FinGrid Accounting and Billing

Houssam Haitof!, Hans-Dieter Wehle?, Michael Gerndt!

Mnstitut fiir Informatik 2IBM Deutschland Research
Technische Universtitidt Miinchen & Development GmbH
Boltzmannstr. 3 Schonaicher Str. 220
85748 Garching, Germany 71032 Boblingen, Germany
{haitof, gerndt} @in.tum.de hdwehle @de.ibm.com

Abstract: For a commercial entity to entrust the Grid for its business operations ei-
ther as a consumer or a provider of resources, mechanisms that would guarantee its
interests need to be implemented. Especially resource usage tracking and billing. In
this paper, we present our experience with designing and building an autonomic ac-
counting and billing system for the Financial Grid (FinGrid). We used a service ori-
ented architecture for FinGrid, we relied on open standards and recommendations for
our accounting system and on knowledge representation and reasoning to model our
billing infrastructure.

1 Introduction

Grids consist of a virtual platform for computation and data management using a heteroge-
neous cluster of computer resources [BHF03]. It enables users and applications seamless
access to vast I'T capabilities. In his reference paper [Fos02], Foster provides a three-points
checklist that a system has to fulfill before it could be identified as a Grid. The first is that
[the Grid] coordinates resources that are not subject to centralized control. Meaning that
not only the Grid resources are geographically distributed but that those resources belong
to different administrative domains, i.e. different institutions or departments. Issues like
security, usage policies, accounting and billing arise. Grids are often based on the “best-
effort” principal that does not guarantee a sophisticated level of quality assurance. This
may be quite satisfactory for an academic usage, however, Grids are more and more used
and adapted for a commercial usage. And for a commercial entity to entrust the Grid for
its business operations either as a consumer or a provider of resources, mechanisms that
would guarantee its interests need to be implemented. In the frame of the FinGrid project,
we built a general purpose, standard-compliant, Grid accounting system that tracks re-
sources usage for tasks, like the management, SLA enforcement or billing. We also built a
rule-based billing system, seamlessly integrated with the accounting module. The billing
system allows to generate bills from the the resource usage according to a set of billing
policies. All the components of FinGrid are composed within a SOA model.

The Financial Service Grid (FinGrid) is a project funded by the German Federal Ministry
of Education and Research, to develop a Grid architecture to virtualize services and pro-
cesses in the financial sector and to build banking Grid services based on an accounting

167

and pricing infrastructure through the development of several prototypes. In this context,
we pursue research on the necessary components for a financial Grid to better model an
industrialization and pricing scheme. We draw the architecture and implemented the re-
sulting accounting and billing services. Sections 2 is about FinGrid SOA model, sections
3 and 4 will present FinGrid accounting and FinGrid billing respectively. Section 5 intro-
duces our system architecture. In section 6 we will talk about the related work in the field
and in section 7 we present our future work.

2 FinGrid SOA Model

Service Oriented Architecture (SOA) guidelines and web services technologies can be
used to construct a solution for a flexible model for Grid management that would tackle
part of the Grid management complexity challenges. According to OASIS [MLM™06],
SOA is a paradigm for organizing and utilizing distributed capabilities that may be un-
der the control of different ownership domains. Some of the main drivers for SOA are
to facilitate the manageable growth of large-scale enterprise systems and to facilitate
Internet-scale provisioning and use of services. It revolves around the concept that needs
or requirements of one party are met by the capabilities of another. The parties at either
ends can be person or a software agent. Applying SOA principles to the Grid seems to
be a natural process. The Grid is composed of a set of distributed resources under the
control of different administrative domains, and SOA is a model for organizing such sys-
tem. In fact, the standardization efforts for the Grid are channeled towards the adoption of
web services technologies that lay the necessary infrastructure and building blocks for a
Service Oriented Grid Architecture.

In a SOA, the central mechanisms for coupling needs and capabilities are services, defined
by the capability of performing work for another, specifying the work offered for another
and the offer to perform work for another. The first step to meet SOA objectives is done
through decomposition or factoring of complex systems into smaller chunks for more con-
venient design, implementation and maintenance. Those smaller chunks are what services
are supposed to be: small independent components easier to manage and control. The
SOA model does not preconize the specific use of web services, however they constitute
the used de-facto standard.

