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ABSTRACT
On the one hand, users’ decisionmaking in today’s web is supported
in numerous ways, with mechanisms ranging from manual search
over automated recommendation to intelligent advisors. The focus
on algorithmic accuracy, however, is questioned more and more. On
the other hand, although the boundaries between the mechanisms
are blurred increasingly, research on user-related aspects is still
conducted separately in each area. In this position paper, we present
a research agenda for providing a more holistic solution, in which
users are supported with the right decision aid at the right time
depending on personal characteristics and situational needs.
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1 PROBLEM STATEMENT
The spectrum of decision aids (DA) for users who are confronted
with situations in which they can choose from large sets of alterna-
tives ranges from manual search and filtering [21], over automated
recommendation algorithms [48], to intelligent advisory compo-
nents and conversational assistants [26]. All these mechanisms
may help users in overcoming the information overload they would
experience otherwise in today’s web, and eventually, in making
satisfying choices. Substantial research efforts have been made to
improve the underlying methods on an individual basis, e.g., by us-
ing NLP in faceted filtering [17, 24] or deep learning for sequential
recommendation [14, 47]. Yet, these algorithmic advances are seen
more and more critically since less complex machine learning tech-
niques often perform on a similar level of accuracy asmodern neural
networks [13], especially from a user perspective [41]. Overall, this
perspective has gained importance in recent years, well illustrated
by the numerous approaches from recommender research that im-
prove user control or provide explanations [20, 29, 35, 55]. As a
consequence, the DA proposed in various areas increasingly con-
verge: As shown in Figure 1, interactive recommending approaches
[e.g. 33, 37], dialog- or agent-based advisors [e.g. 31, 53], and conver-
sational assistants [e.g. 6, 11], all are examples that come with the
personalization capabilities of established recommendation meth-
ods, and thus, low interaction effort, but are more controllable and
transparent, similar to manual exploration techniques.
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Figure 1: Mapping of different decision aids.

This is well in line with calls for a closer connection of the diamet-
rically different mechanisms of (manual) search and filtering and
(automated) recommendation [10, 18]. However, the approaches
highlighted in Figure 1 have one problem in common: Though more
interactive, they are considered as standalone solutions, mostly de-
veloped and evaluated separately. This neglects that in real-world
applications (e.g. online shops, digital libraries), multiple DA are
usually available, and it depends on the user’s personal character-
istics and situational needs, which method is currently the most
suitable one. Until now, this problem has been addressed only at a
very specific level, e.g., by combining selected interactive recom-
mending techniques [39] or dialog-based advisors with filtering
mechanisms [31]. We and others started to model interaction be-
havior when DA from two or more areas are available [30, 49, 58],
but these are only first steps towards a holistic solution that adapts
the presentation of DA to the current user. In this position paper,
we discuss the challenges that still need to be overcome, and lay out
a research agenda for always providing the right mechanisms from
the full range of options that can assist users in decision making.

2 RESEARCH AGENDA
Taking recommender research as an example, it has been pointed
out that the systems’ interfaces should adapt to personal and situa-
tional characteristics [7], and become less dependent on behavioral
data [16]. The effects, e.g., of domain knowledge or personality, on
the desired level of control and usage of interactive features already
have been investigated [27, 28, 42]. However, these works stop at
the boundaries of this area, disregarding that the decision-making
process, e.g., in online shopping, is usually much less straightfor-
ward than often anticipated under experimental conditions. In fact,
users use (and switch between) several DA, each with a different
impact [9, 25], before settling on a final choice [49, 58]. Thus, it
is inevitable to take a broader perspective, first in future evalua-
tion work: Again with respect to recommender systems (RS), it is
worth noting that users’ mental models often do not correspond to
actual implementations, and are subject to large inter-individual
differences [45]. To adequately design applications in which the
recommender is only one of many components, we thus propose to
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Figure 2: Our proposed research agenda.

first explore 1a) mental models also for these more complex cases
(cf. Figure 2). Based on qualitative methods such as grounded theory
[12], this will allow to better understand users who are not bound
to a single DA. However, even with only a recommender, many
paths may lead to the same goal [52]. Consequently, we propose
further to conduct 1b) user experiments on the influence of user (e.g.
demographics, cognitive style) and situation (e.g. task, device) also
at this superordinate level. Only few works have yet explored such
factors in relation to the tendencies to use different mechanisms
[30, 49, 58]. But, the insights from objective behavioral data are lim-
ited, while questionnaires require self reflection disconnected from
actual system usage, and, worse, often consumption or experience
[36]. Thus, eye tracking or other methods to in situ measure the suit-
ability of individual DA will be required to create a comprehensive
formal model of user interaction. While field studies could ensure
model validity under real-world conditions and capture temporal
changes, it might also be necessary, in light of the ever-increasing
design space, to come up with methods for simulation studies to
investigate long-term user behavior. This particularly applies as
domain and online environment likely are other mediating factors:
Product type (search vs. experience) and category (streaming con-
tent or high-risk items such as hotels), together with the general
impression of the application, may determine whether a user just
goes with the first recommendation or needs support by an advisor.

