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Abstract: Enterprise architecture management is based on a holistic view on the en-
terprise addressing business and IT aspects in an integrated manner. EA management
is a process to manage the complexity of the overall architecture and to improve the
alignment of business and IT. In order to achieve these goals, it is necessary but not
sufficient to manage the static complexity that arises from dependencies between the
elements of the EA, like goals, organizational units, business processes, business ap-
plications, and IT infrastructure elements. Performance, stability, and scalability can
only be analyzed, modeled, and controlled, if static EA models are enriched by ap-
propriate abstractions to capture the dynamic complexity of the EA understood as a
socio-technical system of interacting (sub—)systems. This article identifies possible
techniques to address dynamic complexity in EA. The potential benefits of system
simulations are discussed and the derivation of apropriate simulation models is ex-
emplified. A key observation is the fact that EA management is a iterative evolution
process, where each iteration only changes a small fraction of the EA. It is therefore
possible to automatically derive model parameters required for the simulation of the
future architectures from an analysis of the dynamics of the current architecture.

1 Motivation

In large enterprises, the application landscape, as the entirety of the employed business ap-
plications [Wit07], is an important asset, which is a critical support factor for business and

3Jan Sudeikat is doctoral candidate at the Distributed Systems and Information Systems (VSIS) group, De-
partment of Informatics, University of Hamburg, Vogt—Ko6lIn—Str. 30, 22527 Hamburg, Germany
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a costly investment constantly demanding maintenance operations. Consequently, manag-
ing the application landscape has not only recently become a challenge, current enterprises
have to address. Especially in the larger context of enterprise architecture (EA) manage-
ment, the alignment of the enterprise’s business and IT, forms the focal point. In the light
of this increased interest from practitioners, different approaches to facilitate EA manage-
ment have been developed in academic research [FAWO07, Fra02, Lan05, Wit07], by prac-
titioners [Der06, EHHT 08, Kel07, Gro05], and by tool vendors [MBLSO08]. Nevertheless,
the approaches concentrate on structural aspects of the EA or the landscape respectively —
such as interconnections between business applications.

In contrast, the EA and the application landscape in special form highly dynamic systems,
with their behavior being far more complex than their topological structure is likely to
indicate. Such dynamic complexity is a widely known and accepted fact in many manage-
ment disciplines, of which first references date back to the 60" of the last century (cf. the
Forrester effect [For61]). Concerning application landscapes or EAs, such considerations
have not yet been undertaken, although some bordering fields from EA management, e. g.
business process management, have already established means and methods for addressing
and evaluating behavioral complexity, e. g. business process simulation [JVN06, LM04].
Thereby, the simulated concepts are considered on a high level of abstraction, omitting
detailed internal descriptions in favor of a more phenomenological treatment of the sub-
ject. We regard the establishment of complementary high-level simulation methods for
EAs a next important step towards a more mature management discipline and present an
approach to this area alongside an application example in Section 4 of the article. Preced-
ing Section 2 provides the foundation for the approach. Section 3 supplements some more
elaborate considerations on the EA as a dynamic system. In conclusion, Section 5 gives
indications on future research topics in this area.

2 Related work

The simulation approach presented in this paper targets two bordering fields — EA man-
agement and simulation techniques. An introduction to both areas is subsequently given,
and their impact on the presented approach is outlined.

2.1 EA management

The topic EA management is an important issue in academia as well as in practice for
several years now. One of the first papers targeting this field dates back to 1992, when
Sowa and Zachman developed a framework for information systems architecture [SZ92].
Since that time, the number of publications concerning EA management has grown con-
stantly [LWO04], although no commonly accepted definition of the terms EA or EA man-
agement exists. Nevertheless, the various definitions available center around a common
concept — a holistic view on the enterprise. Thereby, the areas of considerations may be
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different, but mostly range from infrastructure to business or strategic aspects. Figure 1
shows the different layers and crossfunctions of an holistic EA management approach ac-
cording to [MBLSO08].

