from wireless clients in a
specific port and then redirects to the Connection Handler module to be
treated;

*  Connection Handler: this module is responsible for receiving calls from client
nodes and establishes connections with the DBConnection. It was
implemented adopting the multithread approach and has an application
communication protocol developed to provide some functions such as:

123



authentication in the database, execution of queries and database re-
initialisation.

DBConnection: this element interfaces the communication between the server
node and the database manager. The implementation was developed to
provide to the server independence from the used database. Therefore, this
module returns the results of all SQL queries as labels, indicating a line and a
column and the primary key of the table. In other words, this software element
was designed adopting a QueryResultSet structure.

On the client side, the enhanced semantic cache functionality was designed and
implemented having the following components:

Client Connection: this element is responsible for establishing and closing
a connection, sending and receiving requests in the client connections.
These connections were characterised by sockets and this module provides
two streams channels: an input and an output. Theses channels are managed
and encapsulated through the functions:

public void send(Datagram msg) {...}
public Datagram receive() {...}

Connection Handler: this entity is responsible for treating the client
connections. Thus, it provides a transparent interface, called as Semantic
Cache, that encapsulates procedures to establish connection with a server
and data structure;

Semantic Cache: this module is the implementation of semantic cache
policies that we discussed early. Therefore, we developed for this
component some facilities such as: semantic segment, binary tree,
QueryPlanTree, and PredicateSet. In addition, it also provides the entity
ClientGUI that has a transparency feature related to the semantic cache
policy. Thus, for an application that uses this interface, the processing
procedure for local and remote queries are transparently. An example is:

public synchronized QueryResultSet
executeQuerySelect( String queryConsult)

{.}

ClientGUI: this component of the proposed environment provides a user
friendly interface to a user to have access to the facilities of the software
package implemented;

Local Data: the persistent local cache is store in this element. When, for
example, the environment starts it has a number of segments that were
generated in the last utilization.

124



ServerD oeseciion

DOWHLINK CHANNEL
-

-‘ -
UPLINK CHANMEL FFALM

Ny

Figure 5: A general communication between client and server.

Figure 5 presents a general picture of the client and server communication. The uplink
channel is used by clients to realize access and queries to a server node. This channel is
also used to verify if enough energy exists and if the client is inside a wireless area from
a server. The downlink channel is a conventional link where servers send their answers
to clients.

Table 2 shows characteristics of the software and hardware components that were used
to our empirical tests.

Component Mobile Client Server
Model Palm Tungsten C AMD Duron
Processador 400MHz 1,2GHz
Memory 64MB 256MB
(ON} Palm OS 5.2.1 GNU-Linux-2.4
JVM MIDP 2.0 - CLDC | Sun J2SE-1.4.2

Table 2: Environment Characteristics

3.1 Empirical Experiments

The experiments that we show in this section were realized to test all the existing
components of the environment, shown in figure 4. In other words, we image a set of
tests that could verify the interaction between the software elements and certify that the
answers were expected results.

We started the mobile device with any information inside the local cache. After that we
submitted the following queries:

1. Select Id, Name, Age from Employee where Age > 35;
2. Select Id, Name, Phone from Employee where Age < 40.

This first query was entirely submitted to the server and after that the information was
added to a segment S;. The second query, shown in figure 6, when submitted to the first
segment S; generated a hybrid partitioned. The sub-queries were:

1. Select Id, Name from Employee where Age > 35;

125



2. Select Id, Phone from Employee where Age > 35 and Age < 40;
3. Select Id, Name, Phone from Employee where Age <= 35.

The first sub-query can be answer by the segment S;, whereas the other two were sent to
the server node. An example of the server behavior is illustrated in figure 7. This figure
shows a server text interface informing the result sent the client. This message refers to
the third sub-query.

The final answer of the second query Q is present in figure 8. This answer indicates that
the designed and implementation reach successfully the objective of the wireless user.
The research procedure was efficient, because it only collects the necessary data from
the server node. In other words, avoiding unnecessary wireless connection to the server
and saving resources once it does not considered the store of data that is already in a
semantic cache segment.

On the other hand, figure 9 demonstrates the final content of the local semantic cache.
After the hybrid partitioned operation two new semantic segments were created, S; and
S,. It is expected that for a future similar request, the mobile device could answer the
query more efficiently, because the data now exists locally.

4 Conclusions and Future Work

The semantic cache is not a novel mechanism. However, this approach employed in
small equipment, such as mobile devices, is an interesting research topic to enhance
wireless applications. In this article we have presented a model and implementation of an
environment to enhance the performance of mobile applications. We first described
theoretically how the semantic segments work. After that we presented our differential
contribution designing, developing and implementing a solution to receive queries from
a local mobile device and then process efficiently these requests.