Once more is known about perception of and interaction with
environments in which multiple DA are available, it will be possible
to work on specific methods: We propose to start by pursuing a
closer 2a) integration of methods from all three areas identified
as in Figure 1: While combinations of RS algorithms were made
interactive, often through complex mechanisms [e.g. 5, 8, 38, 57],
or (simple) search functionalities were added [e.g. 15, 34], only
few works (cf. previous section) have yet extended existing DA
and improved their interplay. Hence, there is a need to facilitate
switching between components, without losing the progress made
or raising any conflicts, e.g., due to filter settings that do not match
the answer to a conversational assistant. In case natural language
input is possible, e.g., in such a conversation, this will require spe-
cific modeling approaches [61]. Next, however, the 2b) modeling of
the user can take place: Profiles that describe interaction behavior
and preferences for certain assistants were presented long ago [50].
For RS, additional browsing data have also been considered [59, 62].
But, to offer a meaningful alternative to common RS profiles that
only contain user-item preferences, it is crucial to consider users’
hidden characteristics [32]. Recently, an attempt to create “holistic

user profiles” has been made [43]. Together with the formal inter-
action model, this provides everything needed to determine which
information to collect and how to store it in an adequate manner.
However, since information on personality and context is usually
not readily available, this might require developing techniques for
implicit acquisition [1, 60] or for asking users explicitly [23, 54].
Either way, 2c) prediction will become possible: Again for RS, deep
learning has shown success in predicting the likely next action
based on past interaction sequences [51]. Thus, given the closer
integration and the richer user modeling, it should also be an option
to determine which of all available DA is currently most useful for
the active user. Yet, self-reinforcing loops, constraining the user
to certain interaction mechanisms, must be avoided [46]. For this
reason, among others, it is finally important to explore the possi-
bilities for the 2d) presentation: Earlier works on RS have shown,
e.g., significant effects of presenting items or the entire interface in
different ways [4, 19, 40, 44]. Whereas only behavioral data were
considered in these cases, studying factors such as personality has
a long tradition in user interface design [3]. This might turn out
useful for an adaptive presentation of DA, especially for raising
awareness of the mechanisms the system has predicted to be of rele-
vance before, in a persuasive but unobtrusive manner: Explanations,
currently used in RS mainly to explain item recommendations [55],
but also perceived differently depending on user characteristics
[22], could be used, e.g., to highlight the benefits of continuing the
interaction with a specific DA. However, to account for factors such
as the user’s tendency to maximize, or his or her used device, a
more active personalization of the entire component arrangement
equally needs to be considered.

As illustrated in Figure 2, these four steps need of course to be
interwoven with the evaluation described before, possibly causing
updates to the formal interaction model. Then, however, we expect
as outcomes of this user-centered process both insights and a set of
specific methods that will enable us to come up with 3a) guidelines
similar to the “recommender canvas” [56], which lists aspects to
help specifically with the design of RS. This may provide support
for practitioners and researchers at a superordinate level, to help
design applications that integrate multiple intelligent DA. Another
result could be a generic 3b) framework that, as done for enabling
interactivity in non-interactive RS [2], allows to implement a layer
on top of existing applications that automatically adapts the pre-
sentation of the (at most loosely connected) DA to the active user.
This highlights again the difference of our planned work to others:
Combining the benefits of existing approaches just to come up with
“yet another interactive method” as shown in Figure 1 is not our
goal, but instead, making these benefits, i.e. one DA or the other,
available to the right user at the right time.

3 CONCLUSIONS
We wanted to bring attention to the problem that research on inter-
active, intelligent DA is often too narrow. We presented an agenda
to overcome this problem, which is however neither exhaustive nor
conclusive, in particular, with respect to the methods to use in cer-
tain steps. Nonetheless, we hope that it may help start a discussion
about more holistic solutions, not restricted to a specific research
area, but assisting users on a global level.
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