The color coding of Figure 1 indicates the variability concerning the involvement of infor-
mation from specific layers or crossfunctions according to the different definitions of EA.
While it is common, that information from all layers and cross functions is of importance
in the context of EA management, different approaches vary widely in their definition to
which level of abstraction this information should be detailed (see e.g. the approaches
of [Fra02] and [BELMOS]).
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Figure 1: Layers and cross functions of an holistic EA management approach [MBLSO08]

The elements of an EA as alluded to above are subject of the process of EA management.
According to [MBLS08] EA management can be defined as a continuous and iterative
process controlling and improving the existing and planned IT support for an organiza-
tion. The process not only considers the information technology (IT) of the enterprise,
also business processes, business goals, strategies etc. are considered in order to build a
holistic and integrated view on the enterprise. The goal is a common vision regarding the
status quo of business and IT as well as of opportunities and problems arising from theses
fields, used as a basis for a continually aligned steering of IT and business. One central
task of EA management is the management of the application landscape [Lan05, Wit07].
As managing a complex asset as the application landscape is likely to involve a large
number of people with different backgrounds (e.g. business process managers, project
managers, or business application owners) communication is a major management issue.
Therefore, graphical models called software maps [LMWO05, BELMO08] (as the one shown
in Figure 2), have proven to be a valuable means of communication in this context. A
real-world exemplary visualization! focusing on business application interdependencies
and their distribution is shown in figure 2.

In addition to visualizations, metrics can be used to bridge the communication gap between
the stakeholders from business and IT [AS08, LS07, LS08, Lan08]. Thereby, metrics build
a more objective basis for decision making, helping the manager to not simply rely on his
gut feel. [LS08] and [Lan08] demonstrate the applicability of metrics in the context of ap-
plication landscape planning through comparing planned landscapes in respect to failure

'Due to reasons of confidentiality the figure, which is taken from a EA practitioner, is made unreadable.

133



= e B | - = — —
: E & l-—-li.u.u -
= -.E o L [
-_ - = =] - ;
s — -_ 4 Lo = .
= . el |
_- E- -' =,
- 4
——=lg=E] - ==
— .
— —
— - —
EE -
e
= - o

= . o=

Figure 2: Software map focussing on business application interdependencies

propagation. Notwithstanding the importance of metrics concerning structural dependen-
cies in the application landscape, also measurable properties exist, which arise from the
interaction in these highly dynamic systems.

2.2 Simulation techniques

The only means to assess this dynamic complexity are system simulations (cf. [BF04]
for an overview of simulation approaches), which therefore is a necessary prerequisite
for measuring dynamic system properties. The observation of the timely development of
system properties is supported by numerous simulation techniques ranging from purely
mathematical approaches, e.g. equation based modeling (EBM), to formal modeling ap-
proaches, e.g. petri-nets [vdAO3] and process algebra [Fok0O] as well as object- and
agent-oriented simulation methodologies [PSR98]. Mathematical and formal models are
simulated by iterative evaluation, while the computational simulation models rely on the
emulation of constituent system elements [PSR98]. In the following, we briefly outline
the applicability of some of these models for the simulation of EA.

A prominent purely mathematical simulation technique is the queueing theory (see e. g.
[Tij03]), a widely accepted and used means for deriving performance measures, e. g. pro-
cessing time, in systems with a continuous random stream of incoming requests [vdAO03,
BLL*94]. Such a situation can be found at multiple occasions in the context of EAs, e. g.
concerning business process execution in the back-office. The steps forming these pro-

134



cesses are thereby executed by business applications — their throughput performance can
be computed using queue based simulation models. Such models have been successfully
applied on business level (see e. g. [KB03]) or on infrastructure level concepts of the EA
as well as on intra-application aspects, like load balancing mechanisms. Contrastingly, up
to now, no attempt to use these queueing based simulation techniques on a more holistic
model of the EA has been undertaken. This might be due to the fact, that on the level of the
whole EA load information is often only known on a rather qualitative level, lacking pre-
cise quantitative information, which would be needed for queueing models. Additionally,
an embracing, enterprise-wide queueing model is likely to fail for a complexity problem.

Formal simulation techniques, e.g. petri-nets and process algebra, are particularly attrac-
tive to model concurrent activities and the resulting macroscopic, dynamic system behav-
ior. Petri-nets [vdAO3] describe systems as graph structures, where system states are rep-
resented as markings of tokens spread over nodes. This modeling notion complicates the
description of component data (business objects) and its change during state transitions,
quickly calling for more sophisticated methods like colored petri-nets [Jen96]. Process
algebra models [Fok00] extend the former approach by supporting compositionality, but
as well adopt a purely behavioral stance toward component behaviors. Therefore, both
modeling approaches allow to express the dynamic system behaviors, but their abstrac-
tion level demands additional effort to interpret the obtained results and relate them to the
represented EA concepts.