FinGrid accounting and billing contains several small services composed together to con-
stitute an autonomic management layer whose function is to automatically collect usage
information from the different Grid nodes using collector agents and produce usage bills.
Every service is independent and can be recomposed in a different context. The main Fin-
Grid services are the Grid accounting, Grid billing, Grid rules Manager, job submission
and collector agents. In this paper we present the accounting and billing architecture and
thus concentrate on the accounting, billing and collectors services.

168

3 FinGrid Accounting

The purpose of this component is to provide an interface for collecting (upload) and ac-
cessing (download) accounting information of the Grid resources consumption and provi-
sion. Accounting is the collection of information and data on the usage of Grid resources
resulting in a report of the resource consumption and/or provision. The resulting report
is generally used for capacity planning, trend analysis, auditing, billing and/or cost allo-
cation. Gathered accounting information is in the form of an XML document complying
with the Usage Record (UR) Recommendation[MLMJMO07] proposed by the Open Grid
Forum (OGF).

3.1 Usage Record

The UR recommendation specifies a common format for representing resource consump-
tion data. It contains accounting and usage information gathered at the local Grid sites.
The usage metrics are divided into three categories: base properties, differentiated prop-
erties, and extensions. The base properties define the most common metrics necessary for
proper accounting such as user and job identification. The differentiated properties are
job-related measurement metrics that every Grid site can accommodate to its particular
needs. The last category is the extensions, which are a set of metrics specific to the Grid
site and jobs that can be added to the UR specification. The set of required items to be
accounted is, of course, site and situation dependent. The listing below shows a sample
UR document generated in our testing environment.

1 <urwg:UsageRecord>
2 <urwg:RecordIdentity urwg:createTime="2007-11-20T10:
59:30Z2" urwg:recordId="2007-11-20T10:59:28Zfingrid.
boeblingen.de.ibm.com@griduser"/>
3 <urwg:JobIdentity>
4 <urwg:GlobalJobId>https://9.152.4.12:8443/wsrf/
services/ManagedExecutableJobService?4499c150-974f—-
11dc-ab80-852cb8646fdc</urwg:GlobalJobId>
5 <urwg:LocalJobId>fingrid.boeblingen.de.ibm.com#119555
2763#147.0</urwg:LocalJdobId>
</urwg:JobIdentity>
<urwg:UserIdentity>
<urwg:LocalUserId>griduser</urwg:LocalUserId>
<ds:KeyInfo>
<ds:KeyName>/0=Grid/OU=GlobusTest/OU=simpleCA-fingrid
.boeblingen.de.ibm.com/0OU=boeblingen.de.ibm.com/
CN=Grid User</ds:KeyName>
11 </ds:KeyInfo>
12 </urwg:UserIdentity>

O W O J o

169

13 <urwg:JobName urwg:description="">UR test

14 </urwg:JobName>

15 <urwg:Status urwg:description="">Done</urwg:Status>

16 <urwg:Host urwg:description="">fingrid.boeblingen.de.
ibm.com</urwg:Host>

17 <urwg:CpuDuration urwg:description="">PTOS

18 </urwg:CpuDuration>

19 <urwg:WallDuration urwg:description="">PTO0S

20 </urwg:WallDuration>

21 <urwg:StartTime urwg:description="">
2007-11-20T10:59:287</urwg:StartTime>

22 <urwg:EndTime urwg:description="">
2007-11-20T10:59:2872</urwg:EndTime>

23 <urwg:SubmitHost urwg:description="">fingrid.
boeblingen.de.ibm.com</urwg:SubmitHost>

24 <urwg:Queue urwg:description="">Condor</urwg:Queue>

25 <urwg:Disk urwg:description="" urwg:storageUnit="KB">
10000</urwg:Disk>

26 </urwg:UsageRecord>

27 </urwg:UsageRecords>

3.2 Maetrics

Metrics are the measurable values gathered from the resources and represented in the UR
document. For the purpose of our implementation, we used the standard metrics of the
UR recommendation as well as a set of custom metrics as extensions. The custom metrics
offer capabilities that were necessary to our use cases but that are not provided by the
recommendation. They relate to the categorization of clients and resources and to the
representation of the cost for the resource usages.