The proposed environment was compound by three software modules: a server, a client
and a database interface manager. The server was implementing having entities such as a
connection link element, a handler and a database connection. The client part
representing the vital point of the contribution, it was characterised by having a
connection server software package, a user friendly graphical interface and the semantic
cache module. Finally, the database interface manager provides an open solution to the
environment to work independently from a specific database or operating system.
Empirical results indicate that we have successfully reached a contribution to improve
the performance of local wireless applications.

As a future research work, we are planning to add locality dependence facility to the

software package implemented and also consider ad hoc networks to form an
environment to provide answers for mobile users.

126



Sensimn I Ves Boamarin Ssiirgs sp

TitEERadEEEAS
Lot fiov Aerasied from: AIB.E.D.7

Treg w0 smd¥ g ToF @ arwssd =

jdece a= W

id , foew , Porw)

i ] il

clrisd 1Fe cveslilon. Mis Escilen

Figure 6: The second query from the Figure 7: Server Text Interface.
mobile device.

Figure 8: Answer of the second query. Figure 9: Semantic segment after the second query.

127



References

[AI96]

[CMOS5]

[CN94]

[DMO04]

A. M. Keller and J. Basu. A predicate-based caching scheme for client-server database
architectures. Parallel and Distributed Information Systems, 1994., Proceedings of the
Third International Conference on, 5(2):35—47, September 1996.

C.D.M. Berkenbrock and M. A.R. Dantas. Investigation of cache coherence strategies in
a mobile Client/Server environment. [nternational Conference on Computational
Science, (3):987-990, 2005.

C. M. Chen and N. Roussopoulos. The implementation and performance evaluation of
the adms query optimizer: Integrating query result caching and matching. In
Proceedings of EDBT, pages 323-336, march 1994.

D. Pezzi and M.A R. Dantas. An experimental case study of replication and
reconciliation in a wireless environment. Proceedings of The 18th International
Symposium on High Performance, pages 179-182, 2004.

[HMMOS] H. Monica, M. S. de Camargo, and M. A. R. Dantas. An architecture for location-

dependent semantic cache management. ICEIS, (1):320-325, 2005.

[KHA99] K. C. K. Lee, H. V. Leong, and A. Si. Semantic query caching in a mobile environment.

[Md06]

[Nr91]

[Pd98]

[PI97]

[QM99]

[QMO3]

[Qr00]

[Sd96]

Mobile Computing and Communication Review, 3(2):28-36, 1999.
Mckoi Database, http://www.mckoi.com/database/, available in April, 2006.

N. Roussopoulos. An incremental access method for viewcache: Concept, algorithms
and cost analysis. ACM Transactions on Database Systems, 16(3):535-563, September
1991.

P. Deshpande, K. Ramasamy, A. Shukla, and J. F. Naughton. Caching multidimensional
queries using chunks. /n Proceedings of ACM SIGMOD, pages 259-270, june 1998.

P. Godfrey and J. Gryz. Semantic caching in heterogeneous databases. In Proceedings of
DEXA Workshop, pages 414-419, August 1997.

Q. Ren and M. Dunham. Using clustering for effective management of a semantic cache
in mobile computing. In Proceedings of the International Workshop of MobiDE, pages
94-101, August 1999.

Q. Ren, M. Dunham, and V. Kumar. Semantic caching and query processing.
Knowledge and Data Engineering, IEEE Transactions on, 15(1):192-210, Jan.-Feb.
2003.

Q. Ren. Semantic caching in mobile computing. PhD thesis, Southern Methodist
University, February 2000.

S. Dar, M. J. Franklin, B. T. J'onsson, D. Srivastava, and M. Tan. Semantic data caching

and replacement. Proceeding of the 22TH International Conference on Very Large Data
Bases, Mumbai (Bombay), India, pages 330-341, 1996.

128



Chapter 2: Decentralized Network Systems
Contributions to 10" 'CS 2010, Bangkok, Thailand

Christian Spielvogel, Peter Kropf
Application Layer Scalable Video Coding for the iPhone

Lada-On Lertsuwanakul
Fuzzy Logic Based Routing in Grid Overlay Network

Miguel Angel Rojas Gonzalez
Performance Evaluation of two Self-Adaptive Routing Algorithms in Mesh
Networks

Oleksandr Kuzomin, Illya Klymov
Functional Approach to Decentralized Search Engine for P2P-Network
Communities

129