Object- as well as agent-oriented simulation models enable fine-grained views on system
components to resemble the resulting macroscopic system dynamics. In these approaches
the simulation model consists of collections of passive or pro-active elements, respectively.
Agent-based models are attractive to represent EA aspects as they support modeling sys-
tems as organizational structures of autonomous components [MY04] that decide locally
on their interactive behavior. This abstraction level supports the representation of intelli-
gent architectural elements that decide themselves to engage in computations, e.g. trigger
business processes executions. Therefore, complex local rules, which control interactive
computations, i.e. the realization of business processes, can be directly encapsulated to
observe their effect on the resulting system behavior. In [PSR98], agent-based simulation
models are distinguished from mathematical approaches. It has been argued that the abil-
ity to directly represent the element’s internal computations in agent models, facilitates the
transfer from simulation models to the represented systems. Particularly interesting in the
context of EA simulations is the ability to enable experimentation by what-if games, e. g.
via application landscape scenarios. The ability to directly model system components and
their local computations can enable enterprise architects to alter local strategies and ob-
serve their impact on the resulting global system behavior. Moreover, the direct mapping
between simulation models and the simulated subjects facilitates the implementation of
the gained insights, i.e. modifications of the represented EA element. Due to these bene-
fits, agent—based simulations are preferable to rigorous mathematical / formal simulation
approaches. We expect that the local decisions of EA components can be mapped to re-
active, rule-based reasoning mechanisms, which facilitates the utilization of sophisticated
simulation environments [IGNOS] that ensure the scalability of the simulation approach
for large scale EA.
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3 Dynamic system aspects of EAs

Application landscapes, as part of EAs, exhibit a multiplicity of relations within the set of
interconnected business applications and components. These relations give not only rise
to structural complexity but, according to the dynamic properties of the underlying depen-
dencies, cause dynamic complexity. In system dynamics, analytic and constructive issues
are considered, which are explained here because they will influence the interpretation and
validity of statements about dynamic properties of a system.

System dynamics research coined the term dynamic complexity to describe the intricate
difficulty to assess the long-term behavior of dynamic systems. This notion of complexity
is distinguished from the complexity that rises from the combinational number of ele-
ments and their relationships. It describes the rise of complex, typically dysfunctional
behavior that evolves from subtle cause and effect structures. When the long-term effects
of short-time interventions are not obvious, this complexity can be observed in compara-
tively simple systems with low structural complexity.

In dynamic system analysis it is well known that the behavior of system components can
depend on the very details of the imposed conditions. To be specific, constant work load
or repeated transient peak load conditions with identical average work load can lead to
dramatically different response behavior and throughput. Such effects often are not recog-
nized, if the simulation model does not cover every detail, which at modeling time cannot
be identified as crucial. System architects are trained to identify components of concern
and the possible appearance of conditions causing unwanted behavior and provide means
to stabilize the system properties. Nevertheless, in many cases such unwanted behavior is
not discovered at system design time and is often difficult to detect in the running system
because of its dynamic complexity induced by its complex internal dynamics as a response
to simple use-cases.

Since the subtleties of causal relations among system components can lead to dysfunc-
tional system behaviors (e. g. discussed in [Mog05]), the architects of EA face the chal-
lenge to infer the dynamic system properties from the structural properties of the conceived
EA. We propose the use of system simulations to facilitate the examination of enterprise-
wide dynamics and the anticipation of effects of landscape modifications. Architects will
use these simulations to examine both the operational properties of EAs, e. g. performance
measurements, and strategic, non-functional properties, as scalability or robustness, which
are influenced by global architectural decisions.

4 Exemplifying our simulation approach

Simulation techniques are commonly accepted means for getting insights into the dynam-
ics of a system in many engineering disciplines. There actually exists a multitude of rea-
sons, why simulation is employed, of which an overview is given e. g. in [Wik08]. Espe-
cially the following ones strongly apply in the context of simulating EAs or application
landscapes respectively, namely:
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e Analyzing the real application landscape’s behavior in detail would be very costly
and resource-consuming.

e Analyses of the behavior of future application landscape’s cannot be performed, as
setting up them in an experimental environment is not possible due to the expenses
connected.

e Changing execution parameters in the real application landscape for reasons of anal-
yses is not appropriate, as the effects might cause severe business incidents.