4 FinGrid Rule-based Billing

The purpose of this component is to provide an interface for generating usage bills. Billing
is the process of generating bills from the resource usage data using generally a set of
predefined billing policies. The bill can be in real money or it can use more abstract
notions depending on the Grid site general policies. We should note here that the billing
service does not preconize the use of a specific economic model. In fact it is independent
from the economic model to be used. FinGrid Billing permits the definition, storage and
manipulation of billing rules through a set of services. The rules are expressed in either a
declarative rule language or simpler (but less expressive) business languages. They can be
updated and deployed at run-time without any need to recompile or restart any part of the
application.

170

4.1 Representation

We use knowledge representation to describe the different business rules. By using a
knowledge based representation, we are constrained to use a logic-based language. Know-
ledge-based systems can be viewed at a symbolic level, or a knowledge level[New82].
Representation language formalism lies at the knowledge level, where we are concerned
with the expressive adequacy of the language and its entailment relation. Logic being the
study of entailment and rules of inference, the tools of formal symbolic logic are ideally
suited for a knowledge representation system[BL04]. The choice for a logic rule language
is dictated by the following criteria: entailment characteristics, expressiveness, Objects
representation, Computational complexity, adequacy, extensibility, standard compliance.

4.2 Inference Engine

The inference engine is a reasoning system that keeps its actual knowledge in a database
like structure called the working memory. The working memory gets updated in real-
time with the changes in the system state. The inference engine’s task is a three steps
cycle[BLO4]:

e recognize the rules that are applicable, i.e. rules whom prerequisites are a bill com-
putation for instance.

e resolve conflict among the resulting rules.

e act accordingly by changing the working memory and firing the appropriate actions.

It is called inference engine because it matches facts with the rules to infere actions. The
facts are stored in the working memory whereas the rules are stored in what is called
production memory. Facts maybe added or removed from the working memory at run-
time depending on the data received. A system with a large number of rules and facts may
find at a certain time several rules to be true for a specific working memory state. Chances
are that some of those rules would conflict (shutdown the database server vs. keep a high
availability for premium clients to access the database). The inference engine needs then
to implement conflict resolution strategies.

There are three types of inference engines. Forward-chaining types, backward-chaining
types, and hybrid inference engines. Forward-chaining is data-driven. Facts are added in
the working memory, and the inference engine looks for applicable rules with a conditional
part being true, then adding the result to the working memory and evaluating again the
rules against the facts until no new rule is fired. Backward-chaining is goal-driven. The
inference engine is given a goal to reach and looks for rules with results matching the
goal. Our business rules are deductive rules and foreward-chaining engines are the most
appropriate for this type of rules. We are using Drools[Dro] as our inference engine.
Drools is production rule system using an enhanced implementation of the Rete[For82]
algorithm. Rules can be written in Drools Rule Language (DRL) or, using expanders,
Drools provides the possibility to use Domain Specific Languages (DSL) by defining the

171

language semantics. We defined two DSL (technical DSL and natural DSL) that we are
using in conjunction with the more complex DRL.

4.3 Billing Rules

We support two types of billing schemes: duration-specific and one-off cost. The duration-
specific type applies the billing rule based on the usage duration whereas the one-off cost
type is concerned with the proper usage of the resources. The following is an example of a
duration specific rule written in the technical domain-specific language, it specifies 0.0002
unit (Euro, Pounds...), for every second of usage of the described resource and user type:

when EVENT = "VM Assignment", CLIENT_TYPE = "Platinum",
RESOURCE_TYPE = "BLADE Type 4",
RESOURCE_AGE < 240 %= 60 =* 60,
SERVICE_LEVEL = "Platinum" then
COST_PER_SECOND = 0.0002

