
cba

Herausgeber et al. (Hrsg.): SE 2024,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2024 1

Semantic Debugging

Martin Eberlein1, Marius Smytzek2, Dominic Steinhöfel2, Lars Grunske1, Andreas Zeller2

Abstract: Why does my program fail? We present an automated technique for determining failure
causes and conditions using logical properties over input elements: “The program fails if and only
if int(〈length〉) > len(〈payload〉) holds, i.e., the given 〈length〉 is larger than the 〈payload〉 length.”
Our AVICENNA prototype uses modern techniques for inferring properties of passing and failing inputs
and validating and refining hypotheses by having a constraint solver generate supporting test cases.
AVICENNA produces crisp and expressive diagnoses close to those of human experts.

Keywords: Automated Debugging; Testing; Behavior Explanation

1 Introduction

When software fails, it is necessary to debug it—find the error in the code that causes the
failure and fix it. Before delving into the code, one must identify the circumstances under
which the failure occurs. Such circumstances provide essential hints on how and where to
fix the bug, offer insights into the problem’s severity, and aid in producing exact fixes.

Let us illustrate the role of failure circumstances by referring to the well-known Heartbleed
problem. Between 2012 and 2014, TLS servers using OpenSSL were vulnerable to the
Heartbleed attack, where an attacker could extract internal server memory contents. The
vulnerability was in the Heartbeat TLS extension, where a client checks if a server is alive.
Fig. 1 shows the elements, i.e., the format, of a Heartbeat client request and server response.
The client sends a 0x1 byte, a specified length (payload length), a given payload of that
length, and random padding; the server responds with a 0x2 byte and—normally—the same
payload. An attacker would send a payload length of, say, 4,000, and a shorter payload like
"Hello". The server would then return "Hello" followed by 3,995 bytes from its memory.

Fixing the problem requires understanding the circumstances under which it occurs: “The
given payload length differs from the payload’s actual length.” We present AVICENNA [Eb23],
a precise, general, and extensible approach to automatically determine such failure cir-
cumstances. Using AVICENNA, one can quickly derive the correct failure constraint for the
Heartbleed bug: int

(
〈length〉

)
> len

(
〈payload〉

)
.

1 Humboldt-Universität zu Berlin, Berlin {martin.eberlein, grunske}@informatik.hu-berlin.de
2 CISPA Helmholtz Center for Information Security, Saarbrücken
{marius.smytzek, dominic.steinhoefel, zeller}@cispa.de

cba doi:10.18420/sw2024_44

R. Rabiser, M. Wimmer, I. Groher, A. Wortmann, B. Wiesmayr (Hrsg.): SE 2024,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2024 135

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/sw2024_44

2 Martin Eberlein, Marius Smytzek, Dominic Steinhöfel, Lars Grunske, Andreas Zeller

〈heartbeat-request〉 F ‘0x1’ 〈length〉 〈payload〉 〈padding〉
〈heartbeat-response〉 F ‘0x2’ 〈length〉 〈payload〉 〈padding〉

〈length〉 F 〈int〉 〈payload〉 F 𝜖 | 〈byte〉 〈payload〉 〈padding〉 F 𝜖 | 〈byte〉 〈padding〉

Fig. 1: Syntax of TLS Heartbeat exchanges

2 Mining Failure Constraints

AVICENNA takes a program, an input grammar, and failing inputs. It decomposes each input
into syntactical constituents based on the grammar. The resulting feature vectors train a
machine-learning model associating the failure with grammar nonterminal symbols. To
determine the most relevant nonterminals, AVICENNA employs SHAP, a method in explainable
AI that quantifies each feature’s contribution to a prediction. In the case of Heartbleed, it
pinpoints 〈length〉 and 〈payload〉 as key contributors.

AVICENNA learns failures circumstances expressed in the ISLa [SZ22] language via pattern
matching using ISLearn [SZ22]. The pattern matching process is streamlined by focusing
only on previously determined input elements (such as 〈length〉 and 〈payload〉). An initial
hypothesis might be len

(
〈payload〉

)
> 6. To refine these hypotheses, AVICENNA generates

new inputs based on the most discriminating constraints between failing and passing inputs.
AVICENNA generates inputs from original and negated constraints using the ISLa fuzzer,
labeling them failing/passing based on program feedback. This iterative process, a feedback
loop, refines the constraints further. As a result, within just three iterations, AVICENNA is
able to accurately produce the constraint: int

(
〈length〉

)
> len

(
〈payload〉

)
.

3 Evaluation

AVICENNA was evaluated against 24 bugs, using expert diagnoses from the DBGBench study.
The key findings are: (1) AVICENNA’s failure circumstances closely match those determined
by human experts, often sharing identical semantics. (2) Diagnoses from AVICENNA are
only one-eighth the length of those from ALHAZEN, with comparable precision and higher
recall. (3) The feedback loop in AVICENNA is essential for precise failure circumstances,
outperforming ISLearn in speed and minimizing invariant candidates, yielding optimal
solutions.

Bibliography
[Eb23] Eberlein, Martin; Smytzek, Marius; Steinhöfel, Dominic; Grunske, Lars; Zeller, Andreas:

Semantic Debugging. In: ESEC/FSE’23. 2023.

[SZ22] Steinhöfel, Dominic; Zeller, Andreas: Input Invariants. In: ESEC/FSE’22. 2022.

136 Martin Eberlein et al.