Creating a model suitable for simulation of the EA or the application landscape can there-
fore be considered a sensible way to approach the aspect of dynamic complexity. Such
an approach is necessarily complemented with measures to assess certain aspects of the
landscape and present them in a condensed form, e.g. by using application landscape
metrics [Lan08, LS08].

Subsequently, we present our approach to EA simulation. Thereby, a real world problem
of a large bank is used to briefly exemplify the steps to be taken. The large bank operates
an application landscape containing a backend, which is purely host-based, i. e. it relies on
mainframe systems, on which the core business functions are executed, while a distributed
presentation logic exists. With the ever changing business environment on the one hand
and the decreasing number of available software engineers skilled in host programming
languages on the other hand, a major change in banking application landscapes is at sight.
A transition is likely to lead from centralized host architectures to distributed (potentially
service oriented) architectures. Nevertheless, this change of paradigm also brings along
important uncertainties, especially concerning the latency and failure propagation of the
revised application landscape. To illustrate the distribution issue, Figure 3 shows a simpli-
fied example of a host-based realization of a business process execution.

Business application,

sharing resources with Business application is

many other applications deployed on hardware
cluster

Business application,
sharing resources with
some other applications

High latency inter-cluster
communicaiton

Low latency single-cluster

Business application, not
communicaiton

sharing resources with
other I )

«—
Hardware cluster @ Datasource

Figure 3: Cutout of the host-based landscape involved in the execution of a business process

JUE

Latency and failure propagation on the level of business process execution are clearly de-
pendent on the distribution topology of the new landscape. This topology lays the ground
for the complex dynamics, which can lead to reduced throughput and increased latency.
Consequently, a company would look to achieve optimal performance properties for the
landscape, by choosing the right topology. Nevertheless, finding out, what is right, must
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be considered a complex task, for which the enterprise architects have not had the opportu-
nity to develop a gut feel. This lack of experience is addressed by us via metrics indicating
e. g. average latency based on simulated dynamics of the application landscape. Thereby,
the metrics could be applied to different scenarios for future application landscapes, either
created by an enterprise architect or machine-created ones randomly distributing the busi-
ness applications on systems. After simulating the scenarios’ dynamics and evaluating
their performance indicators, the architects could choose the future landscape optimally
fullfilling their performance requirements.

Alongside this example, we introduce the steps of an continuous and iterative process,
supporting the simulation of various aspects of an EA. Thereby, the system of which dif-
ferent elements are simulated, is the EA or respective parts thereof, e.g. the application
landscape. Due to reasons of brevity the example concentrates on the issue of latency as
introduced above. The steps to be taken are:

1) Gather concerns and objectives: At first the pain points, which should be addressed by
the simulation, have to be identified, e. g. by interviewing the respective stakeholders and
gathering their concerns? regarding the system. These concerns have to be operationalized
to objectives or key performance indicators (KPIs) in order to support the measurement of
the target achievement.

Currently, the bank operates a host-based backend system for supporting its
backoffice banking services. Driven by the lack of experienced host-programmers,
the bank has chosen to migrate its backend to a distributed Java-environment.
Thereby, questions like the following have to be answered prior the migration:

e How does the distribution affect the overall system performance, espe-
cially concerning the execution time of LUWs (latency)?

e What complex behavior might arise, e. g. regarding failure propagation
in partially asynchronous environments? Consider a situation, in which
a fast system having an incoming queue fails and is brought back to
operation after a certain time. May it cause subsequent systems to break
down due to too much load in little time?

2) Define objects of observation: In order to determine the parts of the system, which are
relevant for the simulation, the objects of observation and their dependencies have to be
identified. In addition, KPIs of the system have to be related to the objects of observation.

Business processes are supported by business services, which are realized by
business applications utilizing infrastructure services. Currently, the appli-
cations supportive for a process are executed on a single host, thus neither
distribution of data nor network communication is employed.

The performance analysis in the scenarios mainly targets the processing times
for the business processes to be executed. Therefore, the average processing

2The terms concern and stakeholder are used here in accordance to the definitions provided in the IEEE Std
1471-2000 [IEEO0O].
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time per business process request and the standard deviation of processing
time per business process can be considered to be suitable KPIs.