A similar one-off cost rule in the natural DSL:
when the event is "VM Assignment" using a resource type
"BLADE Type 4" and
the user type is "Platinum" then the one of cost
is 15

The second rule written in DRL:

1 rule "rule_2"

2 when

3 e:BillingEvent (event="VM Assignment",
resourceType="BLADE Type 4", clientType="Platinum");

4 then

5 OperationResult fact = new OperationResult ();

6 fact.setCost (10);

7 fact.setMessage ("rule_2 asserted successfully");

8 e.setOperationResult (fact);

9 update (e);

The technical DSL as well as the natural DSL have very limited semantics and are intended
to rules managers that are not programmers. The DRL is much more powerful and offer
more expressiveness.

172

5 Architecture
5.1 FinGrid Accounting Architecture

Figure 1 shows our general architecture. Using the FinGrid portal, the user can submit
jobs through the Community Scheduler Framework (CSF) or directly to a specific resource
using GRAM. The collectors take care of gathering usage data and storing it in the records
repository through the exposed FinGrid Accounting Interface.

5.1.1 Accounting Portal

The accounting portal is a web application (Figure 2) built using AJAX. It serves as a
front-end to the FinGrid accounting service. It offers various management functions and
operations on the usage records as well as the support for XPath for advanced queries.
The accounting portal is integrated with the billing interface. Users can mark records for
billing from the accounting portal.

5.1.2 FinGrid Accounting Service

For our accounting interface, we implemented OGF’s Record Usage Service (RUS)
[ANMOS5]. RUS is a stable OGF draft defining a basic infrastructure for accounting and
auditing, it specifies the service interface to normalize operations on the accounting in-
formation of the resource usage as described by the Usage Record specification. The UR
document can be maintained either centrally or in a distributed fashion. Our accounting
service interface permits the upload of usage records or the extraction of necessary infor-
mation and possibly the aggregation of resource usage data. It normalizes the operations
on Usage Records documents that are stored in a persistent XML database.

5.1.3 Collector

We use collectors to gather accounting information from the local resources. A Collector is
resource environment-specific agent that collects accounting data generated at the level of
the Grid resources to which it belongs. This data is then submitted to the Grid Accounting
Service in the form of UR documents. There is no proper standard for usage logs at the
level of the resource manager. The collectors’ task is to extract the relevant data from
the generated logs and transform it into compliant OGF UR-WG document. For every
Grid node, a collector agent instance is created whenever there is a job assignment, and
the usage data is automatically collected and dumped to the RUS server. Currently we
support Unix fork and OpenPBS. We should note here that some resource manager such
as Platform LSF[LSF] provide logs directly in the UR format.

5.1.4 UR Repository

The RUS standard does not specify how the UR should be physically stored and leaves
this decision to the implementers. We opted for the most natural way to store XML doc-

173

g
P Rules Manager

rdgransh Erging Sonacs

Fillrsy My

Piowial Imphematation Rapoiliary
FirvGrid Bllng Serdce | D
g . Raqoaacry
Pl
Finkard
Accounbing &
Bilking Morial]
F FGIT Mzcenintive 1
ENICR [| ‘Amccrss
{RLIS Enplgrregilalion) [Tree—re—

hetascheduber
B iCEF - o

Junls Sl lnsncen
Posrial

(=L 1]
£ &
Jlf'ln'
| . T—
i
d

Figure 1: FinGrid general architecture

uments which is a native XML database. Our choice settled on Xindice[Xin] for the per-
sistent storage. The advantage of using a native XML database is that we don’t have to
worry about mapping our XML document to a specific data structure to store in a normal
RDBMS for instance. We store documents as XML and we retrieve them as XML. Xindice
supports XPath 1.0 for querying XML documents which is very handful for aggregating
results from different stored Usage Records, and XUpdate 1.0 for updating XML docu-
ments. Our implementation supports WS-Security as security layer for authentication and
authorization.

5.2 FinGrid Billing Architecture

Our billing model separates the logic of the billing service from the data or the rules and
uses a hot-deployment scheme where users can manage the billing rules and deploy them
without restarting the billing service. This separation along with the possibility to write
rules in more user-friendly languages, make our services accessible to a wide audience of
users. The kind of users that would generally specify the billing policies but would not be
necessarily a programmer or a computer savvy.