3) Identify classes and develop respective information model: The objects identified in
the preceding step have to be classified and their relationships to each other have to be
conceptually modeled. This leads to an information model, which represents the influ-
ential constituents of the landscape and their relationships to each other according to the
simulation scenario addressed.
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Figure 4: Simplified information model for the banking example

An information model for the banking example has to consider the business
processes, the supportive service-providing business applications, and the in-
frastructure services, which are utilized by the applications. Additionally, the
ordering of business service calls in the execution of a business process has
to be taken into consideration as well as the information flows between the
business applications. Figure 4 provides a simplified information model for
the banking example, in order to indicate the level of granularity on which
information is needed for simulation. The concepts introduced therein should
be self-explanatory and are hence not detailled here.

For supporting simulation, this static aspects have to be complemented with
further dynamic information, e. g. concerning the distribution of business pro-
cess requests over time. Additionally, means to model the resource usage of
an application in executing a service request have to be incorporated in the
information model, e.g. via in-application cause-effect modeling facilities.
Further, the distributed environment calls for ways to model different types of
inter-application dependencies:

Communication dependencies two or more business applications commu-
nicate in the execution of one business process either synchronously
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(mostly) or asynchronously (seldom).

Resource dependencies two or more business applications from different
business processes compete for the same resource, e.g. CPU.

Data dependencies one or more business applications are triggered by events
raised by data changes via another business application.

4) Choose appropriate simulation technique: Before starting the simulation process, an
appropriate simulation technique has to be chosen. As introduced in Section 2, a multitude
of different simulation methodologies exists, of which the one best suitable should be taken
according to the characteristics of the simulation and the system under consideration.

Purely equation based models could be used to simulate the dynamics of the
described system in detail. Nevertheless, analytical solutions may not be easy
to find due to the generality of the assumptions and the high level of abstrac-
tion. Further, especially resource dependencies cannot be modeled easily in
those mathematical models.

Formal simulation tools, as petri-nets or process algebras, may seem appeal-
ing in this context, although their main drawback concerning the interpretation
of the simulation results cannot be neglected. Further, especially the petri-nets
are likely to restrict further refinements of the model especially concerning
considerations on business objects exchanged.

Therefore, we decided to choose an agent-based simulation model as agents
can more naturally model failure propagation in asynchronous environments.
Further agents can be re-used, e.g. if the scenario is extended to adaptive busi-
ness application relocation strategies to compensate load-peaks or system-
failures.

5) Map information model to executable simulation model: The information model,
containing all relevant elements for the simulation, e. g. business applications, interfaces,
business objects, etc., has to be mapped to an executable simulation model of the applica-
tion landscape.

Agent-based simulation models can be derived at different levels of granu-
larity that range between two extremes. On the one hand the most detailed
representations represent all active parts, e.g. business process and the ser-
vices that perform individual activities, as individual agents. On the other
side it is also possible to represent subsets of active elements, e.g. hardware
components, by agents that manage the interactions of logically associated
elements.

Following the requirements for the information model given above, the indi-
vidual business applications lend themselves to be described by agent mod-
els. Agent instances include the local rules that decide when to engage in the
execution of a business service. While several operations, e. g. internal com-
putationgs in an application, are to be mimiced by agent internal processing,
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can communication actions be represented by means of inter-agent communi-
cation.

6) Identify simulation parameters: The relevant simulation parameters, complementing
the information model defined above, have to be identified.

In the context of the banking example, the parameters necessary for simu-
lating the behavior especially center around the mapping of service requests
on business application level to th degree of infrastructure service consump-
tion caused thereby. Additionally, in-application processing times for internal
computations make up an important parameter of the simulation model as
well as the latency of inter-application communication may be. Finally, the
frequency for each of the business processes to be supported can be consid-
ered a valuable parameter.

7) Determine / estimate simulation parameter values: For each of the simulation pa-
rameters identified before, an value has to be determined. These values can be derived e. g.
from estimations from the expertise of business application owners or to be more objective
from empirical data on current behavior of the actual systems.

The frequency of executions per business process could be determined using
a business perspective, e.g. by counting the number of money transfers per
day. Resource consumption and are not that easy to determine, therefore a
simple estimation can be used, assuming that an internal computation utilizes
100% of a CPU core for a certain roughly estimated timespan. Communica-
tion latency can be determined using stastic methods on the data contained in
log-files of a small-scale experimentation enviromnent. Concerning the val-
ues for the simulation parameters, assumptions made have to be explicated, in
order to facilitate future validation or adaption of the simulation model.