5.2.1 Billing Portal

In the billing portal we can mark single or multiple usage records for billing, generate
usage bills and export the bills as XML files. However, sometimes we would need a higher

174

i fuid feew Hgley Bedimrards Jeol Hele
- o B T P e R Bl Y . 1 i e Pl P e Pl Pl

A Rty] P L

= smTer [T

 Pe——= - i
I S— L TR e N — ——

g
i
!

AfEEFrAtaaana

o - LEL b

Figure 2: Aggregation support in the accounting portal

degree of control over which data to be billed. Our implementation is powerful enough to
support aggregation of usage records over any combination of usage metrics elements as
well as ranges of times. It also supports aggregation of usage data using complex XPath
queries, giving the user a high degree of liberty in composing usage records. Records of
virtual organizations or some specific parts of job can be then created using aggregation
for a detailed billing document.

5.2.2 FinGrid Billing Service

The billing service provides port types to generate bills from usage data according to
predefined billing rules. The records can then be marked as billed. We can also bill
records created from aggregation results and save the aggregation for later reference. Our
billing service implementation is a front end to the Drools inference engine. It parses the
usages records and extract the relevant usage metrics for the billing process. It feeds this
data to the inference engine working memory and fires the evaluation process. The bills
generation process is not automated and needs to be initiated. However, we do have a
command line version of our billing service that can be used with cron for instance for
automated and scheduled bills generation.

175

5.2.3 Inference Engine and the Rules Manager Portal

As mentioned earlier, we are using Drools as our inference engine and we extended Drools
BRMS to offer a management portal for the FinGrid billing rules. Users can write or
edit rules written in any of the supported languages and deploy them without the need to
recompile or restart the application, thanks to the separation between the application logic
and the billing rules.

6 Related Work

Various work has been done in the field of Grid accounting and billing. The Distributed
Grid Accounting System (DGAS)[ABG™] intends to implement resource usage metering,
accounting and resource pricing in a distributed Grid environment. It supports decentral-
ized banking structure where the billing occurs before the job submission. It also supports
billing using various billing metrics. However, they tend to use proprietary solution and
protocols for representing and exchanging accounting data. The Grid Accounting Service
Architecture (GASA)[BBO03] developed within the context of the Australian GRIDBUS
project is another related work that supports different payment strategies (post-payment,
pre-payment and pay as you go). It also supports billing using different billing metrics.
It has, however, a centralized billing server and does not also adhere to the use of stan-
dards. The last example is the Swedish SweGrid Accounting System (SGAS)[SGET04],
an OGSA-based accounting architecture with decentralized banking structure. It supports
a service-oriented architecture with an implementation of the UR recommendation. How-
ever, it only supports one metric (clock time per node) for the billing and is unable to track
usage data on heterogeneous resources.

7 Future Work

In FinGrid, everything is a service but the Grid node themselves. As future work, we intend
to change that by representing the Grid resources as services for ease of composition and
management. We already identified the important points to achieve this and the approach
that we should follow. It is clear to us that we need to describe the resources as services
and provide a way to easily manage those services.

7.1 Describing Resources as Services

Web services are stateless application components, which are not suitable to describe and
interact with Grid resources being logical or physical (servers, storage media,...) that need
to maintain a state. Web services need therefore to define custom means to preserve state,
discover other resources and interact with them. Standardization efforts were made to
tackle this issue. The most prominent is the Web Services Resource Framework (WSRF)

176

set of specifications by OASIS [Ban06]. The WSRF provides a general solution using
web services to an originally specific problem: describing and representing Grid resources.
Another relevant feature of WSREF is that it brings a solution for management of a resource
lifetime, faults and properties. A resource that is described in this way is called a WS-
Resource. Rendering resources as WS-Resource and decomposing software component
into services is the first step toward an SOA enabled management architecture with all the
advantages that it can bring such as ease of management, adaptability and automation.

7.2 Managing Services

Considerable work has been done to define an architecture to manage web services, the
most notorious are WSDM [BVWS06] and WS-Management [MMRO08]. WSDM stands
for Web Services Distributed Management and is composed of two sets of specifications:
WSDM-MUWS, Management Using Web Services MUWS) and WSDM-MOWS, Man-
agement Of Web Services (MOWS) specifications. MUWS specification defines how can
we expose any resource as a manageable resource and is built on top of WSRF and WS-
Notification [GHMO06]. Seeing the importance of those new specifications, the consortia
behind them decided to reconcile WSDM and WS-Management specifications into a sin-
gle standard for management of IT resources using Web services [ea06].

8 Conclusion

We have presented the architecture and implementation of the FinGrid accounting and
billing services based on open standards and recommendations. Our architecture is ser-
viceoriented and modular. We used a rule-based approach for the billing service. This
approach permits to detach the service control from the actual code enabling the business
users to change the service behavior without the intervention of an IT staff, thus, enhanc-
ing greatly the application adaptability in a world where business rules may change on a
daily basis. Our system is currently deployed at our academic and industrial partners for
evaluation and testing.

References

[ABGT] C. Anglano, S. Barale, L. Gaido, A. Guarise, G. Patania, R. Piro, F. Rosso,
and A. Werbrouck. The Distributed Grid Accounting System (DGAS).
http://www.to.infn.it/grid/accounting.

[ANMO5] J. Ainsworth, S. Newhouse, and J. MacLaren. Resource Usage Service (RUS) based
on WS-I Basic Profile 1.0. UR, August 2005.

[Ban06] T. Banks. Web Services Resource Framework(WSRF) - Primer v1.2. Official Com-
mittee Specification, May 2006.

177

[BBO3]

[BHF03]

[BLO4]

[BVWS06]

[Dro]
[ea06]
[For82]

[Fos02]
[GHMO6]

[LSF]

[MLM™06]

[MLMJIMO7]

[MMRO8]

[New82]
[SGET04]

[Xin]

A. Barmouta and R. Buyya. GridBank: a Grid Accounting Services Architecture
(GASA) for distributed systems sharing and integration. Parallel and Distributed
Processing Symposium, April 2003.

F. Berman, A. J. G. Hey, and G. Fox. Grid Computing: Making the Global Infras-
tructure a Reality. John Wiley and Sons Ltd, 2003.

R. J. Brachman and H. J. Levesque. Knowledge Representation and Reasoning. Mor-
gan Kaufman, 2004.

V. Bullard, W. Vambenepe, K. Wilson, and I. Sedukhin. Web Services Distributed
Management. Official Committee Specification, August 2006.

JBoss Drools. http://www.jboss.org/drools/.
J. Antony et al. WSDM/WS-Man Reconciliation. /BM Report, August 2006.

Charles Forgy. Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern
Match Problem. Artificial Intelligence, 19:17-37, 1982.

I. Foster. What is the Grid? A Three Point Checklist. GRIDToday, July 2002.

S. Graham, D. Hull, and B. Murray. Web Services Base Notification 1.3 (WS-
BaseNotification). Official Committee Specification, October 2006.

Platform LSF. http://www.platform.com/.

C. Matthew MacKenzie, Ken Laskey, Francis McCabe, Peter F. Brown, and Rebekah
Metz. OASIS Reference Model for Service Oriented Architecture V 1.0. Official
Committee Specification, August 2006.

R. Mach, R. Lepro-Metz, S. Jackson, and L. McGinnis. Usage record - Format Rec-
ommendation. UR, 2007.

R. McCollum, B. Murray, and B. Reistad. Web Services for Management (WS-
Management) Specification. DMTF, 2008.

A. Newell. The knowledge level. Artificial Intelligence, 18(1):87-127, 1982.

T. Sandholm, P. Gardfjell, E. Elmroth, L. Johnsson, and O. Mulmo. An OGSA-Based
Accounting System for Allocation Enforcement across HPC Centers. Proceedings
of the 2nd International Conference on Service Oriented Computing, pages 15-19,
November 2004.

Apache Xindice. http://xml.apache.org/xindice/.

178