8) Create evolution scenarios of the landscape: Based on the status quo of the application
landscape (current landscape) different evolution scenarios (planned landscapes) have to
be created, which represent possible evolutions scenarios. These scenarios can then be
compared based on the objectives in order to support the decision process concerning the
future evolution of the application landscape via the simulation results.

Potential ways to distribute the service providing business applications to dif-
ferent hardware clusters are made explicit in the evolution scenarios. Thereby,
the scenarios are developed by enterprise architects of the bank, taking into
consideration similarities between the applications to distribute. Further sce-
narios are created by combinatorial search algorithms, finding pareto-optimal
solutions in the distinct business processes. Optimal scenarios derived by the
latter way are subsequently reviewed by architects, as they could be optimized
according to performance aspects, but may be senseless in respect to business
usage. Potential scenarios conforming to the simple example from Figure 3
are illustrated in the software maps shown in Figure 5.
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The evolution scenario, which achieved the higher outcome is implemented. Thereby the
planned landscape is transformed to the current landscape.

9) Validate the simulation results with actual data: Based on the behavior of the new
systems representing the previous planned landscape, the simulation results are validated
by comparison with the actually measured empirical data of the new system.

A new landscape has been implemented by projects and is finally operated by
the IT staff. Performance measures regarding latency can be assessed directly
by monitoring request processing time or indirectly by user satisfaction anal-
yses. Especially direct results may be used to adapt simulation parameters, to
achieve a better fitting. Indirect observations may at least be helpful to proof
or neglect the simulation to be strongly deviating from reality.

In order to improve the simulation process introduced above, the findings of the final step
Validating the simulation results with actual data should be used as input for the next
iteration of the process. Thereby, each step, e.g. the development of the information
model should be reconsidered in order to improve the outcomes of the simulation process,
e. g. by introducing new concepts relevant for the simulation.

5 Critical reflection and outlook

In this paper we have motivated the necessity to enrich today’s static EA models that focus
on the static complexity arising from dependencies between the elements of the enter-
prise architecture by appropriate abstractions to capture the dynamic complexity of the
EA understood as a socio-technical system of interacting systems. Based on related work
on application landscape management, metrics, and simulation techniques established in
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other management areas, we outlined an approach to EA simulations. We argued that
simulations may provide decision support to develop better performing, more robust and
adaptive EAs.

Nevertheless, in this paper we have neither provided a detailed information model nor
a full-scale simulation model. To apply the approach presented, both models would be
necessary but also dependent on the actual environment, in which simulation supported
EA management was applied. Thereby, the steps 6)(identify simulation parameters) and
7)(determine / estimate simulation parameter values) of our approach form a major chal-
lenge in a practical environment. To address these issues a validation in the real world
would be required. The real world example presented alongside the approach provides a
real world example Although a real world example originating from practice is used to
detail on the different steps of our simulation approach, case studies have to be accom-
plished in order to validate the presented approach in a practical setting. We argued that
architectural decisions can not only be guided by metrics [Lan08, LS08] but may also be
supported by predictive simulations of architecture designs. These designs provide so-
called information models of the constituent architecture elements which are the subjects
of simulation models. We discussed established simulation techniques and concluded that
agent-orientation facilitates the derivation of simulation models. Furthermore agent tech-
nology provides a variety of simulation environments and tool support ready for use in the
simulation methodology presented here.

Future prospects comprise the integration of application landscape modeling and simula-
tion in an integrated tool chain. System dynamics research established what-if simulations
as predictive tools to support management decisions (e.g. [Ste00]). Here we propose that
EA architects would benefit from a similar approach. Crucial is the seamless integration
of modeling and simulation tool support, i.e. being able to automate the derivation of
simulation models from landscape descriptions. Since EAs depend on recurring types
of architectural elements, companies may maintain a library of reusable simulations ele-
ments. These describe common architectural elements parameterized by specific informa-
tion models. The here advocated agent—based simulation approach supports the required
composition of simulation models. Since the complexity of these simulation models grows
with the scale of the abstracted EA’s, sophisticated simulation environments will be uti-
lized [IGNOS5]. Particularly challenging in this context is ensuring the proper behavior of
the system model, i. e. validating that the derived simulation elements behave as the archi-
tectural elements they represent. As this demands manual modeling and simulation effort,
it is of interest to enable the reuse of simulation models, e. g. as executable architectural
pattern.
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